
Citation: Rüther, C.; Rieck, J.

A Bayesian Optimization Approach

for Tuning a Grouping Genetic

Algorithm for Solving Practically

Oriented Pickup and Delivery

Problems. Logistics 2024, 8, 14.

https://doi.org/10.3390/

logistics8010014

Academic Editors: Tomasz

Nowakowski, Artur Kierzkowski,

Agnieszka A. Tubis, Franciszek Restel,

Tomasz Kisiel, Anna Jodejko-

Pietruczuk and Mateusz Zaja̧c

Received: 25 December 2023

Revised: 28 January 2024

Accepted: 29 January 2024

Published: 4 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

logistics

Article

A Bayesian Optimization Approach for Tuning a Grouping
Genetic Algorithm for Solving Practically Oriented Pickup
and Delivery Problems
Cornelius Rüther * and Julia Rieck

Operations Research Department, Institute for Business Administration and Information Systems, University of
Hildesheim, Universitätsplatz 1, 31141 Hildesheim, Germany; rieck@bwl.uni-hildesheim.de
* Correspondence: ruether@bwl.uni-hildesheim.de

Abstract: Background: The Multi Depot Pickup and Delivery Problem with Time Windows and
Heterogeneous Vehicle Fleets (MDPDPTWHV) is a strongly practically oriented routing problem with
many real-world constraints. Due to its complexity, solution approaches with sufficiently good quality
ideally contain several operators with certain probabilities.Thus, automatically selecting the best
parameter configurations enhances the overall solution quality. Methods: To solve the MDPDPTWHV,
we present a Grouping Genetic Algorithm (GGA) framework with several operators and population
management variants. A Bayesian Optimization (BO) approach is introduced to optimize the GGA’s
parameter configuration. The parameter tuning is evaluated on five data sets which differ in several
structural characteristics and contain 1200 problem instances. The outcomes of the parameter-tuned
GGA are compared to both the initial GGA parameter configuration and a state-of-the-art Adaptive
Large Neighborhood Search (ALNS). Results: The presented GGA framework achieves a better
solution quality than the ALNS, even for the initial parameter configuration used. The mean value of
the relative error is less than 0.9% and its standard deviation is less than 1.31% for every problem
class. For the ALNS, these values are up to three times higher and the GGA is up to 38% faster
than the ALNS. Conclusions: It is shown that the BO, as a parameter tuning approach, is a good
choice in improving the performance of the considered meta-heuristic over all instances in each data
set. In addition, the best parameter configuration per problem class with the same characteristics is
able to improve both the frequency of finding the best solution, as well as the relative error to this
solution, significantly.

Keywords: automatic algorithm configuration; black box optimization; Gaussian processes; machine
learning model

1. Introduction

The less-than-truckload (LTL) transport sector typically involves large to medium-
sized carriers. This sector is characterized by the fact that several transport requests are
transported together in one vehicle. The freight of each request is transported from a
specific starting point (pick-up customer) to a specific destination (delivery customer).
As part of the vehicle routing, it must then be determined which customer is to be visited
on which tour and in which order. The goods must be loaded and unloaded by employees
at each customer. In order to ensure that employees and loading ramps are available and
waiting times can be reduced, customer time windows are introduced as an addition. Since
different types of goods are transported, e.g., palletized goods, but also pallet cages or cable
drums, LTL carriers must have different types of vehicles in terms of capacity, speed or
even pollutant emissions. Furthermore, carriers usually have several depot locations and
vehicles are available at each depot from which they start and end their routes [1].

The described problem can be modeled as a Multi-Depot Pickup and Delivery Prob-
lem with Time Windows and Heterogeneous Vehicle Fleets (MDPDPTWHV). Due to the

Logistics 2024, 8, 14. https://doi.org/10.3390/logistics8010014 https://www.mdpi.com/journal/logistics

https://doi.org/10.3390/logistics8010014
https://doi.org/10.3390/logistics8010014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/logistics
https://www.mdpi.com
https://orcid.org/0000-0003-3598-0451
https://orcid.org/0000-0002-6569-0239
https://doi.org/10.3390/logistics8010014
https://www.mdpi.com/journal/logistics
https://www.mdpi.com/article/10.3390/logistics8010014?type=check_update&version=1

Logistics 2024, 8, 14 2 of 26

problem’s complexity (it is NP-hard), an extensive solution approach must be applied to
achieve good solution quality (see Section 5.3). To do so, the Grouping Genetic Algorithm
(GGA) presented in [1] has proven to be a good solution approach, which has shown
promising results and solution quality.

Since the solution quality of a stochastic algorithm strongly depends on the correct com-
bination of the executed operators, configuring the parameters that control the probabilities
for the operator selection in the GGA is essential. The automatic optimization of these param-
eter configurations is defined as a Parameter Tuning Problem (PTP) (see Section 3.2). There
are currently various solution approaches available for automated parameter configuration
whose solution quality and suitability depends on the problem to be solved. In general,
iterative parameter configurators, such as ParamILS or the Sequential Model-based Algo-
rithm Configuration (SMAC), are state-of-the-art parameter tuning approaches [2], whereas
model-based algorithms, such as SMAC, are very promising since they can be potentially
executed more efficiently. Hence, an efficient configuration approach to tackle the PTP is
sequential model-based Bayesian Optimization (BO), which was introduced in [3] and is a
global optimization approach that is suitable for parameter tuning due to its convergence
properties [4]. However, BO has not yet been applied as a parameter tuning approach in the
context of meta-heuristics for solving vehicle routing problems (VRPs).

The main contributions of this paper are the introduction of a GGA for solving the
MDPDPTWHV efficiently, which has been adopted from [1] and extended by new mutation
and repair operators in order to enhance the solution quality for especially large and
complex problem instances (see Sections 4.1 and 5.3). Moreover, an efficient configuration
approach, based on Bayesian Optimization, to tackle the PTP is introduced and evaluated.
The BO uses Gaussian Processes (GP) as probabilistic surrogate models for optimizing
the function that predicts the utility of evaluating unknown parameter settings in the
solution space (see Section 4.2.1). The results of the initial and tuned GGA are compared
on 12 problem instance classes to a state-of-the-art Adaptive Large Neighborhood Search
(ALNS) for the closely related Pickup and Delivery Problem with Time Windows (PDPTW).
The classes differ regarding problem characteristics such as the distribution of customer
locations (e.g., clustered or random) or size and position of time windows. Additionally,
each class containing 1000 instances has been generated with 5 different numbers of depots
(1, 4, 6, 8, and 9 depots) so that, in total, 6000 problem instances are used for the evaluation.
It can be shown that the solution quality of the GGA can be improved by the implemented
BO regarding both overall performance and for each problem instance class.

The paper is structured as follows. In Section 2, an extensive literature review of the
related work regarding the Pickup and Delivery Problem contributions (cf. Section 2.1) and
Parameter Tuning Problem methods (cf. Section 2.2) is given. The problems considered in
this paper are defined in Section 3. In doing so, a new mathematical model formulation
for the MDPDPTWHV is introduced in Section 3.1 and the Parameter Tuning Problem
is specified in Section 3.2. The proposed methods for solving the studied problems are
presented in detail in Section 4, whereas Section 4.1 details the concept of the implemented
Grouping Genetic Algorithm; an explanation of the Bayesian Optimization approach with
Gaussian Processes used as parameter configuration approach can be found in Section 4.2.
The results, and a comprehensive discussion about them, are presented in Section 5. Finally,
the paper closes with a short conclusion in Section 6, providing a summary, pointing out
the limitations, and indicating avenues for future research.

2. Related Work

In recent decades, many approaches have been developed to efficiently solve Pickup
and Delivery Problems (PDPs) with various (practically relevant) extensions or constraints.
Due to the numerous contributions in this field over the years, Section 2.1 gives an overview
of the solution methods that solve a PDP similar to MDPDPTWHV or that belong to the
same class of meta-heuristics as the methods used in this paper. Extensive literature reviews
are given in references [5,6].

Logistics 2024, 8, 14 3 of 26

All parameterizable approaches are to be optimized regarding the control parameters
in order to enhance the solution quality. To do so, from the end of the last century, a number
of approaches have been developed for automated parameter tuning. In Section 2.2, an
overview of solution approaches in the field of automated parameter configuration is
given. The focus is on parameter tuning approaches that were designed specifically for
evolutionary algorithms (EAs). We aloso refer to important literature sources on parameter
tuning in a more general context. An overview of parameter tuning methods for EAs is
given in [7]. A more general overview of automatic parameter tuning for meta-heuristics
can be found in [2]. It is worth mentioning that the contribution of this paper focuses on
static parameter configuration. Other subjects, e.g., dynamic or adaptive parameter tuning,
are not covered here (cf. [8]).

2.1. Pickup and Delivery Problems

In [9], a Pickup and Delivery Problem with Time Windows (PDPTW) is considered
and several construction methods for an initial vehicle routing plan are developed. The pre-
sented methods differ, on the one hand, in whether the insertion is performed sequentially
or in parallel, and, on the other hand, in which acceptance criterion (First Insertion or Best
Insertion) is used. In another proposed approach, ref. [9] simply insert a request with a
pickup and delivery node pair at the end of a route and transform this route into a feasible
one via reasonable swap operators. A hill-climbing approach is applied as an acceptance
criterion for each node swap. The presented methods are compared with the best known
solutions of the PDPTW instances of [10]. In [11], the authors have developed an insertion
heuristic for the PDPTW based on the time buffer before and after a service (attempted to
be maximized for each insertion), in order to keep the most flexibility for the following
insertions. As a second optimization criterion, ref. [11] uses the percentage of the length of
intersecting paths, since a short vehicle routing plan intuitively contains few intersecting
routes. The developed heuristic is evaluated using the PDPTW instances of [10]. A frame-
work with operators for local neighborhood search is presented in [12] to solve several
rich VRPs. Operators include swap, Or-Opt, 2-Opt, node relocation or string exchange. It
should be noted that the approach presented can be easily embedded in a meta-heuristic,
such as Simulated Annealing (SA) or Tabu Search (TS). The operators of the framework
have been evaluated for the PDPTW on the [10] instances.

A reactive TS approach is presented by [13] in order to solve the PDPTW. Here, the
tabu list stores which are positioned within a route are excluded for a customer node, while
’reactive’ means that the parameters of the solution approach, such as the length of the
tabu list, are adjusted depending on the current behavior of the procedure. The authors of
ref. [13] apply three simple local neighborhood operators and an Escape operator, if none
of the neighborhood operators generate a new solution. The approach is evaluated on
self-generated problem instances. The authors of ref. [14] implement a SA approach for
a PDPTW and one vehicle. To generate the start solution, several randomly generated
solutions are considered and the best one is chosen. Furthermore, the generated solutions
are used to choose the starting temperature. In order to improve the start solution, two ran-
domly selected nodes are swapped at exactly the point when the time precedence specified
for the upper, lower or middle time window value is not met. This approach is evaluated
with self-generated problem instances and compared with two other implemented methods:
a genetic algorithm and a hill-climbing approach.

The authors of [15] present a two-stage algorithm for solving PDPTW in which Sim-
ulated Annealing and Large Neighborhood Search (LNS) are implemented. In the first
stage of the procedure, the number of vehicles required is first minimized. In the second
stage, an LNS is presented to optimize the vehicle routing. The evaluation is carried out
with the PDPTW instances of [10] and their best known solutions. In [16], the Pickup and
Delivery Problem with Time Windows is investigated, whereby the objective function here
is the weighted sum of the distance, the duration of the tour, and a penalty term for the
non-served requests. The authors present an Adaptive Large Neighborhood Search (ALNS).

Logistics 2024, 8, 14 4 of 26

Several destroy (Worst, Random, and Shaw Removal) and repair operators (Basic Greedy
and Regret-k) are used to determine the neighborhood under consideration. A simulated
annealing approach is selected as the acceptance criterion for a new solution. The results of
the ALNS are compared with the PDPTW problem instances from [10], among others. In
addition, the authors present an extension of the ALNS in [17]. Here, they further develop
destroy operators (e.g., Cluster and Historical Node-Pair Removal) and formulate these for
Rich PDPTW. In [18], a slightly different PDP is presented: a PDP with transfer points to
exchange cargo or people. The authors implement the ALNS of [16] and extend it with
several destroy and repair operators to efficiently include transfer points. The approach is
evaluated on 10 self-generated data sets, which are based on the practical application. The
authors of ref. [19] present a PDP with heterogeneous vehicle types, whereby the vehicles
have different configurations, e.g., to be able to carry wheelchair users. An ALNS is applied
to several already calculated start solutions. The ALNS is adapted and extended on the
basis of [16]. The approach is tested on Dial-a-Ride Problem (DARP) instances from the
literature, among others.

In [20], an early Genetic Algorithm (GA) approach for solving the PDPTW is presented,
whereby heterogeneous vehicles are also included in the considered formulation of the
mathematical model. The authors choose a Random Key solution representation, in which
each node is assigned a four-digit key. Based on the solution representation, a classic
Two-Point crossover can be implemented. During the mutation, the vehicle index (which is
the first digit of the four-digit key) is randomly changed for a pickup and delivery node
pair. In order to minimize the number of vehicles, the vehicle with the smallest number of
requests is deleted as in [1,21]. For each of the operators, the new individual is checked
for feasibility and discarded if this is not the case. The GA is evaluated on self-generated
problem instances. In [14], a GA for solving a PDPTW with one vehicle is developed. The
authors use a path solution representation in which pickup and delivery nodes have the
same expression, i.e., duplicate gene representation. The mutation operators implemented are
a random exchange of two genes and a problem-specific operator that only permutes two
randomly selected genes if the precedence with respect to the upper time window limits is
not held. Since the implied order, given by the time windows, can become infeasible by
conventional crossover operators, the authors of ref. [14] employ a special merge crossover.
A steady-state GA variant is implemented, i.e., the generated children are inserted directly
into the current population. The authors use self-generated test instances and compare two
GA variants with different methods, such as hill-climbing, in their evaluation. A GA for
Multi-Depot PDPTW with homogeneous vehicles is presented in [22]. The GA uses a path
representation, i.e., the order of the customers is stored in the genotype. In order to increase
diversification at the beginning, three variants are implemented to generate individuals for
the initial population, whereby repair heuristics are used due to the solution representation.
The genetic operators used include a one-point crossover and a mutation operator that
randomly swaps two customers in the solution. The authors of [23] consider a slightly
different route planning problem—a VRPTW with simultaneous delivery and pickup—and
solve this problem with a GA. For this purpose, the authors use two parallel populations,
for each of which different operators were developed. One population is responsible for
diversification and the other for intensification. For the first population, there is only a
recombination performed, which removes randomly selected nodes from the solution and
re-inserts them again. To the second population, a crossover which copies entire routes
from the parents and 11 mutation variants are applied. The selection of individuals is
based on fitness and the best individuals are transferred to the new population using an
elite mechanism. The evaluation is carried out with self-generated test instances and is
additionally compared with CPLEX results. In reference [24], a Genetic Algorithm for
PDPTW is presented, which also uses a path representation for the examined individuals.
The selection of the parents is carried out using a tournament. Two crossover variants are
implemented, each of which generates a child and exchanges either parts of the routes
or the entire routes of the parents. The solutions can become infeasible, which means

Logistics 2024, 8, 14 5 of 26

that a repair operator is required or the crossover is discarded in these cases. There are
two additional mutation variants applied. The first variant dissolves a random vehicle
and inserts the released requests into the remaining vehicles. The second variant selects a
vehicle at random and tries to place each request on the associated route in a better position.
The approach is evaluated on the PDPTW instances of [10] and compared with the best
known solutions.

The authors of [21] also consider the PDP with Time Windows. As noted in the
previous contributions, classical path representations can often lead to infeasible solutions
as soon as genetic operators are executed. In order to eliminate this issue, and since
the clustering of vehicle routing problems has a bigger impact on the solution quality, the
authors of ref. [21] implement a Grouping Genetic Algorithm for the solution of the PDPTW.
This means that the genotype uses a group-oriented representation. Thus, a gene is the
set of all requests that are served by a vehicle. The presented group-oriented crossover is
similar to a typical two-point crossover. During the mutation, a randomly selected gene
is resolved and the requests from the associated vehicle are inserted into the remaining
routes. For insertion, a classical double insertion heuristic is used, which operates on the
phenotype or the route plan, respectively. The GGA is tested on the PDPTW data sets
of [10], among others, using the best known solutions. In order to solve the Multi-Depot
PDPTW with Heterogeneous Vehicle Fleets, the authors of ref. [1] adapt the GGA of [21]
in order to consider the problem constraints, such as multiple depots and heterogeneous
vehicles, properly. To do so, the group-oriented solution representation is adjusted and
new mutation operators are introduced which take heterogeneous vehicles into account.
The approach is evaluated on self-generated Multi-Depot PDPTWHV instances which are
generated on the basis of the well-known [10] problem instances.

Pickup and Delivery Problems are widely investigated in several variants and solved
with numerous approaches. However, contributions which tackle precisely this routing
problem at hand cannot be found. Probably the most considered variant is the PDPTW
which is closely related to the Multi-Depot Pickup and Delivery Problem with Time Win-
dows and Heterogeneous Vehicles. For this problem, the GGA has proven its advantages
compared to typical GA methods. Compared to existing contributions, the present paper
introduces an adaption of the GGA presented in [1], which incorporates the problem con-
straints of the MDPDPTWHV through additional mutation operator types and a control
parameter to manage when to use which type. In this way, the GGA becomes more efficient
(cf. Section 4.1). Moreover, this contribution includes a new compact two-index model
formulation of the MDPDPTWHV, with which the application of exact solvers (such as
CPLEX) will be improved even for medium instance sizes due to the complexity reduction
of the search space (cf. Section 3.1).

2.2. Parameter Tuning Problems

In [25], the Relevance Estimation and Value Calibration (REVAC), a population-based
Estimation of Distribution Algorithm (EDA), is introduced for EAs. It is based on the
principle of solving parameter tuning problems by estimating parameter relevance with
normalized Shannon entropy. REVAC is an iterative algorithm starting with the assumption
of a uniform distribution regarding the EDA and estimates the distributions of promising
parameter values for each parameter within the configuration space. A different continuous
black box optimization method is the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) which is based on the concepts of self-adapting evolution strategies and is
applied in [26]. In each of its iterations, a set of candidate configurations from a multivariate
Gaussian distribution is sampled, whose co-variance matrix is adapted cumulatively. In [7],
the authors compare REVAC and CMA-ES for tuning EA parameters. Here, they also
combine the approaches with racing, e.g., Iterated F-Race from [27]. In Iterated F-Race,
a small set of parameter configurations is sampled according to a probabilistic model
and executed on several instances. Thereby, parameters are discarded as soon as enough
statistical evidence is gathered against them. A Bayesian Optimization method to tune the

Logistics 2024, 8, 14 6 of 26

parameter configuration of an EA solving a flow-shop scheduling problem is introduced
in [28]. The authors show that the approach is able to improve the efficiency of the meta-
heuristic by optimizing the six EA parameters considered.

The following literature focuses on parameter tuning for algorithms which do not neces-
sarily belong to the EA class. In [29], an Iterative Local Search approach, called ParamILS,
for the parameter configuration of algorithms is introduced, which basically chooses each
parameter to be optimized step-by-step and individually. The ParamILS is evaluated on
several configuration scenarios, e.g., parameter tuning on the CPLEX solver. In doing so,
various benchmark instances are used, which are separated into training and test instances, in
order to find sufficiently generalized algorithm parameters for a set of benchmark instances.
While model-free parameter tuning approaches like ParamILS are relatively simple and can
be applied out-of-the-box, model-based techniques (e.g., Bayesian Optimization) show very
promising results for algorithm configuration. In [30], the Sequential Model-Based Optimiza-
tion (SMBO) is extended for solving algorithm configuration problems with a large number
of numerical as well as categorical parameters. The approach constructs a regression model
in order to predict the performance of a certain parameter configuration on the algorithm
to be optimized. After running the target algorithm with these parameters, the output is
applied as additional data to enhance the model. The SMBO approaches developed are
compared to ParamILS and a Genetic Algorithm, improving the performance of a local search
and tree search algorithm and solving the Satisfiability Problem (SAT), as well as optimizing
the performance of the Mixed-Integer Problem solver CPLEX. The irace package, a software
package which provides several iterated racing approaches for improving parameter con-
figuration, is introduced in [31]. In general, racing consists of three basic steps: (i) sampling
new configurations regarding a certain distribution, (ii) performing racing and choosing the
best configuration, and (iii) updating the sampling distribution in order to converge to an
optimum. In [31], multiple variants of iterated racing methods are presented, e.g., an elitist
racing procedure to ensure that the best configurations returned in racing are also the best
ones over all racing rounds performed or a soft-restart approach in order to escape from local
optima. They are compared regarding, e.g., an Ant Colony Optimization method solving
the symmetric Travelling Salesman Problem. A heterogeneous vehicle routing problem with
automatic guided ground and aerial vehicles is considered in [32]. The authors present a
parameter tuning approach in order to improve the parameter configuration of the local
search heuristics used to solve the routing problem. Thereby, a Bayesian Optimization ap-
proach and a Genetic Algorithm are compared for parameter tuning. It is shown that both
approaches achieve solution quality enhancements; however, the BO is more efficient in do-
ing so. In [33], a comprehensive study of the parameter configuration of the (meta-)heuristics
for two Vehicle Routing Problems is considered, in which seven state-of-the-art parameter
tuning approaches are compared. It can be shown that, overall, automated parameter con-
figuration enhances the solution quality of the approaches considered. Moreover, there is
no best known parameter configuration which provides the best solution quality over the
entire benchmark (cf. [34]). For the Capacitated Arc Routing Problem, the authors of ref. [35]
introduce a Bayesian Optimization approach in order to enhance the solution quality of a
special meta-heuristic through automatic parameter configuration. The authors demonstrate
that the tuned algorithm improves both the solution quality as well as the convergence speed.

Regarding the related work, Bayesian Optimzation has shown its strength in auto-
matic parameter configuration in several fields of routing problems. Nevertheless, tuning a
sophisticated GA for solving a high-complex routing problem is paramount, as the MD-
PDPTWHV has not yet been tackled using a BO approach in the literature. Hence, in this
paper, we consider improving the solution quality of the GGA framework (cf. Section 4.2),
i.e., for solving the Parameter Tuning Problem (cf. Section 3.2). However, in contrast to most
of the former contributions, the focus in this paper is, additionally, to improve parameter
configurations with the BO on different problem instance classes with regards to the data
structure of each class (cf. Section 5.1).

Logistics 2024, 8, 14 7 of 26

3. Problem Definition

In this section, both problems considered in this paper are specified. In Section 3.1, a
new compact two-index mathematical model formulation for the Multi-Depot Pickup and
Delivery Problem with Time Windows and Heterogeneous Vehicle Fleets is introduced,
whereas the Parameter Tuning Problem is described in detail in Section 3.2.

3.1. Mathematical Model for the Multi-Depot Pickup and Delivery Problem with Time Windows
and Heterogeneous Vehicle Fleets

The pickup and delivery problem, which LTL carriers solve on a daily basis (cf. Section 1),
is described on the basis of a smart two-index model formulation. The main advantage of
this formulation compared to a typical three-index formulation is the significantly lower
number of decision variables. Using this model, solutions with exact solvers can also be
found for large, complex problem instances [1]. Moreover, the heterogeneity, in terms of
capacity and speed, is modeled with a concept based on real-valued variables (cf. [36,37]).
To do so, capacity and speed variables wi, ui ∈ R≥0 are introduced, the values of which are
associated with the vehicle serving the customer i and forwarded to the following customer
on the same route vi ∈ R≥0. For solvers like CPLEX, this formulation provides support, since
the relaxation of the problem is easier due to more real and less binary variables [38]. As a
consequence, compared to [1], there is only the decision of whether an arc (i, j) is used or
not with a binary variable xij model. The sets, parameters, and variables are listed in detail
in Table 1.

Table 1. Parameters and variables for a compact two-index model formulation of the MDPDPTWHV.

indices and sets:

d ∈ D
set of depots, whereas each vehicle is modeled as an artificial depot with a start depot ds and end depot
de = 2n + δ + ds; δ is the number of depots (and vehicles) ⇒ set of start depots Ds = {0, . . . , δ − 1}, set of end depots
De = {2n + δ, . . . , 2n + 2δ − 1}

i, j ∈ N set of customer nodes, N = Np ∪Nd = {δ, . . . , 2n + δ − 1}
i, j ∈ Np set of pickup locations, Np = {δ, . . . , n + δ − 1}
i, j ∈ Nd set of delivery locations, Nd = {n + δ, . . . , 2n + δ − 1}
i, j ∈ V set of nodes, V = N ∪D = {0, . . . , 2n + 2δ − 1}; in addition, V̄ = Ds ∪N and V̄ = N ∪De are declared

parameters:

[ai, bi] time window at node i ∈ N in which the service has to start
cij (dij) variable costs (distance) for travelling from i to j ∈ V ; cii = ∞
di delivery demand at customer i ∈ N , where di > 0, ∀i ∈ Nd, and di = 0, ∀i ∈ Np; note that di+n = pi, ∀i ∈ Np holds
fd fixed costs for using a vehicle associated with depot d ∈ D
κd capacity of vehicle at depot d ∈ D
κ̄ maximum capacity of all vehicles, i.e., κ̄ = maxd∈D{κd}
l load factor for vehicle loading measured in time per quantity unit
lconst additional loading time to model preparations before service
M big M for linearization of time window constraints
νd reciprocal speed of the vehicle at depot d ∈ D
ν̄ max. reciprocal speed of all vehicles, i.e., ν̄ = maxd∈D{νd}
pi pickup demand at customer i ∈ N , where pi > 0, ∀i ∈ Np, and pi = 0, ∀i ∈ Nd
si service time at node i ∈ V holding si = l · (di + pi) + lconst, ∀ i ∈ N , and sd = 0, ∀ d ∈ D
decision variables:

Li current load of the visiting vehicle after serving node i ∈ V
Ti beginning of the service at node i ∈ V
vi route number on which customer i ∈ V is assigned
wi capacity of the vehicle which serves customer i ∈ V
ui reciprocal speed of the vehicle which serves customer i ∈ V
xij binary variable which indicates whether a vehicle uses the arc between nodes i and j ∈ V (xij = 1) or not (xij = 0)

Logistics 2024, 8, 14 8 of 26

With the introduced notation, the model for the problem at hand has the following
form:

min ∑
i,j∈V

cijxij + ∑
d∈Ds

∑
j∈Np

fdxdj (1)

s. t. ∑
j∈N∪De

xij = 1 ∀ i ∈ N (2)

∑
i∈N∪Ds

xij = 1 ∀ j ∈ N (3)

∑
j∈Np

xdj ≤ 1 ∀ d ∈ Ds (4)

∑
j∈Np

xds j − ∑
i∈Nd

xide = 0 ∀ de, ds ∈ D (5)

jxdj − vj ≤ 0 ∀ d ∈ Ds, j ∈ Np (6)

vj − jxdj ≤ n(1 − xdj) ∀ d ∈ Ds, j ∈ Np (7)

vi − vj ≤ n(1 − xij) ∀ i ∈ N , j ∈ V̄ (8)

wd = κd ∀ d ∈ Ds (9)

wj − wi ≤ κ̄(1 − xij) ∀ i ∈ V̄ , j ∈ V̄ (10)

ud = νd ∀ d ∈ Ds (11)

uj − ui ≤ ν̄(1 − xij) ∀ i ∈ V̄ , j ∈ V̄ (12)

vi − vi+n = 0 ∀ i ∈ Np (13)

wi − wi+n = 0 ∀ i ∈ Np (14)

ui − ui+n = 0 ∀ i ∈ Np (15)

vds − vde = 0 ∀ ds, de ∈ D (16)

wds − wde = 0 ∀ ds, de ∈ D (17)

uds − ude = 0 ∀ ds, de ∈ D (18)

Ti + si + dij ui − Tj ≤ M(1 − xij) ∀ i ∈ V̄ , j ∈ V̄ (19)

ai ≤ Ti ≤ bi ∀ i ∈ V (20)

Ti + si + di,i+n ui ≤ Ti+n ∀ i ∈ Np (21)

Li − dj + pj − Lj ≤ κ̄(1 − xij) ∀ i ∈ V̄ , j ∈ V̄ (22)

Li ≤ wi ∀ i ∈ V (23)

xij ∈ {0, 1} ∀ i, j ∈ V , i ̸= j (24)

Li, Ti, vi, wi, ui ∈ R≥0 ∀ i ∈ V (25)

In the objective function (1), the variable costs and the fixed costs for the vehicles used
are minimized. Constraints (2) and (3) ensure that each customer is served exactly once.
Each vehicle may start, at most, once (4). Restrictions (5) model that each started vehicle
must arrive at the corresponding end depot. The conditions (6) and (7) set the route index vj
to the index of the customer j served first. The unique route index vj is passed by the
inequalities (8) from customer i to j if j directly follows i. Capacity variables wd are set by the
conditions (9) of the vehicle’s capacity associated with the depot d ∈ D. This is passed from
customer i to j by means of restrictions (10) if they are directly consecutive. The reciprocal
speed ui is set for the starting vehicles by restrictions (11). For a vehicle using arc (i, j),
the reciprocal speed is passed from node i to j with constraints (12). Equations (13), (14),
and (15) ensure the coupling of pickup and delivery on the same vehicle. Similarly, this is
modeled for the corresponding start and end depots by (16), (17), and (18). If customer j is
visited directly after i, the service start time at j must not be earlier than the service end
time at i, plus the travel time between i and j due to (19). Further, the service start time has
to start within the specified time window [ai, bi] of customer i (20). The time precedence

Logistics 2024, 8, 14 9 of 26

relationship between pickup and delivery nodes is modeled using inequalities (21) through
the service start at node i and i + n. Restrictions (22) ensure that the load Lj is correctly
updated after the customer i is visited. In addition, (23) guarantees that the capacity of
the vehicle associated with the served customer i is not exceeded. Finally, the decision
variables xij describing the transport over the arc (i, j) are defined as binary (24). All
other variables (i.e., time variables Si, Ti, loading variables Li, variables for route indices vi,
capacity variables wi, and (reciprocal) speed variables ui) are restricted to non-negative real
numbers (25).

3.2. Parameter Tuning Problem

The choice of parameters for algorithms is essential for their effectiveness and efficiency.
The determination of suitable parameters for algorithms can be approached using the
parameter tuning (or parameter configuration) problem [2]. The parameter tuning problem
can be specified according to Eiben and Smit [7].

As Figure 1 demonstrates, different layers of the problem structure are considered and
these are connected with a control and an information flow. The application layer describes
the given optimization problem (here, the MDPDPTWHV, as in Section 3.1), which is solved
by an algorithm (algorithm layer, here, e.g., the GGA from Section 4.1). How this particular
algorithm is designed with respect to parameter configuration is described in the design
layer. The quality of the parameter configuration chosen for an algorithm is evaluated in
terms of solution quality.

Design Layer

Algorithm Layer

Application Layer

Configuration

Optimization

Algorithm Quality

Solution QualityProblem Solving

Parameter Tuning

Figure 1. Control flow (left) and information flow (right) through the different layers in parameter
tuning [7].

The PTP arises, among others, in the optimization of parameter settings for meta-
heuristics [2]. Thus, many optimization methods such as a Genetic Algorithm depend on
various known parameters that can be optimally chosen so that their performance can be
improved in terms of finding good solutions [4]. Obviously, the performance of a meta-
heuristic depends on the configuration of its parameters. Nevertheless, the configuration
problem has not been formally considered in scientific publications for a long time [39]. The
authors of ref. [40] describe how, until around 1999, parameter selection in the development
of meta-heuristics was carried out manually. After evaluating various configurations, the
one that delivered the best result was selected. The selection was thus often made on the
basis of expert knowledge about the respective optimization problem. However, according
to the No Free Lunch Theorem, there is no universal algorithm whose computations have
the same solution quality for all optimization problems [34], so parameter tuning is by no
means a one-time problem and it definitely makes sense to automate it [2].

It is worth pointing out that, besides the static parameter configuration, there are also
dynamic, adaptive or self-adaptive approaches (cf. [8]). For these techniques, Machine
Learning (ML) approaches are often reasonably applied due to their promising results.
An overview of which meta-heuristic-related configuration problems can arise, and how
ML techniques are applied to solve them for algorithms solving combinatorial optimization
problems, can be found in [41]. A review of such learn-heuristics, especially for rout-

Logistics 2024, 8, 14 10 of 26

ing problems, is given by [42], while, in [43], a literature review for adaptive parameter
configuration for evolutionary algorithms is given.

4. Proposed Methods

The methods to solve the considered problems, the MDPDPTWHV and the Parameter
Tuning Problem, are presented in this section. In Section 4.1, a detailed overview of the
Grouping Genetic Algorithm is given, followed by a comprehensive description of the
Bayesian Optimization approach in Section 4.2.

4.1. Grouping Genetic Algorithm Framework

Genetic algorithms go back to [44]. They iteratively apply certain operators to a
population of solutions so that, on average, each new generation tends to be better than the
previous one, according to a predefined fitness criterion. The fitness criterion measures the
ability of an individual to survive in a population and the algorithm strives to maximize
fitness. The stop criterion is usually specified as a fixed number of generations or as a time
limit for execution. In the end, the best solution found is returned. Genetic algorithms
generally provide good results for complex routing problems (see, e.g., [14,21]), so it makes
sense to focus on these.

In particular, the Grouping Genetic Algorithm presented in [1] produces adequate
results for the MDPDPTWHV. Here, the authors show that the considered GA variants
with population management regarding general replacement with elitism promise a good
solution quality for the presented problem. However, the complexities of the problem
instance’s data structure can be various. Hence, in this paper, the GGA is extended by new
mutation and repair operators in order to investigate which combination of operators is
suitable for a given data structure. The GGA’s general replacement version with binary
tournament selection is used. In addition, the GGA of [1] has been enhanced through the
permission of infeasible solutions by which the entire search space is investigated more
effectively. An overview of the procedure of the GGA is given in Figure 2. For all terms
and concepts of Genetic Algorithms, we kindly refer readers to [45].

calculating initial
population of size npop

current population P selection of parents p1, p2
from P

applying crossover to p1,
p2 with prob. pcross: c1, c2

applying mutation to c1,
c2 with prob. pmut: c1, c2c̃1 c̃2

inserting c1, c2 into
the mating pool

c̃1 c̃2

Reproduction Process

next population P̃P

mating pool

elitism:
best 5%

best 5%
and 90%
random

Figure 2. Grouping Genetic Algorithm framework with population management: general replacement
with elitism.

Logistics 2024, 8, 14 11 of 26

The procedure of the GGA can be explained as follows: at the beginning, a popula-
tion P of npop individuals is determined. It is assumed that each individual has a fitness
value. This is equal to the sum of the variable and fixed costs of the vehicle routing solution
(see objective function (1)) and also integrates a penalty term for non-served requests.
The fitness value is to be minimized in the proposed GA variant and can be written as
follows:

∑
i,j∈V

cijxij + ∑
d∈Ds

∑
j∈Np

fdxdj + γ ∑
i∈Np

(
1 − ∑

j∈N
xij

)
. (26)

In general, for the penalty term in (26), the weight γ is to be chosen in such a way that
the consideration of non-served requests results in the worst possiblesolution [46]. In order
to achieve this constraint, γ is empirically chosen as follows:

γ := 2 · max
i,j∈V

{cij + cji}+ max
d∈D

{ fd} . (27)

Please note that, if the GGA is implemented in a variant that only allows feasible solu-
tions according serving all requests in an instance, γ in (27) has to be set to γ := 0. However,
in preliminary studies, it has been found out that, the MDPDPTWHV allowing infeasible
solutions in the manner of unserved requests, together with the fitness function (26) and
penalty term (27), leads to an improved solution quality of the GGA.

Each individual is computed by using several sequential double-insertion heuristics
that create routes one after another by inserting customers at their best possible position.
To enhance the diversity of the initial population, 25% of the individuals are generated with
Best Insertion, which starts the route with one request and inserts the best corresponding
request in each iteration; 50% with Random Insertion, which chooses a random request
for insertion in every iteration (cf. [1]); and 25% with a Regret-k heuristic (cf. [16]), which
calculates a regret value to evaluate how much a greedy insertion will cost in the end and
selects the request that has the highest costs (see Equation (30) in Section 4.1.5). A high level
of diversity is achieved, as no duplicates are allowed within the population. The percentage
values for applying the insertion heuristics considered have been determined in preliminary
studies (cf. [1]).

As long as the maximum number of generations γmax has not been met, two parents
p1, p2 for generating offsprings are selected (cf. Section 4.1.2). With a probability of pcross,
one crossover operator variant is applied to p1 and p2, as in [1], in order to create two
children c1 and c2 (cf. Section 4.1.3). Moreover, each child is modified by using one of
the mutation operators with probability pmut and so two mutated children c̃1 and c̃2 are
generated (see Section 4.1.4). In case no operator is applied, the created offsprings are just
clones of their ancestors. Generated individuals are stored in a mating pool from which
the next population is selected. Finally, the best individual regarding its fitness is returned.
Please note that npop, γmax, pcross, and pmut are parameters that are set manually. These
parameters have have been determined in preliminary tests (cf. [1]).

The most difficult part of a GA is to find a good solution representation or genotype
encoding, respectively, so that the crossover and mutation operators do not have to be too
complex and decoding from genotype to phenotype is not time-consuming. For this reason,
the approach of [1] is implemented as a Grouping GA in which each vehicle is represented
by a gene and the pickup and delivery customers are grouped with their request index.
A genotype encoding then stores the assignment of a request to the executing vehicle and
can be represented by a vector of integers.

Figure 3 shows that the vehicles are represented by negative index values. All sub-
sequent positive integers indicate the requests served by the corresponding vehicle. This
encoding implies that a route for each vehicle (e.g., route 2 in Figure 3) has to be calculated,
whenever the genotype decoding is necessary, e.g., for the determination of the fitness value.
Since this is very time-consuming and not necessarily deterministic with regard to the
applied heuristics, the corresponding phenotype of an individual is also be stored (cf. [1]),

Logistics 2024, 8, 14 12 of 26

i.e., the vehicle routing solution. Thus, it is less likely that good features of an individual
are removed from the phenotype when applying crossover or mutation operators. Please
note that the phenotype must always be modified together with the genotype during the
solution process.

–1 3 8 –6 4 1 9 5 –2 7 2 6 –8Individuum:

Fahrzeugindex Auftragsindex

Route von Fahrzeug 6: (0, 1, 10, 9, 4, 13, 18, 19)

–1 38 –3 41 9 5 –2 7 2 6Individual:

Vehicle Index Request Index

Route of Vehicle 2: (p2, d 2 , p7, p6, d6, d7)Non-served Requests

Gene

Figure 3. Genotype encoding for the Grouping Genetic Algorithm.

The following Sections 4.1.1–4.1.5 describe in detail the operators extended compared
to [1] and those whose control parameters are to be optimized, i.e., mutation and repair
operators. The selection and crossover operators, as well as population management, are
adopted from the GGA of [1].

4.1.1. Population Management

Due to the promising results of the GGA with general replacement as population
management [1], this variant was implemented in the present framework. Hence, a mating
pool of 1.5 times the generation size is filled with children, whereas duplicates are prevented.
In order to keep the best solutions from the last generation, elitism is applied by copying
the best 5% of the generation into the next. Subsequently, the best 5% of individuals from
the mating pool are selected and the rest of the next generation is randomly filled with
individuals from the mating pool (cf. Figure 2).

4.1.2. Selection

In order to select parents without duplicates for offspring generation, binary tourna-
ment is used, since this selection approach has provided the most promising results. Here,
two individuals, called a tournament, are chosen randomly from the population and the
best individual is used as the first parent. The second parent is selected analogously.

4.1.3. Crossover Operator

The implemented group-oriented crossover variants are adopted from the GGA of [1].
A simplified illustration of how the crossover works for a representation with nine requests
distributed over three possible vehicles is given in Figure 4. Two crossover points (both of
them between two genes) are randomly chosen for parent 1. Then, all genes between the
two crossover points (inner genes) are transferred with a probability of 50% and, otherwise,
the genes outside of them (outer genes) are chosen at a randomly chosen insertion point
into parent 2 to generate a child. This requires double-served requests and double-used
vehicles coming from parent 2 to be deleted from the child. In doing so, non-served requests
have to be re-inserted into the child by repair operators (see Section 4.1.5). In Figure 4, the
inner genes are not transferred into the child. The outer genes mean that vehicles 1 and
2 have to be eliminated from the child. In addition, requests 2 and 7 must be removed.
Finally, requests 5 and 9 remain and have to be re-inserted by a repair operator again. For a
detailed explanation, we kindly refer readers to [1].

Logistics 2024, 8, 14 13 of 26

–1 3 8 –3 4 1 9 5 –2 7 2 6Parent 1:

Parent 2: –3 1 4 7 –1 6 3 –2 85 92

Crossover Points

Insertion Point

Inner Genes Outer GenesOuter Genes

Child: –3 1 4 –1 3 8 –2 7 2 6 95

Repair Operator

Figure 4. Crossover operator when transferring genes from parent 1 to parent 2.

4.1.4. Mutation Operators

Contrary to [1], the mutation operators are basically classified in vehicle-based and
request-based mutations. The selection of the operator class is carried out by a specific
probability value pchoice(n) that models the likelihood for choosing request-based mutation
in generation n:

pchoice(n) = 0.1 · exp
(

ln(8)
n

γmax

)
. (28)

In this way, the value pchoice of Equation (28) prefers vehicle-based operators in the
beginning of the Genetic Algorithm and request-based operators at the end (the value pchoice

starts at 0.1 in the first generation, n = 0, and ends at 0.8 in the last generation, n = γmax).
In this manner, the trade-off is controlled between solution quality and computational
time, since the vehicle-based mutation has a faster and broader investigation in the search
space, while request-based mutation has a slower and more accurate search behaviour,
which, in general, describes exploration vs. exploitation. Please note that, due to the choice of
probability pchoice, vehicle-based and request-based mutation are not equally weighted.

The vehicle-based mutation is executed through selecting a vehicle index. The corre-
sponding vehicle is deleted from the genotype and phenotype. Afterwards, all requests
served by the erased vehicle must be reinserted, which is carried out by a repair operator
(see Section 4.1.5), such that the solution holds all constraints. Here, a new vehicle may also
have to be introduced. A simplified scheme of the mutation operator is given at the top of
Figure 5. As in [1], the following four vehicle selection mechanisms are applied in order to
tackle the problem of heterogeneity:

Costs/Number-of-Request Ratio. The ratio of route costs and the number of served
requests is calculated for each vehicle and used to generate a roulette wheel. By spinning
the roulette wheel, a vehicle index is selected. In particular, expensive routes with a small
number of requests are preferred for removal.
Number of Requests. The vehicle with the minimum number of requests is used for
deletion.
Random Vehicle Index. Here, a random vehicle index is selected, thus all vehicles are
equally likely to be chosen.
Random Genotype Position. The variant chooses a random position within the genotype
and selects the respective vehicle index. Hence, vehicles with many requests are preferred.

Logistics 2024, 8, 14 14 of 26

Child: 2 5 –3 1 4 –1 6 3 –2 8 97

Selected Vehicle

Mutated Child: –1 1 4 7 2 6 3–2 8 9 5

Requests to Re-Insert

–3

Empty Vehicle

Mutated Child: –3 –1 6 3 2 1 7–2 8 9 5

Requests to Re-Insert

4

Child: 2 5 –3 1 4 –1 6 3 –2 8 97

Selected Requests

Figure 5. Mutation operators and mutated child to be repaired (using an additional empty vehicle if
needed) with vehicle-based mutation (top) and request-based mutation (bottom).

Request-based mutation is a newly added concept. Particularly if instances have
many requests per vehicle or if in the course of the search the solution space must be
examined more precisely for intensification, it is useful to remove individual requests from
the genotype or phenotype, respectively. Basically, a number of requests to be released is
randomly determined and then eliminated from the individual with one of the mechanisms
described below. A simplified procedure is shown at the bottom of Figure 5.

Historical Request Pair. This concept is adopted from the approach of [17] and uses
a matrix (hij)i,j∈R of weights for all requests R. The matrix stores how promising a
combination of two requests on the same vehicle is. To do so, the elite is evaluated after
each generation and a matrix element hij is increased by one if the requests i and j are served
together on one vehicle. The matrix (hij)i,j∈R can be interpreted as long-term memory.
Since combinations with high quality in a certain generation do not necessarily have to be
globally optimal, the matrix is adjusted during each generation through reducing hij by
a factor τ ∈ (0, 1), i.e., hij := τhij. To determine the requests to be eliminated, a score σi
is specified in which hij values are summed up if request j is served with i on the same
vehicle in the considered individual. Requests with low σi are non-promising combinations
on the same vehicle and, consequently, are removed from the individual.
Similarity Measure. The variant is derived from the similarity-measure-based removal
operator of [16]. Here, the first request is chosen randomly and, additionally, those requests
are removed which are similar with respect to the measure ρ̃ij from Equation (29), i.e., those
that have the smallest values. Please note that i, j ∈ R and request i have pickup customer i
and delivery customer i + n (see Section 3.1).

ρ̃ij = α1(cij + ci+n,j+n) + α2(|ai − aj|+ |ai+n − aj+n|)
+ α3(|bi − bj|+ |bi+n − bj+n|) + α4(|pi − pj|) (29)

Thus, those requests are defined as similar whose pickup and delivery nodes, start and
end time windows, and demands to be transported are close to each other, since, for these,
the exchange to another vehicle offers potential for direct insertion and, therefore, an im-
provement in the fitness value. For comparability, all values are scaled to the interval [0, 1].
The weights αk, k = 1, . . . , 4 are elements of R≥0.

Additionally, a so-called swap operator with a probability of 20% is applied, after one
of the six mutation variants is taken into account. This operator tries to swap used and

Logistics 2024, 8, 14 15 of 26

free vehicles to minimize the sum of fixed costs. In order to keep the search in the solution
space broad, the choice of vehicles to be swapped is guided by a roulette wheel.

4.1.5. Repair Operator

When applying crossover or mutation operators, the individual has often to be repaired
due to removed requests. During repair, requests need to be re-inserted. Here, several
insertion methods are used that determine the best insertion positions for each request
with respect to a cost value. Contrary to [1], a Regret-k insertion method beside the greedy
insertion is implemented. The approaches are quite similar to the double insertion heuristics
used for generating the initial population. However, the proposed repair operators are
parallel insertion heuristics, i.e., the possible insertion positions are evaluated for all
available vehicles. If there are requests that cannot be served by available vehicles, a
new (empty) vehicle has to be introduced whenever feasible.

Greedy Insertion. For each request, the insertion costs for all possible positions in each
vehicle are calculated and the position with the lowest costs is chosen (cf. [1]).
Regret-k Insertion. For each request r, the difference in how much worse it is to insert
a request in the k-th best vehicle vk instead of the best one v1 is calculated, while the
differences from the best to the k-th best vehicle are summed up. The request r̃ with the
maximum value is supposed to be inserted into its best position in the current iteration,
since, later on, the insertion costs increase (cf. [16]). Formally, this can be written as in (30):

r̃ = arg max
r

{
k

∑
l=1

(∆vl
r − ∆v1

r)

}
. (30)

The Regret-k insertion is applied for k = 2, 3, 4, δ. Additionally, in order to avoid
repeated solutions from one individual to another, a tabu list can be applied which includes
the vehicle in which a request should preferably not be inserted again.

Both the two new request-based mutation variants, as well as the Regret-k repair operator
(with possible tabu list), effect the GGA in the manner that the exploration of a known
area in the solution space will be improved. This is very important in the context of the
MDPDPTWHV in comparison to related, less complex vehicle routing problems, since, with
higher problem complexity, the challenge of finding a sufficiently good solution with only
simple operators intensifies. Hence, the rough searching intended by deleting an entire vehicle
leads, rather, to new areas than does investigating a complex smaller part of the solution space.

4.2. Bayesian Optimization for Tuning the Parameters of the Grouping Genetic Algorithm

As depicted in Figure 1, the Parameter Tuning Problem is the optimization problem
which is embedded in the top layer above the solution approach for solving the origin
problem. Due to this fact, the considered origin problem’s solution algorithm has to be
executed reasonably often, according to the PTP, in order to find a sufficient algorithm
parameter configuration (see Section 3.2). Hence, a common drawback of many parameter
tuning approaches for meta-heuristics (see, e.g., the methods in Section 2) is the considerable
number of evaluations of the objective function required to determine the best parameter
configuration [28].

As the performance of a Genetic Algorithm is sensitive to the parameter setting and
the structure of a problem instance, the evaluation of specific parameter configurations can
be very time-consuming. Moreover, optimizing the parameters of meta-heuristics is a black
box problem, since the relationship between the parameter configurations of the algorithm
and its performance cannot be measured metrically [2].

Altogether, Bayesian Optimization is a reasonable choice as a parameter tuning algo-
rithm, since this method manages to cope with few evaluations of the objective function to
be optimized, which also need not be known [28,47]. Furthermore, BO is well applicable
to functions defined in a solution space with dimension D ≤ 20 (number of parameters)
and tolerates noise with respect to the function evaluation [48], which is typical behaviour

Logistics 2024, 8, 14 16 of 26

for stochastic methods like a GA. Last but not least, the results of [28] show that BO is, in
general, a good approach in solving the Parameter Tuning Problem for EAs. For a detailed
overview of Bayesian Optimization, we kindly refer readers to [47–49].

Let φ : X → R be an unknown black box function that cannot be modeled in closed
form, i.e., for an argument x ∈ X ⊆ RD, the function value φ(x) can only be determined
by evaluating φ. In the Parameter Configuration Problem, φ describes the utility of a
parameter vector x ∈ X, which can be, e.g., the mean of the objective values over all the
considered instances. The goal of Bayesian Optimization is to find a configuration x∗ =
arg minx∈X φ(x) describing the global minimum of φ. The method iteratively learns a
probabilistic model that estimates the utility function φ by known function values φ(x)
of different points x ∈ X in the parameter space. For this purpose, an a priori probability
distribution P(φ) over the utility function φ and an acquisition function aP(φ) : X → R, that
quantifies the utility of evaluating the function φ at each parameter configuration x, are
required [50]. Let n data points in the set Dn = (xi, yi)i=1,...,n with yi = φ(xi) + εi be
known for function φ. Then, Bayesian Optimization iteratively repeats the following three
steps [47]:

1. Find the next configuration xn+1 whose evaluation is most promising, i.e., which
maximizes the acquisition function under the condition of the known data points Dn:

xn+1 = arg max
x∈X

aP(φ|Dn)(x) .

2. Determine yn+1 = φ(xn+1) + εn+1 with possible noise εn+1 and add (xn+1, yn+1) to
the previous data points: Dn+1 = Dn ∪ {(xn+1, yn+1)}.

3. Update the probability model P(φ | Dn+1) and, consequently, the acquisition func-
tion aP(φ|Dn+1)

.

Here, the update of the probabilistic model is carried out in step (3) via the Bayes’
Theorem (31), where

P(φ | Dn+1) ∝ P(Dn+1 | φ)P(φ) . (31)

The theorem states that the posteriori probability distribution P(φ | Dn+1) for the new
data points Dn+1 is proportional to the a priori model P(φ) multiplied by the similarity of
the data points Dn+1 to the assumed model for φ.

In condition (31), P(Dn+1 | φ) consequently expresses how likely the data are under
the model assumptions that are known a priori. If the assumption is that the utility
function φ is very smooth and noise-free, data with high variance should be recognized as
less likely than data that hardly deviate from the mean [47].

Figure 6 shows an iteration of Bayesian Optimization. The black box function φ(x) to
be optimized is drawn here in blue and the mean estimated function m(x) is dashed in black.
At each point x ∈ X the estimated utility function value m(x) with a variance of k(x, x),
which is described by the confidence interval in y-direction (gray), can be determined
depending on the already evaluated data points Dn (red) and the used a priori model P(φ).
These data are incorporated into the acquisition function (shown below), which determines
a score for evaluating the possible x vectors. Here, the selected value xn+1 receives a high
score because the knowledge about the range containing xn+1 is not yet enough for a
sufficiently good estimation, as the variance is high.

Logistics 2024, 8, 14 17 of 26

−2 0 2 4 6 8 10

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

ϕ
(x

)

−2 0 2 4 6 8 10

x

0

1

2

a
P

(ϕ
|D

n
)(
x

)

Gaußprozess und Akquisitionsfunktion nach 6 Iterationen

Figure 6. Bayesian Optimization with Gaussian Processes as a priori model (top) and acquisition
function aP(φ|Dn) (bottom).

The solution quality of Bayesian Optimization significantly depends on the choice of
the a priori probability distribution (see Section 4.2.1) and on the evaluation of the utility
by a surrogate model, i.e., the acquisition function (see Section 4.2.2). Both components are
described in the following subsections.

4.2.1. Gaussian Processes

For a priori distributions, possible models are Gaussian Processes, Random Forests
or Bayesian Neural Networks [50]. Gaussian Processes are most commonly chosen in the
literature [48] and also provide promising results in [28,35,50]. Therefore, a Gaussian
Process (GP) is used in the presented Bayesian Optimization approach. In the following,
some insights into the GP used here are given. For a detailed description of Gaussian
Processes, we kindly refer readers to [51,52].

For a Gaussian Process, a covariance function (also called a kernel) has to be defined.
It can be assumed that the utility function φ for the problem at hand is non-smooth (cf.
Section 4.1). This is because different function values φ(x) can be obtained due to the
uniform distributed randomly chosen operators, even if φ is evaluated several times with
the same parameters x. Thus, kernel functions coming from the class of Automatic Relevance
Determination (ARD) Matérn kernels are appropriate for the Parameter Tuning Problem
presented, since they can model non-smooth functions [53]. In the BO approach used in
this paper, the ARD Matérn 5

2 kernel is applied, which is defined as follows:

kM52(x, x′) = θ0

(
1 +

√
z +

z
3

)
exp

(
−
√

z
)

(32)

with z = 5r2(x, x′), while the function r2 is defined as r2(x, x′) = ∑D
d=1

(xd−x′d)
2

θ2
d

. Since the

influence of the individual parameters on the solution quality is not known a priori, the
parameter θd = 1 is set for all d = 0, . . . , D within r2(x, x′) in the presented approach.

Due to the stochastic nature of the GGA to be optimized, the solution for a given
parameter configuration is expected to be subject to noise [2]. To model this noise, the
kernel function (33) is additionally used [51]:

kNoise(x, x′) =

{
σ2

n , x = x′

0 , sonst
. (33)

Logistics 2024, 8, 14 18 of 26

The parameter σ2
n describes the variance of the modeled noise. Altogether, the covari-

ance function k(x, x′) (34), considered for the Gaussian Process in the BO approach at hand,
is composed of (32) and (33) (cf. defining GP kernels in [51]):

k(x, x′) = kM52(x, x′) + kNoise(x, x′) . (34)

In order to purposefully design the choice of the next parameter configuration to be
evaluated in step (1), a reasonable acquisition function must be defined. This function
makes use of the model assumed by the Gaussian Process to predict the utility for evaluating
certain parameter settings x ∈ X.

4.2.2. Acquisition Function

The acquisition function aP(φ) is designed to estimate, based on the current data Dn,
which areas of the parameter space X to investigate in order to improve the model’s predic-
tion of the Gaussian Process. Therefore, the acquisition function should be constructed to
achieve a high value at parameters x ∈ X, where the predicted utility function value φ(x)
is low or the prediction’s quality is poor, i.e., there is too little information available on that
part of the considered parameter space for a sufficiently accurate estimation [47]. These two
cases describe the classical problem of exploitation vs. exploration. This is tackled in several
acquisition functions that can be found in the literature, such as Probability of Improvement,
GP Upper Confidence Bound, and Expected Improvement (EI) [53]. Since EI automatically
controls the balance between exploitation and exploration, and achieves sufficiently good
results in BO approaches [28], it is also used in the approach at hand. With respect to the
currently observed data Dn, the acquisition function with EI is defined as follows:

aEI
P(φ|Dn)

(x) = (φ(x∗)− m(x))Φ(z) + σ(x)ϕ(z) (35)

with z = φ(x∗)−m(x)−ξ
σ(x) , where x∗ is the best parameter configuration so far, i.e., x∗ =

arg minx∈Dn φ(x), and σ2(x) describes the predicted variance k(x, x). The function ϕ rep-
resents the density function and Φ the cumulative distribution function of the normal distri-
bution N (m(x), k(x, x)). By the acquisition function aEI

P(φ|Dn)
in (35), x ∈ X are preferred if

m(x) < φ(x∗), i.e., x could reduce the utility function value, or if there is a high variance σ2(x),
i.e., the utility function value for x cannot be estimated with sufficient quality based on the
current data Dn. To influence exploitation and exploration in addition to the intrinsic control
by the two summands of (35), a parameter ξ ≥ 0 can be selected. The larger ξ is, the more
exploration is preferred. Therefore, it is recommended to start with a sufficiently large ξ and
to let it approach zero over the Bayesian Optimization process [47].

To approximate the best parameter configuration determined by the acquisition func-
tion xn+1 = arg maxx∈X aEI

P(φ|Dn)
(x), which has to be evaluated next for φ, aEI

P(φ|Dn)
, is

evaluated on a sufficiently large number of random parameter configurations x ∈ X. The
best configuration is chosen as xn+1.

5. Results and Discussion

In this section, the results of the Bayesian Optimization approach regarding the param-
eter configuration for the Grouping Genetic Algorithm are presented. In doing so, the most
promising GGA variant of [1] (described in Section 4.1) is compared to a state-of-the-art
algorithm developed to solve a related Pickup and Delivery Problem, the Adaptive Large
Neighbourhood Search (ALNS) from [16]. In addition, an approach which randomly selects
several parameter configurations and chooses the parameters with best fitness values of the
GGA is applied in order to show that the BO performs the optimization of the parameter
configuration in a goal-oriented manner.

Please note that the parameter configuration of the ALNS has not been optimized by
the Bayesian Optimization approach, since the GGA, with its initial and optimized parame-
ter configuration, is supposed to be compared to a state-of-the-art algorithm regarding the
considered Pickup and Delivery Problem. Moreover, the ALNS does not offer the feature

Logistics 2024, 8, 14 19 of 26

to tune the parameter configuration used, since it adjusts the parameters adaptively during
the optimization process (cf. [16]).

At first, we describe how the benchmark data sets are created (see Section 5.1). Then,
the results for the initial and parameter optimized GGA compared to the ALNS are pre-
sented (see Section 5.2). Finally, the different parameter configurations, as well as improve-
ments in each problem class, are highlighted (see Section 5.3).

5.1. Data Generation

The evaluation of the meta-heuristics is performed using self-generated problem
instances. These were created with a single-depot data set generator and on the basis of
practical circumstances and experience (cf. [1]), so that several practically oriented single-
depot problem instances with different depot positions are built and layered on top of
one another for the generation of multi-depot instances. In this way, data sets with 1200
instances each, and 1, 4, 6, 8, and 9 depots, are constructed. According to our cooperation
partner, these data sets represent the structures in reality. Each of the data sets contains
12 problem classes including 100 instances created with the same parameters in the data
set generator. Thus, 60 classes with different characteristics regarding, e.g., number of
depots, time window size, vehicle capacity or the constellation of the customer positions,
are provided [1]. All data sets are available in [54].

5.2. Parameter Configuration

The initial parameters used for the GGA have been determined in preliminary studies
during the development of the solution approach. They are displayed in Table 2.

For optimizing the parameters (see Table 2), the Bayesian Optimization is applied
on the probabilities for mutation and repair operators, since tuning parameters such as
npop, γmax, ω, and λ particularly affect the number of individuals to be generated. Therefore,
previous investigations have shown that optimizing these parameters results in the intuitive
solution of setting these values to their maximum. Furthermore, the choice for crossover
and mutation rates is reasonable with respect to the problem at hand. Finally, due to the
similarity of the crossover operators, optimizing the selection probabilities of these variants
will not have a huge impact on the solution quality.

Table 2. Initial parameters for evaluating the GGA variants.

Param. Value Description

npop 50 population size
pcross 1.0 crossover rate
pmut 0.3 mutation rate
γmax 250 maximum number of generations
ω 1.5 relative mating pool size with respect to population size (i.e., npop = 50 results in 75 individuals)
λ 0.05 proportion of the elite within the population
pcross

i 0.5 probability of applying one of the crossover variants, i = 1, 2
pmutv

1 0.4 probability of applying vehicle-based mutation Costs/Number-of-Request Ratio
pmutv

2 0.4 probability of applying vehicle-based mutation Number of Requests
pmutv

3 0.1 probability of applying vehicle-based mutation Random Vehicle Index
pmutv

4 0.1 probability of applying vehicle-based mutation Random Genotype Position
pmutr

1 0.6 probability of applying request-based mutation Historical Request Pair
pmutr

2 0.4 probability of applying request-based mutation Similarity Measure Selection
prepair

1
0.55 probability for using the Greedy Insertion Repair Operator

prepair
2 0.25 probability for using the Regret-2 Repair Operator

prepair
3 0.10 probability for using the Regret-3 Repair Operator

prepair
4

0.05 probability for using the Regret-4 Repair Operator

prepair
5 0.05 probability for using the Regret-δ Repair Operator

Logistics 2024, 8, 14 20 of 26

In order to determine the best configuration of parameters to be optimized, the BO
is performed with 20 iterations. Beforehand, for modeling a sufficiently good a priori
probability distribution, the utility function values are determined for 10 randomly drawn
parameter combinations. In this way, the Bayesian Optimization is applied to 10 randomly
chosen problem instances (i.e., the training data) from each class to identify parameters
with which the GGA has the best solution quality regarding the mean of the objective
value over these instances. Since the GGA is a stochastic meta-heuristic, each instance is
additionally evaluated five times to obtain a stable parameter configuration. In preliminary
studies, it was established that a larger set of training data yields worse GGA results, as well
as an increased computational time for the BO approach. Hence, the number of instances
used for training data is chosen with respect to efficiency. Since the selection of training
instance data sets is also a combinatorial optimization problem, it is evident that the manual
tests for finding the best training sets represent a limitation in this study. Altogether, the
described procedure means, according to Figure 1, that the BO, as the parameter tuning
approach optimizing the design layer, executes the GGA (associated with the algorithm
layer) 150 times in total for each instance.

Finally, the quality of the optimized parameters is tested on the multi-depot data
sets by evaluating the GGA with the best found parameters class-wise over all problem
instances (which can be seen as the test data).

To find parameter configurations with the random optimization, 30 iterations are
performed in which a parameter configuration is chosen randomly and applied to the
problem instances known as training data. Here, the GGA is also evaluated five times
on each instance. The parameter configurations that obtained the best fitness are used to
evaluate the GGA class-wise for all problem instances of a multi-depot data set as in the
BO approach.

5.3. Evaluation and Discussion

For evaluating the considered algorithms, they were compared with respect to their
computational time and relative error. The latter was calculated for each problem instance I
and each approach A ∈ A = {GGABO, GGARand, ALNS} using

ϵI (A) :=
fI (A)− f ∗I

f ∗I
, (36)

where f ∗I describes the objective function value of the best known solution for the problem
instance I ∈ ID (cf. [1]), i.e., f ∗I := minA∈A fI (A). Furthermore, µϵ(A) specifies the mean
value and σϵ(A) the standard deviation of the relative error (36) for an approach A over all
instances I of a data set ID = {1D, 4D, 6D, 8D, 9D}.

It is worth mentioning that the best known solution f ∗I is not necessarily the optimal
solution of the instance I . Due to the complexity of the optimization problem of Section 3.1
(the MDPDPTWHV is NP-hard), it is natural in the field of combinatorial optimization
that exact solvers can only guanrantee the exact solution for small instances. Therefore,
this is an evident limitation of the results: only heuristic solutions can be compared to each
other due to the large amount and sizes of the problem instances.

In Table 3, the mean values and standard deviations of the relative error with respect
to (36) are displayed for all five data sets. In doing so, the initial and optimized parameter
configurations can be compared. First of all, it is worth mentioning that the solution
quality of the GGA, even with the initial parameter setting, is better than that of the ALNS
(with initial parameters), since µinit

ϵ is smaller for all data sets. Respecting the parameter
configuration, it can be seen that both the mean value µϵ as well as standard deviation σϵ

decrease for the GGA from initial to optimized parameters for all data sets. This shows
that optimizing the parameter configuration for the GGA further improves the solution
quality in comparison to the ALNS. Moreover, the GGA becomes more stable in finding
sufficiently good solutions, which is shown by the smaller standard deviation σϵ of the
relative error. Since the corresponding mean and standard deviation values for the ALNS

Logistics 2024, 8, 14 21 of 26

also increase, the GGA finds more best known solutions than it did initially. In addition, the
mean value of the optimized GGA’s computational time topt

cpu is up to 38% faster than that of
the ALNS. Finally, the parameter configurations tuned by the BO result in better and more
stable solutions for the GGA than the ones of the randomized optimization. Especially
when the complexity of the problem instances increases, i.e., with larger numbers of depots,
the gap between the mean value µ

opt
ϵ and the standard deviation σ

opt
ϵ of the relative error

becomes larger. Hence, parameter configuration with the proposed Bayesian Optimization
approach is purposeful and reasonable.

Table 3. Mean value and standard deviation of the relative error for the initial and optimized GGA
parameter configuration in comparison to the ALNS, as well as mean computational time.

Approach µinit
ϵ σinit

ϵ µ
opt
ϵ σ

opt
ϵ topt

cpu

1D

GGA BO 0.79% 1.48% 0.89% 1.31% 15.49 s

Random 0.99% 1.39% 14.67 s
ALNS 1.08% 1.48% 1.99% 1.95% 17.49 s

4D

GGA BO 0.48% 1.06% 0.61% 1.08% 17.48 s

Random 0.66% 1.12% 17.45 s
ALNS 0.86% 1.42% 1.50% 1.91% 19.10 s

6D

GGA BO 0.63% 1.34% 0.66% 1.11% 34.82 s

Random 0.80% 1.24% 33.15 s
ALNS 1.01% 1.51% 2.00% 2.15% 48.07 s

8D

GGA BO 0.79% 1.49% 0.72% 1.19% 66.77 s

Random 0.88% 1.23% 55.56 s
ALNS 0.97% 1.40% 2.18% 2.24% 100.05 s

9D

GGA BO 0.84% 1.55% 0.78% 1.25% 83.64 s

Random 0.91% 1.30% 73.14 s
ALNS 1.00% 1.48% 2.26% 2.23% 135.94 s

Nevetheless, the results in Table 3 also show that there is a slight trade-off in com-
putational time when improving solution quality. The slightly worse random parameter
configuration is a bit faster with regards to the mean of the computatonal time topt

cpu. How-
ever, comparing this value with the corresponding result of the PDPTW state-of-the-art
solution approach, ALNS, it can be seen that that this effect is less severe. Finally, it is worth
pointing out that the various mutation and repair operators are reasonable for solving
the MDPDPTWHV, as they tackle the complexity of the considered Pickup and Delivery
Problem in the right manner, since the initial solutions µinit

ϵ in Table 3 also show better
results for the GGA than for the ALNS.

The fact that the solution quality of the GGA is improved by the parameter configura-
tion carried out by the BO approach can also be seen in each problem class. In Figure 7, for
the four-depot data set, the frequency of how often an approach found the best solution
within each of the 12 problem classes is depicted. It can be observed that parameter tuning
improves the solution quality of the GGA per class, since the frequency of the best solution
found increases from the initial (top) to the optimized (bottom) parameter configuration.
Similar effects can be shown for the other four data sets.

In Figure 8, the probability distribution for selecting one of the (vehicle-/request-
based) mutation or repair operators is displayed for each optimized problem instance class
for the four-depot data set. Additionally, the initial parameter configuration is depicted.
Here, it becomes clear, at least for the four-depot data set configurations, that the selection
probabilities of the operators have to be varied over the problem classes in order to enhance
the solution quality within each class. This is due to the different data structures across
the different classes. Similar effects regarding the selection probabilities can be seen in the
results for the other multi-depot data sets.

Logistics 2024, 8, 14 22 of 26

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12
Problem Classes

F
re

qu
en

cy
 o

f
B

es
t

So
lu

ti
on

Approach GGA ALNS

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12
Problem Classes

F
re

qu
en

cy
 o

f
B

es
t

So
lu

ti
on

Approach GGA ALNS

Figure 7. Frequencies of best solution found by the approaches within the 12 problem classes with
4 depots: initial parameter configuration (top) and optimized parameters (bottom).

Vehicle-based Mutation Request-based Mutation Repair Operators

init 1 2 3 4 5 6 7 8 9 10 11 12 init 1 2 3 4 5 6 7 8 9 10 11 12 init 1 2 3 4 5 6 7 8 9 10 11 12

0.00

0.25

0.50

0.75

1.00

Problem Classes

P
ar

am
et

er
 C

on
fig

ur
at

io
n

Costs/Requests

Number of Requests

Random Vehicle

Random Position

Historical Request Pair

Similarity Measure

Greedy Insertion

Regret-2 Insertion

Regret-3 Insertion

Regret-4 Insertion

Regret-δ Insertion

Figure 8. Different parameter configurations for each problem class compared to the initial parameter
setting (class init) for the GGA with binary tournament evaluated on the 4-depot data set.

Logistics 2024, 8, 14 23 of 26

6. Conclusions

In this paper, a Bayesian Optimization approach with Gaussian Processes was consid-
ered for the parameter tuning of a Grouping Genetic Algorithm solving practically oriented
Pickup and Delivery Problems. In order to evaluate improvements in solution quality
for the optimized parameter configurations, the BO found the best parameters for each
of the five data sets (with 1, 4, 6, 8, and 9 depots) and considered problem classes (with
100 instances each). Thus, 60 parameter configurations were determined, which were then
adopted to solve all instances of the same corresponding class.

It could be shown that the BO is able to improve the solution quality of the considered
GGA significantly, while the computational time of the GGA is kept low in comparison
to a state-of-the-art solution approach (see Table 3). Additionally, the BO results in better
parameter configurations for the GGA than randomly choosing parameters, which can
be seen as brute-force parameter configuration in comparison. Thus, this is a purposeful
approach for improving the solution quality of the GGA. Moreover, the existence of various
mutation and repair operators could be proven to be appropriate, since different structures
within the instances have to be tackled in different ways (see Figure 8). This resulted in
a solution method for carriers in the LTL market that reliably generates a good solution
for the MDPDPTWHV in a short time. The result is a considerable competitive advantage
over the competition, who only solve the routing problems at hand with the help of less
effective methods.

A limitation of this paper is that only one parameter tuning approach was used to
improve a GGA solving the MDPDPTWHV. The purpose of our work was to show that
optimizing parameters of different problem instance classes is useful due to the complexity
of the pickup and delivery problem to be solved. Nevertheless, it is worth comparing
Bayesian Optimization with other methods for automatic parameter configuration, such as
SMAC or ParamILS (see Section 2.2).

The Genetic Algorithm itself also has limitations. The search process of the GGA
strongly depends on the quality of the initial solutions or the request sequence within the
associated representation. The generation of the initial population is therefore an important
process. In addition, good (feasible) solutions are particularly characterized by the fact that
all customer locations are served and the capacity of the vehicles is highly filled. Starting
from such a good solution, the application of an operator can quickly lead to an infeasible
solution, because meeting the customer time windows then requires the use of another
vehicle that is not available. Moreover, even if the probabilities for a certain problem class
are determined as best as possible on average, there can always be outlier instances that do
not react well to the corresponding choice.

In future research, the proposed BO approach should be compared to other meta-
heuristic parameter tuning methods. In doing so, characteristics such as solution quality,
convergence properties, and computational efficiency, as well as scalability, should be
analyzed. Applying dynamic or adaptive parameter tuning techniques in comparison to
static methods should also be considered (cf. [42,43]). Furthermore, the knowledge that
similar instances (within a class) can be solved efficiently in the same manner is supposed
to be included in an a priori parameter selection approach. To do so, key performance
indicators which identify similar instances have to be developed in order to define problem
classes in a general way. Then, the best parameter configuration can be determined for
each class and be applied on new classified instances. The classification task can be carried
out by, e.g., neural networks. For each new problem instance that occurs due to daily
changing customers and changing demands, LTL carriers can then immediately determine
the corresponding class and apply the appropriate algorithm for the solution. A basic idea
for such an approach using a BO for the parameter tuning can be found in [55]. Finally,
how the BO approach behaves for the automated parameter configuration of solution
approaches for other routing problems should be checked in practice. For example, a
VRPTWHV could be solved or even an MDVRPTWHV (even with the GGA introduced in
this paper).

Logistics 2024, 8, 14 24 of 26

Author Contributions: Conceptualization, C.R.; methodology, C.R. and J.R.; software, C.R.; vali-
dation, C.R.; formal analysis, C.R.; investigation, J.R.; data curation, C.R.; writing—original draft
preparation, C.R.; writing—review and editing, C.R. and J.R.; visualization, C.R.; supervision, J.R.;
project administration, J.R.; funding acquisition, J.R. All authors have read and agreed to the pub-
lished version of the manuscript.

Funding: This research was funded by the BMBF project “L2O: Learning to Optimize” grant number
01IS20013A.

Data Availability Statement: The benchmark instances used for the results of this paper are available
online at https://www.uni-hildesheim.de/fb4/institute/bwl/betriebswirtschaft-und-operations-
research/, accessed on 23 December 2023.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Rüther, C.; Rieck, J.A. Grouping Genetic Algorithm for Multi Depot Pickup and Delivery Problems with Time Windows and

Heterogeneous Vehicle Fleets. In Evolutionary Computation in Combinatorial Optimization (EvoCOP); Paquete, L., Zarges, C., Eds.;
Springer: Cham, Switzerland, 2020; pp. 148–163.

2. Huang, C.; Li, Y.; Yao, N.X. A Survey of Automatic Parameter Tuning Methods for Metaheuristics. IEEE Trans. Evol. Comput. 2020,
24, 201–216. [CrossRef]

3. Jones, D.R.; Schonlau, M.; Welch, W.J. Efficient Global Optimization of Expensive Black-Box Functions. J. Glob. Optim. 1998,
13, 455–492. [CrossRef]

4. Mockus, J. Bayesian Global Optimization. In Encyclopedia of Optimization; Floudas, C.A., Pardalos, P.M., Eds.; Springer:
Berlin/Heidelberg, Germany, 2001; pp. 123–127.

5. Berbeglia, G.; Cordeau, J.-F.; Gribkovskaia, I.; Laporte, G. Static Pickup and Delivery Problems: A Classification Scheme and
Survey. Top 2007, 15, 1–31. [CrossRef]

6. Parragh, S.N.; Doerner, K.F.; Hartl, R.F. A Survey on Pickup and Delivery Problems—Part II: Transportation Between Pickup and
Delivery Locations. J. Betriebswirtschaft 2008, 58, 81–117. [CrossRef]

7. Smit, S.K.; Eiben, A.E. Comparing Parameter Tuning Methods for Evolutionary Algorithms. In Proceedings of the IEEE Congress
on Evolutionary Computation, Trondheim, Norway, 18–21 May 2009; pp. 399–406.

8. Drake, J.H.; Kheiri, A.; Özcan, E.; Burke, E.K. Recent advances in selection hyper-heuristics. Eur. J. Oper. Res. 2019, 285, 405–428.
[CrossRef]

9. Hosny, M.I.; Mumford, C.L. Constructing Initial Solutions for the Multiple Vehicle Pickup and Delivery Problem with Time
Windows. J. King Saud Univ. Comput. Inf. Sci. 2012, 24, 59–69. [CrossRef]

10. Li, H.; Lim, A. A Metaheuristic for the Pickup and Delivery Problem with Time Windows. Int. J. Art. Intell. Tools 2001, 12, 160–167.
11. Lu, Q.; Dessouky, M.M. A New Insertion-Based Construction Heuristic for Solving the Pickup and Delivery Problem with Time

Windows. Eur. J. Oper. Res. 2006, 175, 672–687. [CrossRef]
12. Irnich, S. A Unified Modeling and Solution Framework for Vehicle Routing and Local Search-Based Metaheuristics. INFORMS J.

Comp. 2008, 20, 270–287. [CrossRef]
13. Nanry, W.P.; Barnes, J.W. Solving the Pickup and Delivery Problem with Time Windows using Reactive Tabu Search. Transport.

Res B-Meth. 2000, 34, 107–121. [CrossRef]
14. Hosny, M.I.; Mumford, C.L. The Single Vehicle Pickup and Delivery Problem with Time Windows: Intelligent Operators for

Heuristic and Metaheuristic Algorithms. J. Heuristics 2010, 16, 417–439. [CrossRef]
15. Bent, R.; Hentenryck, P.V. A Two-Stage Hybrid Algorithm for Pickup and Delivery Vehicle Routing Problems with Time Windows.

Comp. Oper. Res. 2006, 33, 875–893. [CrossRef]
16. Ropke, S.; Pisinger, D. An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time

Windows. Trans. Sci. 2006, 40, 455–472. [CrossRef]
17. Pisinger, D.; Ropke, S. A General Heuristic for Vehicle Routing Problems. Comput. Oper. Res. 2007, 34, 2403–2435. [CrossRef]
18. Masson, R.; Lehuédé, F.; Péton, O. An Adaptive Large Neighborhood Search for the Pickup and Delivery Problem with Transfers.

Trans. Sci. 2013, 47, 344–355. [CrossRef]
19. Qu, Y.; Bard, J.F. The Heterogeneous Pickup and Delivery Problem with Configurable Vehicle Capacity. Trans. Res. Part C Emerg.

Tech. 2013, 32, 1–20. [CrossRef]
20. Jung, S.; Haghani, A. Genetic Algorithm for a Pickup and Delivery Problem with Time Windows. Transp. Res. Record 2000, 1733, 1–7.

[CrossRef]
21. Pankratz, G. A Grouping Genetic Algorithm for the Pickup and Delivery Problem with Time Windows. OR Spectr. 2005, 27, 21–41.

[CrossRef]

https://www.uni-hildesheim.de/fb4/institute/bwl/betriebswirtschaft-und-operations-research/
https://www.uni-hildesheim.de/fb4/institute/bwl/betriebswirtschaft-und-operations-research/
http://doi.org/10.1109/TEVC.2019.2921598
http://dx.doi.org/10.1023/A:1008306431147
http://dx.doi.org/10.1007/s11750-007-0009-0
http://dx.doi.org/10.1007/s11301-008-0036-4
http://dx.doi.org/10.1016/j.ejor.2019.07.073
http://dx.doi.org/10.1016/j.jksuci.2011.10.006
http://dx.doi.org/10.1016/j.ejor.2005.05.012
http://dx.doi.org/10.1287/ijoc.1070.0239
http://dx.doi.org/10.1016/S0191-2615(99)00016-8
http://dx.doi.org/10.1007/s10732-008-9083-1
http://dx.doi.org/10.1016/j.cor.2004.08.001
http://dx.doi.org/10.1287/trsc.1050.0135
http://dx.doi.org/10.1016/j.cor.2005.09.012
http://dx.doi.org/10.1287/trsc.1120.0432
http://dx.doi.org/10.1016/j.trc.2013.03.007
http://dx.doi.org/10.3141/1733-01
http://dx.doi.org/10.1007/s00291-004-0173-7

Logistics 2024, 8, 14 25 of 26

22. Alaia, E.B.; Dridi, I.H.; Borne, P.; Bouchriha, H. A Comparative Study of the PSO and GA for the m-MDPDPTW. Int. J. Comput.
Commun. Control 2018, 13, 8–23. [CrossRef]

23. Wang, H.F.; Chen; Y.Y. A Genetic Algorithm for the Simultaneous Delivery and Pickup Problems with Time Window. Comp. Ind.
Eng. 2012, 62, 84–95. [CrossRef]

24. Crèput, J.-C.; Koukam, A.; Kozlak, J.; Lukasik, J. An evolutionary approach to pickup and delivery problem with time windows.
In Proceedings of the Computational Science (ICCS 2004), Kraków, Poland, 6–9 June 2004; Bubak, M., van Albada, G.D., Sloot, P.
M. A., Dongarra, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1102–1108.

25. Nannen, V.; Eiben, A.E. Relevance Estimation and Value Calibration of Evolutionary Algorithm Parameters. In Proceedings of
the IJCAI International Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12 January 2007; pp. 975–980.

26. Hansen, N. The CMA evolution strategy: A comparing review. In Towards a New Evolutionary Computation: Advances in the
Estimation of Distribution Algorithms; Lozano, J.A., Larranaga, P., Inza, I., Bengoetxea, E., Eds.; Springer: Berlin/Heidelberg,
Germany, 2006; pp. 75–102

27. Balaprakash, P.; Birattari, M.; Stützle, T. Improvement strategies for the F-race algorithm: Sampling design and iterative refinement.
In Hybrid Metaheuristics; Bartz-Beielstein, T., Blesa Aguilera, M. J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M., Eds.;
Springer: Berlin/Heidelberg, Germany, 2007; pp. 108–122.

28. Roman, I.; Ceberio, J.; Mendiburu, A.; Lozano, J. A. Bayesian Optimization for Parameter Tuning in Evolutionary Algorithms.
In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 4839–4845.

29. Hutter, F.; Hoos, H.H.; Leyton-Brown, K.; Stützle, T. ParamILS: An Automatic Algorithm Configuration Framework. J. Artif. Int.
Res. 2009, 36, 267–306. [CrossRef]

30. Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Sequential model-based optimization for general algorithm configuration. In Learning
and Intelligent Optimization; Coello, C.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 507–523.

31. López-Ibáñez, M.; Dubois-Lacoste, J.; Pérez Cáceres, L.; Birattari, M.; Stützle, T. The Irace Package: Iterated Racing for Automatic
Algorithm Configuration. Oper. Res. Perspect. 2016, 3, 43–58. [CrossRef]

32. Ramasamy, S.; Mondal, M.S.; Reddinger, J.-P.F.; Dotterweich, J.M.; Humann, J.D.; Childers, M.A.; Bhounsule, P.A. Heterogenous
Vehicle Routing: Comparing Parameter Tuning Using Genetic Algorithm and Bayesian Optimization. In Proceedings of the
International Conference on Unmanned Aircraft Systems (ICUAS), Dubrovnik, Croatia, 21–24 June 2022; pp. 104–113.

33. Rasku, J.; Musliu, N; Kärkkäinen, T. On Automatic Algorithm Configuration of Vehicle Routing Problem Solvers. J. Veh. Rout.
Alg. 2019, 2, 1–22. [CrossRef]

34. Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
35. Huang, C.; Yuan, B.; Li, Y.; Yao, X. Automatic Parameter Tuning using Bayesian Optimization Method. In Proceedings of the IEEE

Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 2090–2097.
36. Rieck, J.; Zimmermann, J. A New Mixed Integer Linear Model for a Rich Vehicle Routing Problem with Docking Constraints.

Ann. Oper. Res. 2010, 181, 337–358. [CrossRef]
37. Furtado, M.G.S.; Munari, P.; Morabito, R. Pickup and Delivery Problem with Time Windows: A New Compact Two-index

Formulation. Oper. Res. Lett. 2017, 45, 334–341. [CrossRef]
38. Feillet, D. A Tutorial on Column Generation and Branch-and-Price for Vehicle Routing Problems. 4OR 2010, 8, 407–424. [CrossRef]
39. Calvet, L.; Juan, A.A.; Serrat, C.; Ries, J. A Statistical Learning Based Approach for Parameter Fine-tuning of Metaheuristics. Stat.

Oper. Res. Trans. 2016, 40, 201–224.
40. Eiben, A.E.; Hinterding, R.; Michalewicz, Z. Parameter Control in Evolutionary Algorithms. IEEE Trans. Evol. Comput. 1999, 3,

124–141. [CrossRef]
41. Karimi-Mamaghan, M.; Mohammadi, M.; Meyer, P.; Karimi-Mamaghanb, A.M.; Talbi, E.-G. Machine learning at the service

of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art. Eur. J. Oper. Res. 2022, 296, 393–422.
[CrossRef]

42. Hussein, A.A.; Yassen, E.T.; Rashid, A. Learnheuristics in routing and scheduling problems: A review. Samarra J. Pure Appl. Sci.
2023, 5, 60–90. [CrossRef]

43. Aleti, A.; Moser, I. A Systematic Literature Review of Adaptive Parameter Control Methods for Evolutionary Algorithms. ACM
Comput. Surv. 2016, 49, 1–35. [CrossRef]

44. Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975.
45. Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing, 2nd ed.; Natural Computing Series; Springer: Berlin/Heidelberg,

Germany, 2015.
46. Michalewicz, Z.; Fogel, D.B. How to Solve It: Modern Heuristics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2004.
47. Brochu, E.; Cora, V. M.; de Freitas, N. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to

Active User Modeling and Hierarchical Reinforcement Learning. arXiv 2010, arXiv:1012.2599.
48. Frazier, P.I. A Tutorial on Bayesian Optimization. arXiv 2018, arXiv:1807.02811.
49. Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; de Freitas, N. Taking the Human Out of the Loop: A Review of Bayesian

Optimization. Proc. IEEE 2016, 104, 148–175. [CrossRef]
50. Klein, A.; Falkner, S.; Bartels, S.; Hennig, P.; Hutter, F. Fast Bayesian Hyperparameter Optimization on Large Datasets. Electron. J.

Stat. 2017, 11, 4945–4968. [CrossRef]

http://dx.doi.org/10.15837/ijccc.2018.1.2970
http://dx.doi.org/10.1016/j.cie.2011.08.018
http://dx.doi.org/10.1613/jair.2861
http://dx.doi.org/10.1016/j.orp.2016.09.002
http://dx.doi.org/10.1007/s41604-019-00010-9
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1007/s10479-010-0748-4
http://dx.doi.org/10.1016/j.orl.2017.04.013
http://dx.doi.org/10.1007/s10288-010-0130-z
http://dx.doi.org/10.1109/4235.771166
http://dx.doi.org/10.1016/j.ejor.2021.04.032
http://dx.doi.org/10.54153/sjpas.2023.v5i1.445
http://dx.doi.org/10.1145/2996355
http://dx.doi.org/10.1109/JPROC.2015.2494218
http://dx.doi.org/10.1214/17-EJS1335SI

Logistics 2024, 8, 14 26 of 26

51. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; Series Adaptive Computation and Machine Learning;
MIT Press: Cambridge, MA, USA, 2006.

52. Duvenaud, D.K. Automatic Model Construction with Gaussian Processes. Ph.D. Thesis, University of Cambridge, Cambridge,
UK, 2014.

53. Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. arXiv 2012,
arXiv:1206.2944.

54. Betriebswirtschaft und Operations Research Homepage. Available online: https://www.uni-hildesheim.de/fb4/institute/bwl/
betriebswirtschaft-und-operations-research/ (accessed on 23 December 2023).

55. Rüther, C.; Chamurally, S.; Rieck, J. An a-priori parameter selection approach to enhance the performance of genetic algorithms
solving pickup and delivery problems. In International Conference on Operations Research; Trautmann, N., Gnägi, M., Eds.; Lecture
Notes in Operations Research; Springer: Cham, Switzerland, 2022; pp. 66–72.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.uni-hildesheim.de/fb4/institute/bwl/betriebswirtschaft-und-operations-research/
https://www.uni-hildesheim.de/fb4/institute/bwl/betriebswirtschaft-und-operations-research/

	Introduction
	Related Work
	Pickup and Delivery Problems
	Parameter Tuning Problems

	Problem Definition
	Mathematical Model for the Multi-Depot Pickup and Delivery Problem with Time Windows and Heterogeneous Vehicle Fleets
	Parameter Tuning Problem

	Proposed Methods
	Grouping Genetic Algorithm Framework
	Population Management
	Selection
	Crossover Operator
	Mutation Operators
	Repair Operator

	Bayesian Optimization for Tuning the Parameters of the Grouping Genetic Algorithm
	Gaussian Processes
	Acquisition Function

	Results and Discussion
	Data Generation
	Parameter Configuration
	Evaluation and Discussion

	Conclusions
	References

