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Abstract: Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are associated with adverse health
effects. This study examined the trend of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic
acid (PFOS) levels in individuals with and without pre-existing comorbidities. We analyzed the
characteristics of 13,887 participants across nine U.S. NHANES cycles (1999–2000 to 2017–2018) and
calculated the geometric mean (GM) of PFOA and PFOS levels, standardized by sex and age. A joinpoint
regression model was used to analyze the temporal trends of serum PFOA and PFOS levels. We observed
declining PFOA and PFOS serum levels among adults in NHANES from 1999–2000 to 2017–2018. Serum
PFOA and PFOS concentrations were higher in men, smokers, and individuals with pre-existing CKD,
hyperlipidemia, CVD, and cancer. We observed faster decline rates in PFOA levels among individuals
with diabetes and CKD and faster decline rates in PFOS levels among individuals with diabetes and
those without CKD. This study provided evidence of varying levels and changing trends of PFOA
and PFOS between groups with and without established chronic disease, highlighting the role of
environmental chemicals in the onset and development of chronic diseases.

Keywords: per- and polyfluoroalkyl substances (PFAS); serum perfluorooctanoic acid; serum
perfluorooctane sulfonic acid; temporal trend; comorbidities; NHANES

1. Introduction

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are manufactured chemicals with
strong thermal and chemical stability [1,2]. They possess robust carbon–fluorine (C–F)
bonds and consist of two subtypes: fully fluorinated aliphatic compounds and partially
fluorinated compounds [3]. The PFAS family mainly includes perfluorooctanoic acid (PFOA),
perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), perfluorodecanoic
acid (PFDA), and perfluorohexane sulfonic acid (PFHxS) [4]. Because of their unique physical
and chemical properties, PFAS are widely employed in industry and commerce. They
are used in the manufacturing of fire extinguishers, industrial detergents, polymerization
aids, waterproof fabrics, food packaging with high temperature and oil resistance, etc. [2,3].
In addition, PFAS have bioconcentration and biomagnification effects in the food chain [5].
Polluted food and water, dust, and consumer products containing PFAS are the primary
sources of PFAS exposure [6]. These substances are not easily metabolized and persist in the
liver, bone, and kidney [5]. According to one systematic review, the estimated mean half-lives
were 1.48 to 5.1 years for PFOA, 3.4 to 5.7 years for PFOS, and 2.84 to 8.5 years for PFHxS [7].
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Due to their persistent and long half-lives, some PFAS have been listed for regulation. PFOA
and PFOS are listed in the Stockholm Convention on Persistent Organic Pollutants [3].

The two perfluoroalkyls produced in the largest quantities are PFOA and PFOS, which
are the most extensively researched and reported on [8]. Although the use and production
of products containing PFAS have been reduced, these chemical compounds will remain
in the environment for a long time due to their stability. Multiple reports have linked
PFAS exposure to a variety of non-communicable diseases (NCDs). Xie et al. reported that
elevated serum PFOA levels might increase the incidence of CKD (OR = 1.741) [9]. A review
found evidence that PFOS was associated with testicular and kidney cancer [10]. Ward-
Caviness et al. noted that PFAS exposure was significantly linked with multimorbidity (OR:
1.25, 95% CI: 1.09, 1.45) [11]. One NHANES study [12] noted a significant association of
exposure to PFAS with total cholesterol and low-density lipoprotein cholesterol. A meta-
analysis suggested that the risk of T2DM was linked to PFAS exposure, and this risk might
increase as PFOA concentrations increase [13]. One Chinese cohort study found that PFOS
exposure was significantly related to a reduced risk of chronic kidney disease (OR: 0.67) [14].
Current reports have mainly investigated the link between PFAS exposure and diseases.
However, trend analysis of serum PFAS levels in individuals with and without disease is
essential for protecting high-risk groups.

Blood PFOS and PFOA levels were reported to have decreased from 1999–2000 to
2017–2018 [15]. PFOA and PFOS exposure has been correlated with sociodemographic
characteristics in some studies. Sonnenberg et al. found that adults, men, Asians, non-
Hispanic Blacks, and non-Hispanic Whites had higher serum PFAS levels [16]. Furthermore,
an NHANES study including 1325 participants found a significant association between
increased PFAS exposure and elevated FT4 levels in non-smokers [17]. Although some
studies have reported on the temporal trends of PFAS, few reports describe whether the
decreases in serum PFOA and PFOS differ between individuals with or without disease.
Therefore, our study used NHANES data to compare whether the changing trends of PFOA
and PFOS blood levels differed between participants with and without disease.

2. Materials and Methods
2.1. Study Data

NHANES (https://www.cdc.gov/nchs/nhanes/, accessed on 15 April 2023) is a cross-
sectional study that utilizes a complex sampling survey across the U.S. It intends to collect
nationwide data on the public health and nutritional status of the population. Our study
used data obtained from NHANES 1999–2000 to 2017–2018 (nine survey periods). The
exclusion criteria are as follows: (1) missing blood PFOA and PFOS level data; (2) missing
demographic information (sex, age, race, and smoking status); (3) missing diagnostic
information on the diseases studied; and (4) age < 20 years. The study was approved by
the ethics committee, and informed consent was obtained from the participants.

2.2. Serum PFOA and PFOS Measurement

In the NHANES data, serum samples were sent to the CDC for examination. Before being
shipped to the laboratory for testing, the samples were stored at a temperature of−20 ◦C. PFOA
and PFOS were analyzed using solid-phase extraction coupled to high-performance liquid
chromatography/turbo ion spray ionization/tandem mass spectrometry with isotope-labeled
internal standards [18]. The analytical measurements were strictly conducted following quality
control/quality assurance guidelines. Details of serum sample storage, delivery, testing, and
quality control/quality assurance are outlined in the NHANES Laboratory Procedures Manual.
In NHANES 2013–2014 to 2017–2018, branched and linear isomers of PFOA and PFOS were
detected. In this study, PFOA was calculated as the sum of n-perfluorooctanoate (n-PFOA) and
branched perfluorooctanoate isomers (Sb-PFOA), and the concentrations of n-perfluorooctane
sulfonate (n-PFOS) and perfluoromethylheptane sulfonate isomers (Sm-PFOS) were combined
for total PFOS. Levels below the limits of detection (LODs) were assigned a value of LODs/

√
2.

We summarized the LODs and detection rates of PFAS in Supplementary Table S1.

https://www.cdc.gov/nchs/nhanes/
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2.3. Sociodemographic Characteristics

The list of sociodemographic characteristics included sex (male/female), age
(20–39/40–59/≥60 years), and race (White/Black/Hispanic/all other races). Additionally,
we also considered cigarette use (including cigars, pipes, snuff, chewing tobacco, and
electronic nicotine delivery systems) and stratified it as follows: never (never smoked more
than 100 cigarettes in life), former (smoked at least 100 cigarettes in life but do not smoke at
present), or current (smoked at least 100 cigarettes in life and currently smoke).

2.4. Definition of Variables

Participants were classified as having diabetes based on the following criteria: (1) fast-
ing plasma glucose (FPG) ≥ 126 mg/dL (7.0 mmol/L) or (2) hemoglobin A1c ≥ 6.5%
(48 mmol/mol) or (3) 2 h plasma glucose ≥ 200 mg/dL (11.1 mmol/L) during OGTT or
(4) current drug therapy for T2D or (5) self-reported diabetes or sugar diabetes [19,20].
We characterized chronic kidney disease (CKD) as eGFR < 60 mL/min per 1.73 m2 or a
urinary albumin-to-creatinine ratio ≥ 30 mg/g [21,22]. We used the CKD-EPI creatinine
equation to calculate eGFR [23]. Criteria for the diagnosis of hyperlipidemia included the
following: (1) triglycerides ≥ 150 mg/dL or (2) total cholesterol ≥ 200 mg/dL or (3) low-
density lipoprotein (LDL) ≥ 130 mg/dL or (4) high-density lipoprotein (HDL) ≤ 40 mg/dL
in men and ≤ 50 mg/dL in women or (5) participants currently using cholesterol-lowering
medications [24,25]. We defined cardiovascular disease (CVD) as a self-reported history
of coronary heart disease (CHD), heart failure (HF), or stroke [26,27]. Participants who
self-reported as having cancer or malignancy were classified as having cancer.

2.5. Statistical Analysis

In this work, we outlined the characteristics of the subjects and calculated the geo-
metric mean (GM) of serum PFOA and PFOS standardized by sex and age in each survey
cycle. We also analyzed subgroup variances based on sex, smoking status, and pre-existing
comorbidities. We compared group differences using the Mann–Whitney test and Kruskal–
Wallis tests. Accounting for NHANES adopting complex multistage sampling, we applied
modified weights calculated using the nine sampling cycles.

We used a joinpoint regression model to analyze the trend of serum PFOA and PFOS
concentrations from NHANES 1999–2000 to 2017–2018. The model consists of several
consecutive linear phases commonly used to characterize variations in trend data. In 1980,
Lerman proposed the grid search (LGS) method [28]. LGS has become the currently used
estimation method [28]. We used log-linear joinpoint regression models, and Monte Carlo
permutation tests with 4499 randomly permuted datasets for analysis [29]. The average
annual percentage change (AAPC) and 95% confidence intervals were used to assess
the average rate of change over the entire study period, and a t-test was employed to
determine whether the AAPC was significantly different from zero [29]. A positive value of
AAPC indicates an upward trend, while a negative value indicates a downward trend [29].
In addition, we used pairwise comparison to examine whether different groups exhibited
similar or different trends [30]. In the analysis, we set the significance level at 0.05. We
used R version 4.2.3 and Joinpoint version 4.9.1.0 (U.S. National Cancer Institute, http:
//www.srab.cancer.gov/joinpoint, accessed on 28 March 2023) for the statistical analyses.

3. Results
3.1. Participants’ Characteristics

Finally, we included 13,887 participants in this analysis. The characteristics of these
participants are shown in Table 1. In short, women accounted for 51.8% of the participants,
Whites were the majority, participants aged 60 and older made up 34.6%, and 55.0% were
former smokers. The prevalence of diabetes among participants ranged from 13.0% to
20.8% during the survey period (1999–2018), while CKD prevalence ranged from 14.2% to
27.5%, hyperlipidemia ranged from 54.5% to 80.3%, CVD ranged from 7.1% to 11.8%, and
cancer ranged from 7.0% to 9.9% (Table 1).

http://www.srab.cancer.gov/joinpoint
http://www.srab.cancer.gov/joinpoint
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Table 1. Characteristics of participants with serum PFOA and PFOS measurements in the NHANES 1999–2000 to 2017–2018.

Characteristics
1999–2000 2003–2004 2005–2006 2007–2008 2009–2010 2011–2012 2013–2014 2015-2016 2017–2018 Overall

948 (%) 1451 (%) 1479 (%) 1738 (%) 1868 (%) 1558 (%) 1603 (%) 1634 (%) 1608 (%) 13,887 (%)

Sex
Male 440 (46.4) 707 (48.7) 720 (48.7) 858 (49.4) 875 (46.8) 789 (50.6) 748 (46.7) 767 (46.9) 784 (48.8) 6688 (48.2)

Female 508 (53.6) 744 (51.3) 759 (51.3) 880 (50.6) 993 (53.2) 769 (49.4) 855 (53.3) 867 (53.1) 824 (51.2) 7199 (51.8)
Race

Hispanic 371 (39.1) 330 (22.7) 331 (22.4) 500 (28.8) 542 (29) 310 (19.9) 364 (22.7) 496 (30.4) 376 (23.4) 3620 (26.1)
White 398 (42.0) 777 (53.5) 774 (52.3) 820 (47.2) 912 (48.8) 584 (37.5) 701 (43.7) 520 (31.8) 573 (35.6) 6059 (43.6)
Black 153 (16.1) 297 (20.5) 324 (21.9) 330 (19.0) 321 (17.2) 382 (24.5) 310 (19.3) 370 (22.6) 367 (22.8) 2854 (20.6)

All other races 26 (2.7) 47 (3.2) 50 (3.4) 88 (5.1) 93 (5) 282 (18.1) 228 (14.2) 248 (15.2) 292 (18.2) 1354 (9.8)
Age

20–39 339 (35.8) 488 (33.6) 542 (36.6) 558 (32.1) 598 (32.0) 572 (36.7) 516 (32.2) 548 (33.5) 496 (30.8) 4657 (33.5)
40–59 270 (28.5) 387 (26.7) 467 (31.6) 567 (32.6) 644 (34.5) 501 (32.2) 532 (33.2) 553 (33.8) 510 (31.7) 4431 (31.9)
≥60 339 (35.8) 576 (39.7) 470 (31.8) 613 (35.3) 626 (33.5) 485 (31.1) 555 (34.6) 533 (32.6) 602 (37.4) 4799 (34.6)

Smoking status
Never 498 (52.5) 741 (51.1) 774 (52.3) 907 (52.2) 1024 (54.8) 902 (57.9) 914 (57.0) 945 (57.8) 939 (58.4) 3435 (24.7)

Former 258 (27.2) 414 (28.5) 393 (26.6) 432 (24.9) 457 (24.5) 362 (23.2) 370 (23.1) 367 (22.5) 382 (23.8) 7644 (55.0)
Current 192 (20.3) 296 (20.4) 312 (21.1) 399 (23.0) 387 (20.7) 294 (18.9) 319 (19.9) 322 (19.7) 287 (17.8) 2808 (20.2)

DM
No 825 (87.0) 1237 (85.3) 1267 (85.7) 1413 (81.3) 1560 (83.5) 1263 (81.1) 1285 (80.2) 1308 (80.0) 1274 (79.2) 11,432 (82.3)
Yes 123 (13.0) 214 (14.7) 212 (14.3) 325 (18.7) 308 (16.5) 295 (18.9) 318 (19.8) 326 (20.0) 334 (20.8) 2455 (17.7)

CKD
No 734 (77.4) 1052 (72.5) 1115 (75.4) 1291 (74.3) 1447 (77.5) 1217 (78.1) 1174 (73.2) 1238 (75.8) 1380 (85.8) 10,648 (76.7)
Yes 214 (22.6) 399 (27.5) 364 (24.6) 447 (25.7) 421 (22.5) 341 (21.9) 429 (26.8) 396 (24.2) 228 (14.2) 3239 (23.3)

Hyperlipidemia
No 187 (19.7) 390 (26.9) 429 (29.0) 688 (39.6) 763 (40.8) 666 (42.7) 658 (41.0) 743 (45.5) 719 (44.7) 5243 (37.8)
Yes 761 (80.3) 1061 (73.1) 1050 (71.0) 1050 (60.4) 1105 (59.2) 892 (57.3) 945 (59.0) 891 (54.5) 889 (55.3) 8644 (62.2)

Any CVD
No 881 (92.9) 1280 (88.2) 1338 (90.5) 1575 (90.6) 1721 (92.1) 1448 (92.9) 1457 (90.9) 1488 (91.1) 1454 (90.4) 12,642 (91.0)
Yes 67 (7.1) 171 (11.8) 141 (9.5) 163 (9.4) 147 (7.9) 110 (7.1) 146 (9.1) 146 (8.9) 154 (9.6) 1245 (9.0)

Cancer
No 882 (93.0) 1307 (90.1) 1344 (90.9) 1573 (90.5) 1683 (90.1) 1432 (91.9) 1445 (90.1) 1481 (90.6) 1453 (90.4) 12,600 (90.7)
Yes 66 (7.0) 144 (9.9) 135 (9.1) 165 (9.5) 185 (9.9) 126 (8.1) 158 (9.9) 153 (9.4) 155 (9.6) 1287 (9.3)
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3.2. Subgroup Difference

We observed subgroup differences in serum levels of PFOS and PFOA (Table 2). Serum
levels of PFOS and PFOA were higher in males. Participants who smoked had higher levels
of PFOS and PFOA compared to those who never smoked, and former smokers had the
highest levels of PFOS and PFOA. Compared to participants without comorbidities, the
median levels of PFOA were higher in participants with CKD, hyperlipidemia, CVD, and
cancer by 7.7%, 16.7%, 11.1%, and 11.5%, respectively. In contrast, participants without
pre-existing diabetes had higher median levels of serum PFOA. Serum PFOS concentra-
tions were higher in individuals with diabetes, CKD, hyperlipidemia, CVD, and cancer.
The median concentrations in subjects with diabetes, CKD, hyperlipidemia, CVD, and
cancer were determined to be 8.3%, 13.7%, 32.5%, 38.9%, and 25.0% higher than those in
participants without comorbidities, respectively (Table 2).

Table 2. The median levels of PFOA and PFOS in different groups.

Group Sample Size
PFOA (ng/mL) PFOS (ng/mL)

Median p-Value Median p-Value

Overall 13,887 2.7 - 9.8 -

Sex 0.000 0.000
Male 6688 3.1 12.3

Female 7199 2.3 7.8
Smoking status 0.000 0.000

Never 7644 2.5 9.1
Former 3435 2.9 11.9

Now 2808 2.8 9.3
DM 0.000 0.010
No 11,432 2.7 9.6
Yes 2455 2.5 10.4

CKD 0.031 0.000
No 10,648 2.6 9.5
Yes 3239 2.8 10.8

Hyperlipidemia 0.000 0.000
No 5243 2.4 8.3
Yes 8644 2.8 11.0

Any CVD 0.002 0.000
No 12,642 2.7 9.5
Yes 1245 3.0 13.2

Cancer 0.000 0.000
No 12,600 2.6 9.6
Yes 1287 2.9 12.0

3.3. Temporal Trend

We found significant decreasing trends for PFOA in all subjects from 1999 to 2018
(Tables 3 and S2). In all participants, the normalized GM of serum PFOA decreased from
4.5 ng/mL to 1.4 ng/mL between 1999–2000 and 2017–2018 (AAPC = −6.7, 95% CI: −9 to
−4.3) Tables 3 and S2). We observed higher serum PFOA concentrations in participants with
pre-existing CKD, hyperlipidemia, CVD, and cancer than in those without comorbidities,
and the levels declined over the survey cycles. In contrast, participants without pre-existing
diabetes had higher serum PFOA levels. Compared to PFOA levels in NHANES 1999–2000,
the standardized GM levels of PFOA in NHANES 2017–2018 decreased by 68.3% (from 4.1
to 1.3 ng/mL) for diabetes (AAPC = −7.3, 95% CI: −10.4 to −4.0), by 73.2% (from 4.1 to
1.1 ng/mL) for CKD (AAPC = −6.9, 95% CI: −10.4 to −3.1), by 69.6% (from 4.6 to 1.4 ng/mL)
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for hyperlipidemia (AAPC = −6.3, 95% CI: −10.3 to −2.0), by 76.0% (from 5.0 to 1.2 ng/mL)
for CVD (AAPC = −7.3, 95% CI: −11.3 to −3.1), and by 77.8% (from 5.4 to 1.2 ng/mL) for
cancer (AAPC = −7.4, 95% CI: −10.4 to −4.3) (Figure 1, Tables 3 and S2). According to
the results of pairwise comparison, the trend in PFOA levels varied between the groups
with diabetes (AAPC = −7.3) and without diabetes (AAPC = −6.4), as well as between
the groups with CKD (AAPC = −6.9) and without CKD (AAPC = −6.7). Participants with
diabetes and CKD showed faster decreases in PFOA levels (Tables 3 and S4).

Table 3. The average annual percent change (AAPC) and 95% CI in different groups.

Group
PFOA PFOS

AAPC 95%CI Test
Statistic (t) p-Value AAPC 95%CI Test

Statistic (t) p-Value

Overall −6.7 * (−9.0, −4.3) −6.6 0.000 −8.8 * (−10.8, −6.7) −7.9 0.000
DM
No −6.4 * (−8.7, −4.2) −6.6 0.000 −8.7 * (−12.4, −4.9) −4.4 0.000
Yes −7.3 * (−10.4, −4.0) −5.1 0.001 −11.1 * (−13.5, −8.5) −9.9 0.000

CKD
No −6.7 * (−9.0, −4.4) −6.6 0.000 −10.6 * (−13.0, −8.2) −10.0 0.000
Yes −6.9 * (−10.4, −3.1) −4.3 0.004 −9.6 * (−11.2, −7.9) −10.9 0.000

Hyperlipidemia
No −5.0 * (−9.4, −0.4) −2.1 0.034 −9.0 * (−10.4, −7.5) −11.9 0.000
Yes −6.3 * (−10.3, −2.0) −2.9 0.004 −8.3 * (−12.0, −4.4) −4.1 0.000

Any CVD
No −6.3 * (−8.4, −4.2) −5.6 0.000 −8.8 * (−12.4, −5.0) −4.4 0.000
Yes −7.3 * (−11.3, −3.1) −3.4 0.001 −9.2 * (−11.1, −7.3) −9.2 0.000

Cancer
No −6.3 * (−8.2, −4.3) −6.1 0.000 −8.7 * (−11.1, −6.4) −7.0 0.000
Yes −7.4 * (−10.4, −4.3) −4.6 0.000 −9.8 * (−18.2, −0.6) −2.1 0.037

* Indicates that the AAPC is significantly different from zero at the alpha = 0.05 level.

Similar to serum PFOA, serum PFOS levels declined among all participants in NHANES
1999–2018 (Tables 3 and S3). Participants with comorbidities had higher serum PFOS levels.
Compared to PFOS levels in NHANES 1999–2000, the standardized GM PFOS levels in
NHANES 2017–2018 decreased by 83.4% (from 27.1 to 4.5 ng/mL) for diabetes (AAPC
= −11.1, 95% CI: −13.5 to −8.5), decreased by 87.1% (from 26.4 to 3.4 ng/mL) for CKD
(AAPC = −9.6, 95% CI: −11.2 to −7.9), decreased by 82.9% (from 28.6 to 4.9 ng/mL) for
hyperlipidemia (AAPC = −8.3, 95% CI: −12.0 to −4.4), decreased by 85.6% (from 29.9
to 4.3 ng/mL) for any CVD (AAPC = −9.2, 95% CI: −11.1 to −7.3), and decreased by
84.6% (from 29.2 to 4.5 ng/mL) for cancer (AAPC = −9.8, 95% CI: −18.2 to −0.6) (Figure 2,
Tables 3 and S3). The changing trend of PFOS levels differed between groups with diabetes
(AAPC = −11.1) and without diabetes (AAPC = −8.7), and between those with CKD (AAPC
= −9.6) and without CKD (AAPC = −10.6). Participants with diabetes and those without
CKD had faster declines in PFOS levels (Tables 3 and S4).
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Figure 2. Boxplots for PFOS grouped by with and without diabetes (a), CKD (b), hyperlipidemia (c),
CVD (d), and cancer (e) in NHANES from 1999–2000 to 2017–2018. For each box, the central mark
represents the median, the edges of the box indicate the 25th and 75th percentiles and the whiskers
show the 10th and 90th percentiles without considering outliers.
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4. Discussion

Our study compared the temporal trends of PFOA and PFOS levels in participants with
and without comorbidities in US adults. The serum levels of PFOA and PFOS decreased
over the survey years (NHANES 1999–2000 to 2017–2018). We found that males, smokers,
and participants with CKD, hyperlipidemia, CVD, and cancer had higher serum PFOA
and PFOS concentrations. In addition, we observed faster decreases in PFOA levels among
individuals with diabetes and CKD, as well as faster decreases in PFOS levels among
individuals with diabetes and without CKD.

Similar to the previous findings, we observed a decreasing trend in serum PFOA and
PFOS concentrations from NHANES 1999–2000 to 2017–2018. In the meantime, similar
results were also found in Korea, Germany, and Australia [31–33]. Based on measure-
ments in 2017–2018, the standardized GMs were 1.4 ng/mL for PFOA and 4.5 ng/mL
for PFOS, which were lower than Spain and higher than Germany [32,34]. Since 2000,
North America and many European countries have strictly regulated the production and
emissions of PFOA and PFOS [35]. In 2006, the US Environmental Protection Agency (EPA)
advocated for the elimination of emissions and the use of PFOA and related substances [36].
In 2011, the Global Monitoring Plan (GMP) recommended monitoring the occurrence and
changes of PFOS, PFOA, and PFHxS [37]. These measures are significant for reducing the
manufacturing and emission of PFOA and PFOS.

Compared to previous reports, we observed similar results for sex differences. Men
generally had higher serum concentrations of PFOS and PFOA than women. Similar reports
can be found in other nations, such as Korea, Germany, Spain, and Australia [31–34]. One
study conducted in Sweden [38] found a significant difference in PFAS serum levels between
the sexes, showing that females had a faster metabolism rate for all PFAS compounds except
PFPeS. Further stratification analysis showed that the shorter half-life in females could be
related to menstruation in women of childbearing age. Reports indicated that serum PFAS
can be transferred and excreted through breast milk, menstrual blood, and the umbilical
cord. Serum PFOS and PFOA levels were lower (p < 0.01) at 3–4 months postpartum than
at 2–7 weeks postpartum [39]. Serum concentrations tended to be lower in menstruating
women than in women without menstrual periods, and females were likely to have higher
blood PFAS levels after the climacterium [40,41]. One study noted that PFAS concentrations
in maternal and cord serum accounted for 27.9% and 30.3% of the total concentrations,
respectively, indicating that PFAS can be transferred to fetuses [42].

We also observed that participants who smoked had higher serum levels of PFOA
and PFOS compared to those who never smoked, and former smokers had the highest
levels. One American study found that former smokers had significantly higher serum
PFAS levels than non-smokers [43]; similar findings were observed in a Korean report [44].
Batzella et al. estimated the half-life of blood PFOA, stratified by smoking habit, and found
that the excretion rate of serum PFOA was faster in non-smokers, especially in males [45].
Specifically, the half-life of serum PFOA was 2.35 in non-smokers and 2.45 in smokers. They
thought it may be associated with the different dietary habits and lifestyles of smokers and
non-smokers. Currently, there is very limited literature on how smoking may affect serum
PFAS concentrations.

In our study, we found that participants with pre-existing CKD, hyperlipidemia, CVD,
and cancer had higher serum concentrations of PFOA and PFOS. These individuals face
the health risks associated with their pre-existing conditions and the potential effects of
PFAS exposure. One study identified several cytosine-guanine dinucleotide (CpG) sites
related to PFAS, which were linked to gene regions associated with cancers, CVD, and
renal function [46]. Xu et al. suggested that the downregulation of three microRNAs
was associated with increased PFAS exposure [47]. These microRNAs were related to
cardiovascular function and the growth of cancer cell lines [47]. Additionally, we observed
faster declines in PFOA levels among participants with diabetes and CKD and faster
declines in PFOS levels among those with diabetes and without CKD. A review found that
the kidneys were the primary route of PFAS elimination, which might be related to the



Toxics 2024, 12, 314 10 of 13

activity of the proximal tubules [48]. Jain et al. found that renal failure was associated with
decreased renal reabsorption and greater excretion of PFOA and PFOS [5]. They observed a
negative association between urinary albumin/creatinine ratios and blood levels of PFOA
and PFOS. Given the association of diabetes and CKD with decreased kidney function, the
studies above may partially explain our results. However, further studies are needed to
explore the elimination of PFAS in individuals with pre-existing diseases.

A limitation of this study is that NHANES is a repeated cross-sectional study, which
cannot explain the issue of causation, and additional longitudinal studies are needed.
Secondly, considering that exposure to PFAS is a long-term, low-dose process, a single
measurement is not accurate enough. This is not an association analysis and we did
not consider the influence of occupation and residence on serum PFAS concentrations.
Barton et al. reported that residential water district, firefighter, and military history were
important determinants of serum PFAS levels. With regard to other health indicators, there
were no significant differences in serum PFAS between different BMI rankings [43]. One
study reported that serum PFAS levels were not statistically different between adults with
overweight or obesity as compared to those within a normal weight range [2]. In addition,
it was found that there was no evidence of different half-lives between BMI groups [38,45].
However, further studies are warranted to confirm these previous observations. The
strengths of our study include the fact that NHANES is a large survey sample and the
results are representative. Secondly, we compared the temporal trends of PFOA and
PFOS concentrations among American adults with or without pre-existing comorbidities.
Additionally, we calculated the GM of PFOA and PFOS standardized by sex and age.

5. Conclusions

We observed declining trends in serum PFOA and PFOS levels among U.S. adults
in NHANES from 1999–2000 to 2017–2018. Males, smokers, and participants with pre-
existing diseases have higher serum concentrations of PFOA and PFOS. PFOA levels
decreased faster among individuals with diabetes and CKD, while PFOS levels declined
faster among individuals with diabetes and without CKD. Our data provide evidence for
future studies on the health effects of PFAS and highlight the importance of addressing the
role of environmental chemicals exposure in the development of chronic diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics12050314/s1, Table S1: Summary of limit of detection
(ng/mL) and detection rates for Per- and Polyfluoroalkyl Substances; Table S2: The standardized
GM of PFOA (ng/mL) in NHANES 1999–2000 to 2017–2018; Table S3: The standardized GM of PFOS
(ng/mL) in NHANES 1999–2000 to 2017–2018; Table S4: Pairwise comparison of trends in serum
PFOA and PFOS levels grouped by sociodemographic characteristics and comorbidities; Laboratory
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