
Citation: Ramović Hamzagić, A.;
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Abstract: Cancer stem cells (CSCs) play a key role in tumor progression, as they are often responsible
for drug resistance and metastasis. Environmental pollution with polystyrene has a negative impact
on human health. We investigated the effect of polystyrene nanoparticles (PSNPs) on cancer cell
stemness using flow cytometric analysis of CD24, CD44, ABCG2, ALDH1 and their combinations.
This study uses simultaneous in vitro cell lines and an in silico machine learning (ML) model to
predict the progression of cancer stem cell (CSC) subpopulations in colon (HCT-116) and breast
(MDA-MB-231) cancer cells. Our findings indicate a significant increase in cancer stemness induced
by PSNPs. Exposure to polystyrene nanoparticles stimulated the development of less differentiated
subpopulations of cells within the tumor, a marker of increased tumor aggressiveness. The exper-
imental results were further used to train an ML model that accurately predicts the development
of CSC markers. Machine learning, especially genetic algorithms, may be useful in predicting the
development of cancer stem cells over time.

Keywords: cancer stem cells; polystyrene nanoparticles; genetic algorithm

1. Introduction

Cancer stem cells (CSCs) represent a group of tumor cells that have the ability to
self-renew and differentiate, and can trigger tumor initiation, progression, metastasis, and
recurrence [1]. CSCs show resistance to chemotherapy and radiotherapy, which contribute
to tumor relapse [2]. It is known that a single CSC marker cannot fully characterize the
stem-like properties of these cells. The process of identifying CSCs involves analyzing the
expression of a combination of characteristic markers. In breast cancer, high expression
of a cluster of differentiation 44 (CD44) and low expression of a cluster of differentiation
24 or CD24 (CD44positive/CD24negative/low) contribute to cell proliferation and tumorigene-
sis, while high expression of aldehyde dehydrogenase or ALDH1 is a strong indicator of
metastasis [3,4]. In addition, studies have shown the functional relevance of ATP binding
cassette subfamily G member 2 -ABCG2 (also known as BCRP, a breast cancer resistance
protein) in relation to CSCs and therapeutic response. ABCG2 has been identified as a pre-
dictive marker of chemotherapy resistance and a potential CSC marker in solid tumors [5].
Resistance to cytotoxic agents has been attributed to the efflux of chemotherapeutic drugs
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by CSC-expressed ABCG2 [6]. The transmembrane glycoproteins CD44 and CD24 are
potential markers for the identification of CSC populations in colon cancer [7]. High ex-
pression of CD44/CD24 cells are recognized as a subpopulation with higher clonogenic
and tumor initiation potential leading to aggressive cancer types and poor prognosis [8].
During the progression from normal epithelium to adenoma, the number of ALDH1 cells
increases, and they become increasingly distributed throughout the crypts [9]. Analysis
of ALDH1 colon cancer stem cells (CSCs) at the molecular level showed that certain sig-
naling pathways, including mitogen-activated protein kinases (MAPK), focal adhesion
kinase (FAK), and oxidative stress survival pathways, were more active. This indicates that
ALDH1 plays an important role in maintaining stemness-like properties and promoting
colon tumor progression. Gaining an understanding of how these markers can predict
treatment outcomes, taking into account factors such as chemoresistance, is of the utmost
importance [6]. Additionally, high expression of CD44, CD24, and ALDH1 have been identi-
fied as specific markers for identifying, isolating, and tracking human colonic CSCs during
the development of colorectal cancer [6]. CD44, CD24, and ALDH1 are hypothesized to
be specific markers for the identification, isolation, and monitoring of human colon CSCs
during colorectal cancer development. Therefore, understanding how these markers can
predict treatment outcomes, especially with regard to chemoresistance, is of great impor-
tance. The global increase in plastic waste has become an issue of concern [10]. Numerous
studies suggest that food or drinking water may be the source of plastic nanoparticles,
which are absorbed in the intestines [6]. Vecchiotti et al. pointed out that direct contact of
polystyrene nanoparticles (PSNPs) with cells causes DNA damage, via ROS production [11].
Research on in vitro models has shown that NP characteristics such as shape, charge, and
dimensions are very important for possible toxicity [6]. Fragmentation of plastic particles
in the environment leads to a higher surface-to-volume ratio, making PSNPs more reactive.

Studies have examined combined exposure to PSNPs and various drugs on fish cell
lines, showing that altered pharmaceutical toxicity induced by PSNP particles may be
related to incorporation rates, sorption capacity, and cellular defense mechanisms [10].
In addition, during the last few years, different mammalian in vivo and in vitro studies
have been performed in order to investigate harmful effect of PSNPs (Table 1). PSNPs
lead to a significant acceleration of the growth of ovarian tumors in mice, as well as to
a decrease in the viability of ovarian cancer cells [12]. Xu et al. summarized 21 studies using
in vitro Caco-2 cell models for evaluating the effects of plastic particles [13]. Domenech et al.
investigated long-term effects of polystyrene nanoplastics in human colon adenocarcinoma
cells (Caco-2 cells) [14]. They found that PSNPs are easily accumulated in exposed cells,
and it is done in a concentration-dependent manner. In fact, at higher concentrations of
PSNPs exposure, some ultrastructural alterations in mitochondria were evident, suggesting
that PSNPs exposure could cause organelles’ dysfunction [14]. Importantly, internalization
of NPs and MPs by normal human colon cells induces metabolic changes under both acute
and chronic exposure by promoting oxidative stress, increasing glycolysis via lactate to
sustain energy metabolism and glutamine metabolism to sustain anabolic processes [15].
Taken together these data provide strong evidence that NPs and MPs exposure could act as
cancer risk factors for human health. Cytotoxic effects of PSNPs were also confirmed on
human hepatoma HepG2 cells [16]. As an in vitro model of the human liver, the human
hepatocellular carcinoma (HepG2) cell line was used in five recent studies [13]. PS-NPs
with size of 50 nm were rapidly internalized by HepG2 cells exhibiting high negative
impact on cell viability due to cellular oxidative damage and destruction of antioxidant
capabilities [16]. Barguilla et al. (2022) also warn of the potential carcinogenic risk result-
ing from long-term exposure to micro- and nanoplastic particles, especially polystyrene
nanoplastics [17]. Numerous studies warn that PSNP represents a new threat to gastric
cancer and causes resistance to therapy [18]. Roje et al. (2019) indicate the potential risk of
synergistic effects of chemical mixtures that include plastic nanoparticles and endocrine
disrupting chemicals (EDCs) and emphasize the need for a more precise definition of an
action plan for the management of risks from EDCs and plastic waste at the global level [19].
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Oral administration of polyethylene nanoplastics was found to significantly affect the in-
testinal microenvironment in mice. This disruption of the microenvironment favors the
development of colorectal tumors due to changes in the adaptive immune response [20].
The combined toxicity of micro- and nanoplastics causes serious damage to the intestinal
barrier. Considering that most studies on PS micro- and nanoplastics so far only investigate
one particle size, it is possible that the health risks associated with exposure to PS micro-
and nanoplastics in the body are underestimated [21].

Table 1. Summary of in vitro and in vivo studies using polystyrene particles.

Biological Models Plastic Particle
Source

Polymer
Type Particle Size Exposure Concentration Results

In vivo: epithelial ovarian
cancer mice model [12]

Purchased from
Huge Biotechnology

(Shanghai, China)
polystyrene 100 nm 10 mg/L for 27 days

PS-NP exposure
accelerated EOC

tumor growth
in mice

In vitro: human colon
adenocarcinoma cells

(Caco-2) [14]

Commercially
obtained (Spherotech,

Inc., Chicago,
IL, USA)

polystyrene 50 nm range of different concentrations:
0, 6.5, 13, 26, and 39 µg/cm2

Accumulation of
PSNPs in exposed

cells in a
concentration-

dependent manner

In vitro: normal human
intestinal cells

(CCD-18Co) [15]

purchased from
Sigma–Aldrich

(St Louis, MO, USA)
polystyrene 0.5 µm and

2 µm
range of different concentrations

(1–5-10–20 µg/mL)

NPs and MPs
exposure cause
oxidative stress

In vitro: HepG2
cells [16]

obtained from
the DK Nano Tech

(Beijing, China)
polystyrene 50 nm 10 µg/mL for 12 h reduced the

cell viability

In vitro: mouse
embryonic fibroblasts [17]

purchased from
Spherotech (Chicago,

IL, USA)
polystyrene 50 nm increasing doses of PSNPLs (10,

25, 75, and 100 µg/mL) for 24 h exacerbated cancer

In vivo: BALB/c nude mice
In vitro: human gastric

cancer cell lines
(AGS, MKN1, MKN45,

NCI-N87, and
KATOIII) [18]

purchased from
Cospheric (Somis,

CA, USA)
polystyrene 9.5–11.5 µm

In vivo:
1.72 × 104 particles/mL

In vitro: 8.61 × 105 particles/mL

induced resistance to
chemo- and
monoclonal

antibody-therapy

In vitro: human breast
cancer cell lines:

MDA-MB 231, and
MCF-7 [19]

purchased from
Thermo Fisher

Scientific, Waltham,
MA, USA

polystyrene 60 nm 1, 10, and 100 mg/mL
influence cell
viability and
proliferation

In vivo: C57BL/6 J
mice [20]

purchased from
Magsphere

(Pasadena, CA, USA)
polyethylene 50.7, 503.6,

and 5047.0 nm
20 mL/kg body weight, for

28 consecutive days

causing severe
dysfunction of the
intestinal barrier

Our study aimed to investigate the relationship between the expression levels of CSC
markers and chemosensitivity, as well as to analyze the effect of PSNP on the expression
patterns of these markers. Our goal was to better understand the basic molecular mecha-
nisms in cancer cells. To achieve this, we used a machine learning (ML) model, specifically
a genetic algorithm (GA), to improve our understanding and prediction of mechanisms in
CSC development. Computer modeling and simulation in the field of science has become
essential. Computer models enable fast, easy, and cost-effective simulation of complex,
time-consuming and expensive experiments. Machine learning (ML) models are designed
to mimic real processes. In this study, we used genetic algorithms (GA) as a metaheuristic
method to generate high-quality solutions to optimization and search problems, drawing
inspiration from Charles Darwin’s theory of natural evolution [22]. GA uses mathematical
operators such as mutation, crossover, and selection, inspired by biological processes, to
optimize solutions [23]. Our study significantly contributes to the application of artificial
intelligence (AI) methods for more efficient analysis of biomedical data, particularly focus-
ing on the use of cancer stem markers for personalized prediction purposes. Specifically,
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we analyzed the effect of PSNPs on stem-like characteristics of colon and breast cancer cells.
Examination of CSC markers was performed using flow cytometry analysis. The resulting
experimental data were then used to develop and validate a machine learning/genetic
algorithm (ML/GA) model, with the goal of improving the prediction of cancer outcomes
over time. Investigating the effect of PSNPs on the cancer stem and analyzing the expres-
sion of CSC markers aims to gain a more detailed insight into the complex dynamics of
cancer. This knowledge will allow us to optimize treatment strategies by tailoring them to
the specific needs of individual patients, taking into account their personalized information.
The goal of this research is to improve patient outcomes and contribute to the advancement
of cancer treatment.

2. Materials and Methods
2.1. Data Study

The use of machine learning and genetic algorithms in the processing of biomedical
data is still not sufficiently exploited. Therefore, before all experiments, we performed a
very extensive analysis of the available literature by using the Google Scholar platform
to obtain statistical data related to the topics of cancer stem cells analysis and the use of
ML and GA. Only keywords are included, individually or in combinations. All listed
calculations are presented in Figures S1 and S2 in Supplementary Materials.

2.2. Cell Cultures and Polystyrene Particles Treatment

Human colorectal carcinoma HCT-116 cell line and a human breast cancer MDA-MB-231
cell line (purchased from the European Collection of Authenticated Cell Cultures—ECACC,
London, UK) were cultured in Dulbecco’s Modified Eagle Medium (DMEM) (D5796;
Sigma–Aldrich Chemical Company, St. Louis, MO, USA) supplemented with 10% fatal
bovine serum (F4135-500ML; Sigma–Aldrich Chemical Company, St. Louis, MO, USA) and
1% penicillin/streptomycin (P4333-100ML; Sigma–Aldrich Chemical Company, St. Louis,
MO, USA). Both cell cultures grew in 75 cm2 culture flasks and were maintained in a
humidified atmosphere with 5% CO2 at a physiological temperature of 37 ◦C. The media
were changed every 2 days and cells were trypsinized when necessary (0.05% trypsin–
0.53 mM EDTA). After a few passages and a confluence of about 80%, the human col-
orectal carcinoma cells and breast cancer cells were treated with medium containing
PS nanoparticles (2.2 × 1010 PSNPs/mL). The polystyrene particles used in the exper-
iments were carboxylate-modified 40 nm (red 8793 Thermo Fisher, Waltham, MA, USA)
PS-fluospheresTM. Prior to each cell culture experiment, stock solutions of PS particle were
prepared as previously described [10]. After treatment incubation of 24 h, 33 h, 43 h, 52 h,
and 76 h, the cells were harvested for flow cytometry analysis or cytotoxicity assay.

2.3. Flow Cytometry Analysis

Flow cytometry was performed following routine procedures by using 1 × 106 cells
per sample, and by using fluorochrome-labelled anti-mouse mAb specific for CD24, ALDH1
or isotype-matched control (BD Biosciences, San Jose, CA, USA). For intracellular staining,
cells were fixed in Cytofix/Cytoperm, permeated with 0.1% saponin, and stained with
fluorochrome-labelled anti-human mAb specific for ABCG2 (BD Biosciences, San Jose, CA,
USA). Control cultures of cells without treatment were also included in all experiments.
Flow cytometry was conducted on FACSCalibur Flow Cytometer (BD Biosciences, San Jose,
CA, USA) and the data was analyzed using the Flowing software analysis (2.5.1.Turku
Bioscience, Turku, Finland).

2.4. Machine Learning Model (ML)—Genetic Algorithm (GA)

The GA symbolic regressor can provide a symbolic mathematical function that most
accurately represents the input data. The output is usually intelligible, and easily transfer-
able to another application or environment. This is GA’s strongest quality. In the GA, the
mathematical function is represented as a tree, with the sheets serving as the variables or
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constants and the functions serving as the nodes (branching points). Nodes have the possi-
bility to be different functions from the list -function set [add, sub, mult, div, sqrt, log, abs,
neg, inv, max, min, sin, cos, tan], leaves -determined in the terminal set for constant values
of defined range or variables. Nodes and leaves are primarily acquired randomly; crossover
and mutation reproduction change them. Following the execution of the genetic operation,
the population of children is examined to determine the effectiveness of the results and to
choose the best outcomes through a tournament selection that will take part in the following
iteration of the genetic algorithm. Once the algorithm has reached the stopping threshold
or the maximum number of generations, the loop is stopped. The operating principles
are detailed and described by O’Neill et al. [24]. GA is not sequential or time-dependent
and does not have memory. It is a simple algorithm that sets the past input values of time
series in multiple points and other variables for the prediction of future value. In this paper,
PyGAD, a Python Genetic Algorithm library, played a pivotal role in conducting Genetic
Algorithm (GA) experiments. Developed by Ahmed Fawzy Gad [25], PyGAD stands out
for its intuitive interface and efficient implementation, enabling seamless integration into
the research workflow. Leveraging PyGAD, the study harnessed the power of Genetic
Algorithms to explore and optimize complex problem spaces. With its diverse functionality
and robust performance, PyGAD facilitated the fine-tuning of algorithm parameters, model
training, and result analysis, thus contributing significantly to the advancement of the
research objectives. The utilization of PyGAD underscored the importance of accessible and
user-friendly tools in enabling researchers to harness the potential of Genetic Algorithms
for solving real-world problems efficiently.

Input data for training GA and fitting was used from experimental measurements
of CSC markers. The cancer cells were treated with PSNPs, while stem markers were
followed by flow cytometry. Several markers (in both cell lines: ABCG2, ALDH, CD24,
CD24ABCG2, CD24ALDH) were measured in time-dependent manner (24 h, 33 h, 43 h,
52 h). Results from measurements at 76 h were used as blind data for GA model validation.
The objective was to develop a Genetic Algorithm (GA) capable of predicting future
outcomes based on input data. Experimental measurements collected at time points 24 h,
33 h, 43 h, and 52 h were utilized to construct an optimal GA curve, which was then
employed to forecast values at 72 h and 96 h time points. To assess accuracy, a real
experimental measurement was conducted at the 72-h mark, and the disparity between the
GA prediction and the actual measurement was evaluated. This study exclusively focuses
on GA model, without conducting a comparative analysis with other similar machine
learning methods. Several factors contribute to this decision. Firstly, the research aims to
assess the effectiveness and applicability of GA within the specific problem domain under
investigation. By concentrating solely on GA, the study seeks to thoroughly investigate its
capabilities, strengths, and limitations without the potential complexities introduced by
comparing multiple methods. GA excels in optimizing problems characterized by complex
and poorly understood search spaces. While methods like logistic regression or decision
trees may offer greater interpretability and ease of implementation, they often require
substantial amounts of input data to yield satisfactory results. Furthermore, the authors
chose GA because it is renowned for its proficiency in handling large search spaces and
tackling non-linear optimization problems.

The coefficient of determination R2 is used to assess the obtained model. It reflects
how well the statistical model fits the data under investigation. It is the proportion of
variance in the dependent variable that is explained by the model.

R2 = 1 − SSR
SST

where: SSR is a Sum of Squared Regression (variation explained by model), and SST is
Sum of Squared Total (total variation in data) [26].
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2.5. Statistical Analysis

In this study, we utilized Statistical Package for the Social Sciences v23.0 software
IBM Coro., Armonk, NY, USA (SPSS Inc.) For each biomedical analysis, three individual
experiments were executed with a minimum of three replicates, unless stated otherwise.
The data are presented as means with standard deviation (SD). Statistical analyses were
performed using Mann–Whitney test and one-way analysis of variance (ANOVA).

3. Results
3.1. CSC Protein Marker Analyses—Flow Cytometry

PSNPs in the early periods of incubation during the treatment of HCT-116 cells in-
duce a decrease, while in the later periods (43 and 52 h from treatment) they induce an
increase in the ABCG2 marker (Figure 1). A trend of significant increase in the ABCG2
expression with time is observed. The same is observed with the ALDH1 marker, which
steadily increases over time. After 52 h of treatment, the expression of the ALDH1
marker, an indicator of metastasis, is higher than in control cells by about 2.5-fold. The
CD24positive/ABCG2positive subpopulation in HCT-116 cells also grows steadily and signifi-
cantly over time. Up to 43 h from treatment, the detected subpopulation is higher in control
cells, while after 52 h this subpopulation is significantly more represented in PSNP-treated
cells. The CD24positive/ALDH1positive subpopulation in PSNP treatment increases in the
first periods of treatment, but in the later periods this population stabilizes and is generally
not significantly more expressed than in control cells.
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Figure 1. The effects of PSNPs on the expression rate of CSC markers in HCT-116 cells. Expression
rate of untreated as well as PSNPs-treated cells, analyzed by flow cytometry. The data are presented
as means ± SEM of three independent experiments.

In MDA-MB-231 cells, in contrast to HCT-116 cells, we observed in the PSNP treatment
that the ABCG2 marker decreases over time and that it is significantly lower than in control
cells at all times (Figure 2). The same applies to the expression of the ALDH1 marker,
which also decreases over time and is statistically significantly lower than in control cells.
Again, in contrast to HCT-116 cells, in MDA-MB-231 cells the CD24positive/ABCG2positive

subpopulation has the highest acute effect (i.e., after 24 h of treatment). In the later periods
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of incubation, this subpopulation is significantly less but stably represented and expressed
more than in the control cells. The CD24positive/ALDH1positive subpopulation in the PSNP
treatment in the MDA-MB-231 cells was most significantly expressed at the beginning of
treatment (24 h), while later it steadily decreased and was less expressed than in control cells.
The proportion of cell marker expression in HCT-116 and MDA-Mb-231 cell populations is
presented in Table S1 in the Supplementary Materials.
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Figure 2. The effects of PSNPs on the expression rate of CSC markers in MDA-MB-231 cells.
Expression rate of untreated as well as PSNPs-treated cells, analyzed by flow cytometry. The data are
presented as means ± SEM of three independent experiments.

3.2. ML Model

Figures 3 and 4 show the real measured data for HCT-116 (ABCG2positive; ALDH1positive;
CD24positive ABCG2positive; CD24positive ALDH1positive) from 24 h to 52 h (represented by
diamond dots), alongside the estimation of deceased cases (illustrated by dashed curves)
spanning from 24 h to 96 h. The measured blind data at 76 h (indicated by triangle dots)
were utilized for the validation of the GA decision model, with follow-up predictions
for the 96-h mark presented as X dots on the graphics. Algorithm estimate scores with
corresponding R2 values are provided in Table 2. Additionally, Figures 5 and 6 show the real
measured data for MDA-MB-231 (CD24positive ABCG2positive; CD24positive ALDH1positive;
ABCG2positive CD24positive; ALDH1positive CD24positive; CD44positive) (represented by dots)
and the estimation of deceased cases (depicted by orange curves) spanning from 24 h to 96 h.
The measured blind data at 76 h (indicated by triangle dots) were utilized for the validation
of the GA decision model, with follow-up predictions for the 96-h mark presented as X dots
on the graphics. Table 2 similarly presents the algorithm estimate scores along with their
respective R2 values. When the coefficient of determination R2 approaches unity, it signifies
a high level of correlation between the predicted values generated by the model and the
actual observed data. In this paper, the remarkable closeness of R2 values to 1 across various
experimental conditions underscores the robustness and accuracy of the predictive models
developed. Such high R2 scores indicate that the models adeptly capture the underlying
patterns and relationships within the data, thereby enabling precise forecasts of future
outcomes. These findings not only validate the efficacy of the employed methodologies but
also instill confidence in the reliability of the predictive models. Moreover, the proximity of
R2 to 1 suggests that the models exhibit minimal error in their predictions, making them
valuable tools for decision-making and planning in real-world scenarios.
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Table 2. Score of the prediction.

Model System R2—Score of the Prediction

HCT-116 ABCG2positive 0.99968
HCT-116 ALDH1positive 0.98868

HCT-116 CD24positive ABCG2positive 0.95683
HCT-116 CD24positive ALDHpositive 0.99745

MDA-MB-231 CD24positive ABCG2positive 0.96353
MDA-MB-231 CD24positive ALDH1positive 0.95011
MDA-MB-231 ABCG2positive CD24positive 0.99847
MDA-MB-231 ALDH1positive CD24positive 0.93221

MDA-MB-231 CD44positive 0.99055
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4. Discussion

It is known that plastic is everywhere around us. It is estimated that about 5.25 trillion
plastic particles are present in the oceans alone, which poses a danger to living organisms,
including humans [27–29]. The effects of nanoplastics are often chronic. We currently know
very little about them, but research shows that increasing the concentration of nanoplastics
enhances inflammatory, cytotoxic, and genotoxic effects. More toxicological research is
needed to better understand the negative effects of nanoplastics on the environment and
humans. It is important to expand research in this area in order to find a solution to the
pollution problem that arises from it [11]. Studies investigating the impact of polystyrene
nanoparticles on a subpopulation of cancer stem cells consider the presence of polystyrene
nanoparticles in the everyday environment as a major pollutant [30]. The use of a genetic
algorithm and machine learning model approach in the analysis of cancer stem cell markers
is an unexplored area of research. In this sense, we are convinced that the combination
of in silico and in vitro studies is a good modeling system in the treatment of biomedical
markers of cancer stem cells. The effect of PSNPs on cancer stem cells is also an under-
explored area. We investigated the expression patterns of the markers in HCT-116 cells
treated with PSNPs. The proportion of cells expressing the marker ABCG2 ranged from
6.71% to 13.39% in the entire cell population. Likewise, the ALDH1positive subpopulation
ranged from 6.13% to 26.8% within the HCT-116 cell population. We also examined the
CD24positive/ABCG2positive subpopulation, which accounted for 0.31% to 2.94% of the HCT-
116 cell population. Similarly, the CD24positive/ALDH1positive subpopulation accounted
for 0.34% to 2.09% of the entire HCT-116 cell population. These findings provide valuable
insight into the distribution and proportions of specific marker subpopulations in the HCT-
116 cell population treated with PSNP. These observations add to the understanding of the
effects of PSNPs on the expression patterns of these markers in cancer cells, highlighting
the potential influence of PSNPs on cancer stemness and the development of targeted treat-
ment strategies [30]. Investigation of a subpopulation of MDA-MB-231 cells treated with
polystyrene nanoparticles (PSNPs) revealed interesting findings regarding the expression
of specific markers. The percentage of cells expressing the marker ABCG2 ranged from
2.09% to 3.11% within the MDA-MB-231 population. Similarly, the ALDH1 subpopulation
was represented in 1.59% to 2.89% of the total MDA-MB-231 cell population. These obser-
vations indicate the presence of distinct subpopulations within the MDA-MB-231 cell line.
In addition, analysis of the CD24positive/ABCG2positive subpopulation showed a range from
6.56% to 15.69% within the MDA-MB-231 cell population. The CD24positive/ALDH1positive

subpopulation ranged from 2.16% to 5.71% of the total MDA-MB-231 cell population. These
specific marker subpopulations provide insight into the distribution and proportions of
cells that have increased malignant potential after PSNP treatment. Sulukan et al. have
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shown in their study the effect of PSNP on various biological processes associated with
cancer using a zebrafish model. Their findings indicated significant effects of nanosized
polystyrene particles on cancer-related mechanisms [31]. Understanding the dynamics and
proportions of these marker subpopulations is critical for assessing the impact of PSNPs on
cancer stemness marker expression. These nanoparticles are able to suppress CSCs and may
contribute to tumor progression. Previous studies have shown that ABCG2 and human clus-
ters of differentiation 33 (CD133) markers are highly expressed in drug-resistant and highly
tumorigenic cell lines, such as MDA-MB-231 and MCF-7, which resemble cancer stem
cells (CSCs) [32]. Although the CD24positive/ABCG2positive and CD24positive/ALDH1positive

subpopulations are less represented in the whole cell populations, these combinations
indicate increased aggressiveness of cancer cells in terms of progressivity and drug resis-
tance potential [33]. The differential expression of ABCG2 and ALDH1 markers between
HCT-116 cells and MDA-MB-231 breast cancer cells indicates different characteristics and
behavior of these cell lines. The higher expression of ABCG2 and ALDH1 in HCT-116
cells suggests a potential role in drug resistance and stem-like properties specific to col-
orectal cancer. On the other hand, MDA-MB-231 cells, which are of metastatic origin,
show different characteristics compared to HCT-116 cells. Metastatic cancer cells can
spread from the primary tumor to distant sites in the body, leading to a more aggressive
and invasive phenotype. The metastatic nature of MDA-MB-231 cells may explain the
higher expression of aggressive subpopulations, such as CD24positive/ABCG2positive and
CD24positive/ALDH1positive cells [34]. These subpopulations are associated with increased
tumorigenic potential and resistance to conventional treatments. Acquisition of metastatic
properties by MDA-MB-231 cells contributes to their aggressive behavior and ability to
colonize new tissues [35]. MDA-MB-231 cells are known for their increased aggressiveness
and metastatic potential. In contrast, HCT-116 cells show moderate invasiveness and
reduced metastatic capacity. HCT-116 cells are derived from the primary tumor and may
have different molecular characteristics compared to MDA-MB-231 cells. The primary
tumor environment differs from that of distant metastases, and cells originating from these
different stages of cancer progression show different expression patterns of markers such as
ABCG2 and ALDH1. The differential expression of ABCG2 and ALDH1 markers between
these cell lines highlights the heterogeneity and complexity of cancer. By examining the
individual characteristics of each cancer cell, insight is gained into the basic mechanisms
that drive tumor progression and metastasis, which ultimately leads to the development
of specific targeted therapies that correspond to certain types and stages of cancer. In this
study, a GA algorithm was used to develop a model that would have the ability to estimate
the growth of PSNP-treated cells over time. The model was trained to predict the behavior
of the cells in the future time at 76 h and 96 h. Each individual prediction model has
an archived high accuracy with a high coefficient of determination R2. The average R2

was 0.979 (min. 0.93–max. 0.99) for the 76-h prediction. Based on these results, we can
conclude that GA can be used as a very precise auxiliary tool for in silico testing, analysis,
and monitoring of cancer stem cell subpopulation behavior. The advantage of such models
is that they allow us to precisely monitor the state of the cell’s behavior at any moment, in
contrast to experimental measurements that are discretized in time intervals.

5. Conclusions

In conclusion, this study highlights several key strengths. Using machine learning,
especially genetic algorithms, it is possible to accurately model and predict the development
of cancer stem cells over time. Investigating the effect of PSNPs on the cancer stem and
analyzing the expression of CSC markers aims to gain a more detailed insight into the
complex dynamics of cancer, as well as the potential effects of environmental pollution on
cancer. Polystyrene nanoparticles stimulated the development of less differentiated cell
subpopulations within the tumor, thereby increasing the level of biological aggressiveness
of the tumor. Validation Machine learning as a reliable and useful approach is recommended
for analyzing large biomedical databases. Research like this improves our understanding of
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cancer stem cells. In this way, the outcome of patient treatment is improved and contributes
to the improvement of cancer therapy.
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in PSNP treatment–ABCG2positive. Figure S4: GA decision tree for HCT-116 cell growing in PSNP
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