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Abstract: This review furnishes an exhaustive analysis of the latest advancements in deep learn-
ing techniques applied to whole slide images (WSIs) in the context of cancer prognosis, focusing
specifically on publications from 2019 through 2023. The swiftly maturing field of deep learning,
in combination with the burgeoning availability of WSIs, manifests significant potential in revolu-
tionizing the predictive modeling of cancer prognosis. In light of the swift evolution and profound
complexity of the field, it is essential to systematically review contemporary methodologies and criti-
cally appraise their ramifications. This review elucidates the prevailing landscape of this intersection,
cataloging major developments, evaluating their strengths and weaknesses, and providing discerning
insights into prospective directions. In this paper, a comprehensive overview of the field aims to be
presented, which can serve as a critical resource for researchers and clinicians, ultimately enhancing
the quality of cancer care outcomes. This review’s findings accentuate the need for ongoing scrutiny
of recent studies in this rapidly progressing field to discern patterns, understand breakthroughs, and
navigate future research trajectories.

Keywords: whole slide images; cancer prognosis; survival analysis; image analysis; digital pathology;
machine learning; artificial intelligence; medical imaging

1. Introduction

The advancement of deep learning has incited a paradigm shift across a myriad
of disciplines [1–3], notably within the medical sciences [4–6]. In the field of oncology,
deep learning methods have showcased unparalleled capacities to extrapolate pertinent
information from complex, high-dimensional data, thereby facilitating precise and timely
diagnosis [7], treatment planning [8], and prognosis prediction [9]. In this context, whole
slide images (WSIs) of cancerous tissues have surfaced as a crucial resource for prognosis
prediction, attributing to their detailed and rich content that aptly depicts the disease’s
multifaceted nature [10–12].

Deep learning has ascended as a potent computational paradigm by virtue of its
capacity to model intricate hierarchical patterns in data [13,14]. It employs multilayered
artificial neural networks to autonomously learn hierarchical representations from raw
input data, thus considerably reducing the need for manual feature extraction. These
representations, often termed as features, empower the model to distinguish and differenti-
ate complex patterns in the data, rendering deep learning an apt tool for a multitude of
tasks, encompassing image classification, natural language processing [15], and prognosis
prediction [16], among others [17].

WSIs are digital slides derived from high-resolution scans of physical pathology
slides, capturing detailed visual information about tissue structure and cellular morphol-
ogy [18–20]. The high-resolution and multiscale nature of these images permit the repre-
sentation of both the spatial context and the local texture within the tissue. This abundance
of information makes WSIs a profoundly rich data source for deep learning models, en-
abling them to extract and learn complex patterns that may correlate with a patient’s
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prognosis. However, the substantial size and complexity of these images also pose unique
computational and methodological challenges that necessitate skilled handling for effective
utilization. A representative exemplification of WSIs is depicted in Figure 1.

Figure 1. Illustrative whole slide images of colon adenocarcinoma in the TCGA-COAD dataset [21].

The convergence of deep learning and WSIs represents an exciting avenue in cancer
prognosis [22–24]. The dynamic interaction between the pattern discernment capabilities
of deep learning algorithms and the voluminous, multiscale information inherent in WSIs
facilitates an intricate depiction of the disease, potentially paving the way towards im-
proved prognosis predictions. Despite its substantial potential, this intersection presents
an array of challenges, not least of which include the necessity for substantial volumes
of labeled data, the computational demands associated with processing high-resolution
images, and the interpretability of deep learning models. It is imperative to address these
challenges to successfully translate this technology into clinical practice, thereby offering a
pathway towards more individualized and efficacious cancer treatment.

The complexity of cancers is closely entwined with the elaborate structural variations
observable at the tissue level [25], and WSIs embody a rich source of information that
captures this complexity across various scales. With the onset of digital pathology and
increased accessibility of whole slide scanners, there has been a considerable surge in the
availability of WSIs, thus providing a propitious environment for the application of ad-
vanced deep learning methodologies. Consequently, deep learning has been progressively
incorporated into the pathology workflow, enhancing the human capacity for microscopic
image analysis, furnishing prognostic predictions, and thereby offering a tangible route
towards personalized cancer treatment.

While considerable progress has been achieved, the application of deep learning for
cancer prognosis using WSIs is advancing at a remarkable pace. As the field progresses,
it becomes indispensable to carry out a comprehensive review of contemporary develop-
ments. The rapid proliferation of the literature underscores the necessity for a prompt and
exhaustive review that outlines recent advancements, discerns the strengths and limitations
of current methodologies, and suggests avenues for future research. Thus, this review as-
sumes critical importance, especially in the light of the fast-paced innovation characterizing
the field.

This review paper will deliver a thorough exploration of deep learning applications
for cancer prognosis utilizing WSIs, spanning a range of cancer types and meticulously
cataloging cutting-edge models and methodologies. In the face of rapid advancement
in deep learning techniques, it is vital to investigate the most recent research in order
to identify trends, comprehend advancements, and envisage the future trajectory of this
field. By offering a comprehensive summary of recent developments, this review aims
to direct future research initiatives, inform clinical practices, and ultimately, facilitate the
development of more efficient and personalized cancer treatments.

The accelerated advancements in deep learning have elicited growing interest in har-
nessing this technology for cancer prognosis using WSIs. Deep learning presents immense
potential in revolutionizing the domain of cancer survival prediction through the provision
of highly precise, efficient, and insightful computational methodologies. Hence, the prin-
cipal objective of this scholarly paper is to present a thorough and meticulous review of
recent literature deploying deep learning with WSIs for cancer prognosis, specifically fo-
cusing on publications from 2019 through 2023. In an epoch distinguished by unparalleled
growth and innovation in deep learning, it is crucial for researchers to stay abreast of the
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latest developments in this dynamic field. This review serves as an invaluable resource
for scholars, offering insights into cutting-edge techniques for analyzing WSIs utilizing
deep learning methodologies, and contributing to the ongoing evolution of this discipline.
By offering a comprehensive, current, and critical analysis, this paper aims to provoke
thoughtful discussions, incite the conception of innovative ideas, and stimulate further
advancements. Ultimately, these efforts strive to enhance outcomes for cancer patients by
providing them with more accurate prognostic information.

The remainder of this paper unfolds as follows. In Section 2, a comprehensive analysis
of the relevant literature is presented, covering the methodologies employed for paper se-
lection (Section 2.1), a detailed examination of the selected studies (Section 2.2), an overview
of the journals in which these studies were published (Section 2.3), the distribution of pub-
lication years (Section 2.4), and the citation distribution of these publications (Section 2.5).
Subsequently, Section 3 delves into the specific application of deep learning techniques to
whole slide images in studies focused on cancer prognosis. The findings and implications
of these studies are then critically discussed in Section 4. Finally, Section 5 encapsulates
the main conclusions of this review, illuminating the potential future trajectory of this
promising field.

2. Literature Analysis
2.1. Methodology for Paper Selection

The fundamental goal of the paper selection process was to identify pertinent research
studies that examine the application of deep learning methodologies on WSIs in the context
of cancer prognosis. A carefully structured, algorithmic search strategy was employed,
focusing primarily on the academic search engine, Web of Science (WOS). Three distinct
search queries were utilized in this process: “Whole Slide Image Deep Learning Cancer Sur-
vival and Prognosis”, “Whole Slide Image Artificial Neural Network Cancer Survival and
Prognosis”, and “Whole Slide Image Artificial Intelligence Cancer Survival and Prognosis”.
These queries were combined using the Boolean operator ‘OR’, resulting in an initial set of
75 papers.

Subsequently, a manual curation of these studies was conducted to ensure relevance
and alignment with the primary focus of “Deep Learning using WSIs for Cancer Prognosis”.
Papers that did not maintain a direct link to cancer prognosis, such as those majorly focused
on tumor segmentation, as well as review articles, were excluded from consideration.
Studies employing artificial neural network models without deep architectures were also
eliminated during this filtering process. Through this careful selection, papers that relied
exclusively on traditional machine learning techniques without incorporating deep learning
methodologies were excluded, thus refining the focus of the review on deep learning
applications in cancer prognosis using WSIs. Consequently, 17 papers were removed from
the initial pool, culminating in a final selection of 58 research papers for in-depth analysis
in this review.

It is important to note that this review exclusively includes articles that have been
published in peer-reviewed journals. This decision was driven by three main consider-
ations. The peer-review process is an indispensable mechanism for ensuring research
quality, subjecting it to stringent evaluation by experts in the field. Additionally, peer-
reviewed scholarly journals are widely recognized as credible platforms for disseminating
scientifically robust and impactful research. A further significant motive for exclusively
incorporating articles from peer-reviewed journals in this review is the emphasis on sci-
entific rigor and reliability. Peer-reviewed journals adhere to a meticulous process that
involves independent experts critically appraising the research methodology, data analysis,
and interpretation of results. This stringent evaluation aids in identifying and rectifying any
potential shortcomings or biases in the research, thereby ensuring the integrity and credi-
bility of the published work. By focusing on peer-reviewed articles, this review endeavors
to offer a comprehensive and reliable synthesis of the current state of knowledge in the
field of deep learning for cancer prognosis with WSIs. It enables readers to rely confidently
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on the findings and conclusions presented in the reviewed studies, aiding evidence-based
decision making and fostering progress in the field.

Despite the abundance of preprints and conference papers in this field, a conscious
decision was taken to focus solely on journal articles that have undergone peer review.
The inclusion of this specific selection criterion serves to heighten the reliability and accu-
racy of the review, as it includes studies that have been subjected to rigorous evaluation.
In order to preserve the novelty and originality of the review, certain categories of articles,
such as review articles and perspectives, were purposefully excluded. This strategy seeks
to highlight the inclusion of primary research-oriented studies, in line with the objective of
the analysis.

The review was confined to articles published within a specific period of five years,
namely from 2019 to 2023. The selected timeframe was deemed suitable to ensure the
relevance and timeliness of the analysis, enabling a comprehensive understanding of the
latest developments and trends in deep learning for cancer prognosis. It is pertinent to note
that the data collection process for the year 2023 was concluded by May, to align with the
existing timetable and keep the review current with the latest progress in the field. During
the data collection phase, data pertaining to the citation count and publication history of
each selected article were gathered. These specifics played a key role in assessing the extent,
influence, and reception of the study within the academic community.

The papers that were chosen were subsequently classified based on the specific types
of cancer that were the focus of each study. The aforementioned categorization enables a
thorough comprehension of the deep learning landscape for cancer prognosis using WSIs
by augmenting our comprehension of the varied methodologies utilized in this domain.
The summary of the reviewed papers is presented in Table 1. Although it is recognized that
numerous papers may overlap across various categories investigating multiple cancers, the
approach was to assign them to a singular category, by making a category, namely multiple
cancers, that is most relevant to the primary focus of the paper.

Table 1. Overview of deep learning with whole slide images (WSIs) in studies on cancer prognosis,
categorized by cancer types.

Cancer Type Studies

Colorectal Cancer Zhao et al. [26], Zhao et al. [27], Sun et al. [28], Yang et al. [29], Xu et al. [30], Jiao et al. [31], Xu et al. [32],
Xu et al. [33], Xu et al. [34], Chen et al. [35], Geessink et al. [36], Shapcott, Hewitt, and Rajpoot [37]

Breast Cancer Liu and Kurc [38], Jaber et al. [39], Balkenhol et al. [40], Mao et al. [41], Wang et al. [42], Levy-
Jurgenson et al. [43], Fassler et al. [44], Lu et al. [45], du Terrail et al. [46], Xu et al. [47]

Bladder Cancer Jiang et al. [48], Zheng et al. [49], Zheng et al. [50], Gavriel et al. [51], Brieu et al. [52], Wu et al. [53]

Liver Cancer Saillard et al. [54], Liang et al. [55], Qu et al. [56], Hou et al. [57], Shi et al. [58]

Lung Cancer Pham et al. [59], Shim et al. [60], Guo et al. [61], Wang et al. [62]

Brain Cancer Shirazi et al. [63], Chen et al. [64], Liu et al. [65], Jiang et al. [66]

Renal Cell Carcinoma Tabibu et al. [67], Marostica et al. [68], Liu et al. [69]

Ovarian Cancer Yokomizo et al. [70], Liu et al. [71], Wu et al. [72]

Cervical Cancer Chen et al. [73]

Gastric Cancer Ma et al. [74]

Pancreatic Cancer Klimov et al. [75]

Skin Cancer Knuutila et al. [76]

Head and Neck Cancer Zhang et al. [77]

Bone Cancer Ho et al. [78]

Oral Cancer Shaban et al. [79]

Multiple Cancers Shao et al. [80], Cheerla and Gevaert [81], Fu et al. [82], Jiang et al. [83]
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2.2. Analysis of Publications

Table 1 provides an overview of recent studies on deep learning with WSIs in cancer
prognosis, categorized by cancer types. As observed, colorectal cancer is the most inves-
tigated cancer type, with twelve studies reported between 2019 and 2023. These studies,
like those of Zhao et al. [26] and Sun et al. [28], utilized deep learning to analyze WSIs for
colorectal cancer prognosis, focusing on different aspects like the structure of cancer cells
and tissue morphology. Their work has led to more precise models capable of predicting
cancer prognosis and progression.

Breast cancer is the second most investigated cancer type, with eleven studies. A no-
table example is Liu and Kurc [38], who used deep learning models to analyze WSIs and
identify morphological patterns in breast cancer tissues. Their work has contributed to
the development of highly accurate prognostic models, highlighting the capability of deep
learning to handle complex and high-dimensional WSIs. Bladder cancer and liver can-
cer have also been areas of significant research, with eight and five studies, respectively.
Zheng et al. [49] utilized deep learning with WSIs for bladder cancer prognosis, demon-
strating the potential for more personalized treatments. For liver cancer, Saillard et al. [54]
leveraged deep learning models to uncover intricate patterns in WSIs, contributing to
improved understanding of the disease’s progression. Lung cancer and brain cancer have
been the subject of five studies each. Pham et al. [59] and Shirazi et al. [63] used deep learn-
ing models to analyze WSIs, uncovering previously unidentified patterns and contributing
to the development of highly accurate prognostic models.

There are also several studies focusing on less frequent cancer types like renal cell
carcinoma, ovarian cancer, cervical cancer, gastric cancer, pancreatic cancer, skin cancer,
head and neck cancer, bone cancer, and oral cancer. These investigations demonstrate the
broad applicability of deep learning with WSIs across various cancer types, extending the
potential benefits to a wider patient population. A category of studies have been dedicated
to multiple cancers. For example, Shao et al. [80] used deep learning models to analyze
WSIs from various cancer types. Their research underscores the potential of these models
to generalize across different cancers and improve prognosis prediction.

This extensive survey of the discipline emphasizes the remarkable flexibility and
applicability of deep learning approaches to WSIs in forecasting cancer prognosis. It
simultaneously illuminates the imperative for persistent investigation across a diverse
spectrum of cancer types. This is crucial to ensure that the advantages of this advanced
technology are broadly accessible, fostering the evolution of more potent and tailored
cancer therapies.

2.3. Publication Journals

The selected papers for this review have been published across a wide range of
scientific journals, emphasizing the broad interest and applicability of deep learning with
WSIs in the study of cancer prognosis. To provide an overview of the publication venues,
a detailed and insightful analysis of these journals has been conducted.

The highest number of relevant papers were published in “Scientific Reports”, account-
ing for 10.3% of the total selection. Following this, “Cancers” and “Frontiers in Oncology”
published a considerable number of pertinent papers, contributing 6.9% and 5.2% re-
spectively. Other significant contributors include “Journal of Translational Medicine”,
“American Journal of Pathology”, “Bioinformatics”, “IEEE Transactions on Medical Imag-
ing”, and “Computer Methods and Programs in Biomedicine” (3.2%). However, more than
half of the publications (60.4%) appeared in other journals with fewer than two publications
each, thereby representing a considerable diversity in publication venues.

The diverse selection of journals in which the papers for this review were published
highlights the interdisciplinary nature of deep learning with WSIs in cancer prognosis.
Spanning across fields ranging from computer science to medical and biological research,
the distribution of publications underscores the broad-ranging implications and wide
acceptance of this methodology in the scientific community. By appearing in journals with



Bioengineering 2023, 10, 897 6 of 17

different focuses, these papers contribute to the dissemination and integration of knowledge
in multiple scientific domains, fostering collaboration and advancing the understanding of
deep learning with WSIs in cancer prognosis.

2.4. Publication Years

Insights from the temporal distribution of the papers considered in this review reflect
a rapid escalation in research interest and effort in the field of deep learning with WSIs in
cancer prognosis. The chronological evaluation of publications elucidates the trajectory of
this area of study and highlights the upsurge of research output over the last few years.

As depicted in Figure 2A, the number of pertinent publications has experienced an
upward trend from 2019 to 2022. The year 2019 saw the advent of 7 notable publications,
which was surpassed by 10 publications in 2020, demonstrating an approximate 43%
increase in scholarly output in a single year. The subsequent year, 2021, witnessed a
modest rise, with 12 research contributions. However, a remarkable surge in the number of
publications was observed in 2022, with a total of 18 relevant articles, marking a noteworthy
50% growth from the previous year. At the time of writing this review, the year 2023 (until
May) had already accounted for 11 publications, indicating a sustained and thriving
research interest in this area. If this trend persists, it is plausible to forecast that the total
number of publications for 2023 will exceed those of previous years.

This increasing trend in the annual publication count is a clear testament to the esca-
lating interest and recognition of the potential and relevance of deep learning with WSIs in
the field of cancer prognosis. It also signifies the progressively growing academic response
to the evolving challenges and opportunities presented by this exciting intersection of
artificial intelligence and oncology. Such a trend encourages and propels further scientific
inquiry, promising significant advancements in the pursuit of enhancing cancer prognosis
using deep learning with WSIs.

Figure 2. Distribution overview of publication years and citation frequencies. (A) presents the
distribution pattern of publication years; (B) showcases the distribution of citation frequencies; and
(C) depicts the relationship between the number of citations and the publication year of the papers.

2.5. Citation Distribution of the Publications

The examination of the citation distribution, in relation to the selected research papers,
furnishes further context to comprehend the influence and reception of the academic work
within this specific area of research. The citation count for a research paper typically serves
as an indirect indicator of its impact and recognition within the scientific community.

As of the current collection period, the median citation count stands at 5, while
the mean citation count has been computed to be 20.6. This discrepancy between the
median and mean values can be attributed to a small number of highly cited papers that
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have influenced the average, signifying a skewed distribution, as illustrated in Figure 2B.
This skewness can be understood better with the observation that a considerable number
of studies have not been cited yet. One possible explanation for this pattern might be
that these studies are relatively new, and thus, they have not had enough time to accrue
citations. The citation count for 2023 has not been fully captured by WoS, further confirming
this proposition.

Upon analyzing the relationship between the number of citations and the publication
year, as represented in Figure 2C, it becomes evident that recent publications are yet to
garner citations. More specifically, the median citation count of papers published in 2023
stands at zero. On the contrary, papers published in 2019 demonstrate a substantially
higher impact, with a median citation count of 54. This distinction underlines the long-term
influence and visibility of the research on deep learning with WSIs in cancer prognosis,
affirming the substantial interest and potential growth of this research field in the years
to come.

3. Deep Learning with Whole Slide Images in Studies on Cancer Prognosis

In the domain of cancer prognosis, significant strides have been made through the
application of deep learning methodologies to WSIs. This approach has enabled researchers
to develop predictive models for a wide range of cancer types. It is imperative to note that
the interpretation of this rich and complex data has necessitated a myriad of sophisticated
techniques, many of which have been adeptly crafted to fit the peculiarities of specific
cancer types. The reviewed studies in this paper are summarized in Table 2.

Table 2. Used deep learning methods, strengths, and limitations of the reviewed studies.

Ref. Deep Learning Methods Expected Strengths Expected Limitations

[83] Multihead Attention (Attention
Mechanisms)

Comprehensive WSI analysis outperforms existing ap-
proaches and contributes to prognosis prediction.

Not specified

[55] General Deep Learning (includ-
ing MLP)

Potential biomarkers discovered provide enhanced prognos-
tic performance.

Interpretability and generalizability limitations may hinder
clinical acceptance.

[69] ResNet Cost-effective tumor mutation burden measurement and
prognostic biomarkers outperform original TMB signature.

Not specified

[78] Deep Multimagnification Net-
work

Highly correlated necrosis ratio estimation and outcome pre-
diction.

Dependence on manual review of necrosis ratio from multi-
ple slides.

[46] Federated Learning Privacy-preserving multicentric studies with interpretable
ML model.

Biases from small-scale study and time-consuming expert
annotations.

[53] CNN Potential for multimodal data use in clinical applications
with high diagnostic accuracy.

Not specified

[72] ResNet, Attention Mechanisms Risk stratification facilitated in ovarian cancer through deep
learning framework.

Moderate mean value of C-index; uneven prediction
strength across subgroups.

[42] Multiple-Instance Learning
(MIL), GAT, Attention Mecha-
nisms

Novel MIL fusion model enables accurate prognostic risk
prediction.

Not specified, potential challenges with image segmentation
and representation.

[62] ResNet-50 MPIS integration with clinicopathological variables im-
proves LUAD prognostic stratification.

Transferability of MPIS to all cancer types uncertain.

[50] Weakly Supervised Deep
Learning

Accurate bladder cancer diagnosis and personalized treat-
ment decisions.

Not specified

[49] General Deep Learning (includ-
ing MLP)

The proposed model improves survival prediction in blad-
der cancer by assessing TILs.

Not specified

[71] CNN, Attention Mechanisms High-performance prognosis prediction in Epithelial ovar-
ian cancer using AI mechanisms.

Not specified

[33] General Deep Learning (includ-
ing MLP)

High-accuracy colorectal cancer prognosis using a weakly
supervised deep learning network.

Not specified

[29] General Deep Learning (includ-
ing MLP)

Deep learning-based immune index correlates strongly with
colorectal cancer survival rates.

Not specified

[57] General Deep Learning (includ-
ing MLP)

Multimodality prognostic model provides high-
performance survival prediction in hepatocellular carci-
noma.

Not specified

[48] General Deep Learning (includ-
ing MLP)

Depiction of tumor microenvironment immunophenotypes
offers insights into biological pathways in bladder cancer.

Not specified

[41] Sparse Representation Learn-
ing

The proposed model improves risk stratification in breast
cancer with integrated biomarkers.

Effectiveness tied to biomarker extraction quality; untested
outside of breast cancer.

[73] CNN with Autoencoder Deep learning-based pathological risk score predicts cervi-
cal cancer prognosis.

Prediction performance tied to dataset quality; clinical appli-
cation untested.

[65] Autoencoder with Regulariza-
tion

CMS discovery allows personalized diagnosis in lower-
grade gliomas.

Limitations with validating subtypes for other cancer types
and accounting for inter-tumor heterogeneity.

[76] ResNet The proposed model identifies morphological features asso-
ciated with metastasis in cSCC.

Performance tied to data quality and diversity; untested out-
side of cSCC.
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Table 2. Cont.

Ref. Deep Learning Methods Expected Strengths Expected Limitations

[38] Deep Learning with Multireso-
lution

Deep learning method for breast cancer survival integrates
image data, improving model performance.

Needs more validation; performance varies with data qual-
ity.

[28] Variational Autoencoder
(VAE), Generative Adversarial
Network (GAN)

Improved prognostic signature for stratifying outcomes in
stage III CRC.

Limited generalizability to other cancer types or stages.

[35] Spatial Pyramid Network Automated CRC risk stratification approach related to gland
formation.

Model may require further refinement despite better dis-
crimination.

[44] ResNet-34 TIL infiltrates assessment in breast cancer WSIs acts as sig-
nificant biomarkers.

Dependence on TIL infiltrates; performance in TIL absence
unclear.

[32] General Deep Learning (includ-
ing MLP)

Prognostic utility for CRC PFS prediction based on auto-
matic TIL quantification.

Performance tied to TIL quantification; unclear performance
in TIL absence.

[64] General Deep Learning (includ-
ing MLP)

End-to-end multimodal fusion improves survival outcome
prediction.

Performance tied to availability of paired WSI, genotype,
and transcriptome data.

[34] CNN The proposed model for CLR and TIL quantification im-
proves survival prediction in CRC.

Needs further validation on larger cohorts for generalizabil-
ity and clinical deployment.

[70] ResNet-34 The proposed model achieves high accuracy for prognosis
in OCCC.

Single-institution data may limit model generalizability.

[80] General Deep Learning (includ-
ing MLP)

The proposed model reduces interoperator variation in sur-
vival prediction from WSIs.

Efficiency compromised by WSI size and pattern heterogene-
ity.

[30] CNN Stroma-immune score using deep learning improves sur-
vival prediction in CRC.

Larger validation cohorts needed for reliable assessment of
model’s prognostic value.

[66] ResNet-18 Improved prognosis and IDH mutation status prediction in
lower-grade gliomas.

Small sample size may limit robustness and generalizability.

[60] CNN The proposed model utilizes multiscale pathology images
for prognosis prediction in lung adenocarcinoma.

Not specified

[61] EfficientUnet, ResNet Efficient analysis of immune checkpoints and prognosis of
NSCLC.

Not specified

[68] CNN Accurate RCC subtype diagnosis and prediction of survival
outcomes.

Interrater variability and limitations in capturing all biologi-
cal signals.

[58] Weakly Supervised Deep
Learning

Prognostic indicators from HCC pathological images im-
prove risk stratification.

Efficiency and labor-saving limitations; needs further valida-
tion for patient treatment.

[51] Ensemble Learning Prediction of MIBC prognosis significantly higher than
TNM staging system.

Further validation and clinical deployment needed.

[40] CNN Efficient assessment of TILs in triple negative breast cancer
provides valuable prognostic information.

Optimal prognostic information yielding method unclear;
lack of objective TIL assessment methods.

[75] CNN High accuracy in predicting metastasis risk in pancreatic
neuroendocrine tumors.

Not specified

[27] General Deep Learning (includ-
ing MLP)

Accurate mucus proportion quantification in colorectal can-
cer suitable for clinical application.

Not specified

[47] General Deep Learning (includ-
ing MLP)

Integrative analysis of histopathological images and ge-
nomic data improves understanding of disease progression.

Might not identify all potential regulatory regions in the hu-
man genome.

[54] General Deep Learning (includ-
ing MLP)

Two deep learning algorithms aid risk stratification for hep-
atocellular carcinoma patients.

Not specified

[77] Convolutional Neural Net-
works (CNN)

Prognostic model predicts treatment failure in nasopharyn-
geal carcinoma better than existing clinical models.

Not specified

[43] General Deep Learning (includ-
ing MLP)

The models developed can spatially characterize tumor het-
erogeneity. Showed a significant statistical link between het-
erogeneity and survival.

Lack of automated methods for characterizing tumor hetero-
geneity.

[26] CNN, Transfer Learning Automated deep learning method for TSR quantification in
colorectal cancer reduces pathologist workload.

Not specified

[74] CNN CNN-based system distinguishes tissue types with high ac-
curacy in gastric diseases.

Not specified

[82] Transfer Learning Deep transfer learning quantifies histopathological patterns
across a range of cancer types.

Not specified

[45] CNN High-resolution TIL map generation on WSIs strongly asso-
ciates with immune response pathways and genes.

Not specified

[63] CNN Exceptional accuracy in brain cancer survival rate classifica-
tion based on histopathological images.

Challenges in generalizability on unseen samples and prac-
tical clinical application.

[39] General Deep Learning (includ-
ing MLP)

Deep learning classifier identifies breast cancer molecular
subtypes and heterogeneity.

Potential inaccuracies due to intratumoral heterogeneity.

[59] General Deep Learning (includ-
ing MLP)

Two-step deep learning approach accurately detects lung
cancer metastases.

Presence of false positives in model predictions.

[79] General Deep Learning (includ-
ing MLP)

TILAb score predicts disease-free survival in OSCC patients
better than manual TIL score.

Accuracy tied to quality and clarity of WSIs.

[67] Convolutional Neural Net-
works (CNN)

High accuracy distinguishing renal cell carcinoma subtypes
and predicting patient survival.

Class imbalance issues in medical datasets.

[81] Multimodal Neural Network Model combining clinical, mRNA, microRNA data,
and WSIs predicts survival for 20 cancer types.

Not specified; potential complexity in interpreting multiple
data modalities.

[36] General Deep Learning (includ-
ing MLP)

Automated approach determines TSR as an independent
prognosticator in rectal cancer.

Applicable only in user-provided stroma hot-spots; perfor-
mance tied to input image quality.

[37] General Deep Learning (includ-
ing MLP)

Deep learning algorithm for cell identification in colon can-
cer images improves performance.

Patch selection for analysis may impact results.

[52] CNN Quantification of tumor buds in bladder cancer adds prog-
nostic value to traditional TNM staging.

Not specified

[56] CNN Recurrence-related histological score allows for clinical deci-
sion making in HCC recurrence prediction.

Prediction accuracy varies; potential bias towards trained
data and diseases.

[31] CNN Automatic evaluation of the tumor microenvironment in
WSIs aids in predicting disease progression.

Varied strength of predictors; potential bias towards specific
cancer types.
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Among the various prognostic models developed, several investigations have focused
on specific cancer types. In brain cancer, Shirazi et al. [63] presented a deep convolutional
neural network (CNN) called DeepSurvNet for survival predictions based on histopatho-
logical images. Deep learning models for survival prediction have also been developed for
hepatocellular carcinoma (HCC). For instance, Saillard et al. [54] introduced SCHMOWDER
and CHOWDER, while Hou et al. [57] proposed a multimodality prognostic model. Other
studies, like those by Liu et al. [71] and Yokomizo et al. [70], focused on the prognosis of
epithelial ovarian cancer (EOC) and ovarian clear-cell carcinoma (OCCC), respectively.

Attention to the tumor microenvironment (TME) is a common theme among several
studies. Jiang et al. [48] and Jiao et al. [31] utilized CNNs to assess the TME in bladder
cancer and colon adenocarcinoma, respectively. Liang et al. [55] introduced PathFinder,
a deep learning framework that underscored the prognostic significance of the necrotic
spatial distribution in liver cancer.

Several other studies have utilized CNNs for tumor–stroma ratio (TSR) quantification
in various cancers. Zhao et al. [26] developed a deep learning model for TSR quantification
in colorectal cancer (CRC). Similar models were also developed by Xu et al. [30] and
Geessink et al. [36] for colorectal and rectal cancer, respectively.

Deep learning with WSIs has also been applied to quantify immune infiltration and cell
distribution, with Yang et al. [29] introducing a deep learning-based metric called the Deep-
immune score. In the domain of breast cancer, Fassler et al. [44] utilized machine learning
and computer vision algorithms to characterize tumor-infiltrating lymphocytes (TILs),
while Lu et al. [45] designed a deep learning-based pipeline to generate high-resolution
TIL maps.

Another prominent direction is the integration of WSIs with clinical, genomic, or tran-
scriptomic data. For instance, Liu et al. [65] developed cellular morphometric subtypes
(CMS) using artificial intelligence for lower-grade gliomas (LGG), which independently
predicted overall survival. Mao et al. [41] developed iCEMIGE, an integrative model
combining cell morphometrics, microbiome, and gene biomarker signatures.

Several studies focused on the predictive power of pathological features in cancer
prognosis. For instance, Chen et al. [73] designed a deep learning-driven pathological risk
score to predict survival rates in cervical cancer. Similarly, Zhao et al. [27] formulated a
deep learning methodology using the mucus–tumor ratio to assess colorectal cancer patient
survival. An innovative approach by Levy-Jurgenson et al. [43] involved the use of deep
learning models to spatially resolve gene expression levels in pathology WSIs, revealing
significant correlations with survival rates.

The role of cellular composition, particularly TILs, in predicting cancer prognosis
has been another significant research theme. Xu et al. [32] examined the prognostic im-
pact of TIL spatial distribution in colorectal cancer, whereas Zheng et al. [49] used an
artificial neural network classifier to identify tumor cells, lymphocytes, and stromal cells,
underlining the prognostic value of electronic TIL variables in bladder cancer. Further-
more, Balkenhol et al. [40] utilized a convolutional neural network to investigate the role
of TILs in the prognosis of triple-negative breast cancer. Several studies have placed
emphasis on the prognostic value of the tumor microenvironment, and specifically TILs.
Gavriel et al. [51] employed machine learning for predicting a 5-year prognosis in muscle-
invasive bladder cancer (MIBC), integrating image, clinical, and spatial features. Sha-
ban et al. [79] introduced a method to quantify TIL abundance in oral squamous cell
carcinoma histology images, proposing the TILAb score as a potent prognostic indicator
for disease-free survival.

Exploring multimodal features in WSIs for prognostic predictions has also attracted
research attention. Chen et al. [64] proposed pathomic fusion, an end-to-end multimodal fu-
sion strategy for predicting survival outcomes in cancer patients. Cheerla and Gevaert [81]
also developed a multimodal neural network-based model for pancancer prognosis pre-
diction. Similarly, Wu et al. [53] conducted a multimodal analysis of bladder cancer data,
combining CT scans, WSIs, and transcriptomics, which led to a convolutional neural net-
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work for molecular subtyping with increased accuracy. Zhang et al. [77] introduced a
prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic
resonance images for predicting survival in nasopharyngeal carcinoma.

Focusing on specific cancer types, deep learning methods have been deployed for
early-stage lung adenocarcinoma prognosis (Shim et al. [60]), ovarian cancer progno-
sis (Wu et al. [72]), and recurrence-free survival prediction in hepatocellular carcinoma
(Qu et al. [56]). Additional efforts include a CNN-based system for identifying gastric mu-
cosa abnormalities (Ma et al. [74]), and the use of CNNs for classifying renal cell carcinoma
subtypes (Tabibu et al. [67]).

The potential of weakly supervised learning models has also been explored, with Shao
et al. [80] proposing BDOCOX, a weakly supervised deep ordinal Cox model for survival
prediction from WSIs. In similar vein, Zheng et al. [50] developed weakly supervised
deep learning models for diagnosing bladder cancer and predicting overall survival rates.
Shi et al. [58] proposed a weakly supervised deep learning framework for hepatocellu-
lar carcinoma analysis, establishing a ’tumor risk score’ from WSIs that outperformed
traditional clinical staging systems in predictive ability.

Furthermore, advanced techniques like multiresolution deep learning methods have
been employed for survival analysis in breast cancer (Liu and Kurc [38]), and multihead
attention mechanisms have been used for survival prediction using WSIs (Jiang et al. [83]).
On another note, a two-step deep learning algorithm was suggested to improve the detec-
tion of lung cancer lymph node metastases from WSIs (Pham et al. [59]).

Several studies have delved into the potential of pathological features as potent
prognostic indicators. For instance, Sun et al. [28] engineered a prognostic signature for
colorectal cancer using deep learning techniques, while Xu et al. [33] introduced WDRNet,
a dual-resolution network that demonstrated promising capabilities for both colorectal
cancer diagnosis and prognosis. Focusing on colorectal cancer from a different perspective,
Xu et al. [34] constructed an AI model to quantify the Crohn’s-like lymphoid reaction (CLR)
and TILs, creating a CLR-I score as a significant prognostic indicator for overall survival.

A considerable amount of research has been dedicated to the development of advanced
deep learning models for prognosis prediction in specific types of cancer. Jaber et al. [39]
developed a deep learning model to approximate PAM50 intrinsic subtyping in breast can-
cer, and Knuutila et al. [76] employed residual neural network architectures to differentiate
metastatic tumors from primary nonmetastatic and metastatic cutaneous squamous cell
carcinomas (cSCCs). Marostica et al. [68] designed a fully automated CNN for diagnosing
renal cancers and predicting survival outcomes. Liu et al. [69] proposed a two-step frame-
work for prognostic prediction using WSIs and tumor mutation burden (TMB) in clear-cell
renal cell carcinoma (ccRCC).

One notable area of focus is the prediction of metastasis and recurrence risk in diverse
types of cancer. For instance, Klimov et al. [75] formulated a deep learning pipeline for
assessing metastasis risk in pancreatic neuroendocrine tumors (PanNET). With a focus on
lung cancer, Guo et al. [61] applied deep learning to the analysis of immune checkpoint
staining, enabling the prediction of survival and relapse in non-small-cell lung cancer.
Complementarily, Wang et al. [62] conducted a multicenter study that designed a pathology
image texture signature from WSIs. This signature demonstrated significant prognostic
value and improved survival discrimination when combined with clinicopathological
variables for lung adenocarcinoma.

In the study of colorectal cancer, Chen et al. [35] proposed a fully automated risk
stratification approach based on gland formation, employing a deep survival model for
enhanced prediction. Meanwhile, Shapcott, Hewitt, and Rajpoot [37] utilized a deep
learning cell identification algorithm on colon cancer WSIs. Their technique predicted
morphological features connected to cellularity and uncovered substantial associations
with clinical variables such as metastasis.

Breast cancer studies have also leveraged deep learning and machine learning meth-
ods. Wang et al. [42] developed an MIL fusion model that merged pathological images and
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clinical features to predict the prognostic risk of HER2-positive breast cancer patients. In an-
other innovative approach, du Terrail et al. [46] combined WSIs and clinical data to predict
the histological response to neoadjuvant chemotherapy in triple-negative breast cancer,
employing federated learning to secure data privacy and improve performance. Adding
to this body of work, Xu et al. [47] carried out an integrated analysis of histopathological
images and chromatin accessibility data in estrogen receptor-positive breast cancer. They
used deep learning for tissue segmentation and canonical correlation analysis to unearth
regulatory regions linked to prognosis.

Deep learning techniques have also made considerable inroads in the study of other
cancer types. For instance, Jiang et al. [66] designed deep learning models for prognosis and
IDH mutation status prediction in grade 2 gliomas. Ho et al. [78] devised a deep learning
network for assessing the necrosis ratio in osteosarcoma WSIs. This innovative technique
allows for objective and reproducible evaluations and aids in patient stratification for
survival prediction.

4. Discussion

In the recent literature, a variety of deep learning models have been deployed to
analyze WSI data within the prognosis of oncology contexts. CNNs have emerged as
a prevalent choice due to their effectiveness in handling image data, demonstrated by
studies such as those conducted by Wu et al. [53], Xu et al. [34], and Zhang et al. [77].
A considerable number of investigations have also employed variations of CNN, often
categorized under the umbrella term of general deep learning. This group includes diverse
studies by Liang et al. [55], Zheng et al. [49], and Jiang et al. [48]. Residual networks, a form
of CNN, have been frequently implemented, as seen in works by Liu et al. [69], Wu et al. [72],
and Knuutila et al. [76], who utilized the ResNet model due to its ability to effectively
train very deep neural networks. Of late, there has been an uptick in the application
of attention mechanisms, which allocate varying levels of importance to different parts
of the image. For instance, Jiang et al. [83] employed a multihead attention mechanism
and Wu et al. [72] combined ResNet with attention mechanisms. Such models have been
increasingly favored due to their capability to focus on crucial regions of an image while
simultaneously considering the context, thus improving their interpretability and prediction
accuracy. Yet, as the field rapidly expands, it becomes increasingly clear that numerous
challenges persist that necessitate ongoing research and innovation.

A primary challenge is the variance in data quality, which is an issue pervasive
across all medical imaging analyses [48,70]. A broad range of factors including staining
inconsistencies, scanning variations, and differences in slide preparation methodologies
can induce a significant level of noise in the data, posing difficulties for the robustness
of deep learning models. For example, inconsistencies in H&E staining protocols have
been reported to impede the reproducibility of results and to compromise the performance
of models trained on different datasets [58]. Future work in this field could focus on
developing techniques for mitigating these data quality issues, such as stain normalization
methods or robust feature extraction techniques.

Another challenge lies in the interpretability of the deep learning models [36,45].
The black-box nature of these models can be an impediment to their acceptance in the
medical community, where understanding the decision-making process can be as important
as the decision itself. While progress has been made towards developing interpretable
deep learning methods [73], future work could further focus on elucidating the underlying
decision mechanisms of these models. Specifically, developing techniques for visualiz-
ing feature importance, deciphering hidden layer activations, and understanding model
predictions could be areas of interest.

The heterogeneity of cancer types also poses significant challenges to the develop-
ment of generalizable models [38,72]. Different cancer types are characterized by distinct
histopathological features, and these variations can complicate the application of models
trained on one type of cancer to another. Despite some promising initial steps towards
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developing multicancer models [64,81], more research is required in this area. One potential
approach could be to focus on developing methods for transfer learning, enabling models
trained on one type of cancer to adapt to others.

The integration of multimodal data, such as combining WSIs with genomic, transcrip-
tomic, or clinical data, has been shown to enhance predictive power [41,65]. However, such
integration poses its own challenges, including data harmonization, dealing with missing
data, and developing models that can effectively learn from different data types. Future
work could focus on developing novel methodologies for the seamless integration of multi-
modal data, thus enabling more accurate and comprehensive cancer prognosis predictions.

One promising direction for future research is the exploration of weakly supervised
learning models for cancer prognosis. Such models, as proposed by Shao et al. [80],
Zheng et al. [50], and Shi et al. [58], could potentially alleviate the reliance on extensive
manual annotations, reducing the workload of pathologists and accelerating the develop-
ment of predictive models. Moreover, the use of advanced techniques like multiresolution
deep learning methods and attention mechanisms, as employed by Liu and Kurc [38] and
Jiang et al. [83], should continue to be investigated for more sophisticated analysis and
more accurate prediction results.

In addition to the challenges mentioned above, the computational resources required
to train deep learning models on WSIs constitute another hurdle [38,41]. Due to the high-
resolution nature of WSIs, the size of these images can be enormous, leading to increased
memory requirements and extended processing times. Although hardware acceleration
techniques and parallel computing have been employed to alleviate this issue, the de-
velopment of more efficient models and optimization algorithms should be explored in
future work.

Also, there remains the challenge of validating and deploying these models in real-
world clinical settings [63,80]. While the studies covered in this review demonstrate promis-
ing results in research environments, it is crucial to assess how these models perform in
practice, with the heterogeneous and noisy data typically encountered in clinical scenarios.
This validation process would involve meticulous evaluation across diverse patient popu-
lations and multiple clinical sites. Future work should therefore place a stronger emphasis
on such external validation studies to bridge the gap between research and practice.

Furthermore, there are ethical and legal considerations in the deployment of AI models
in healthcare, which cannot be overlooked [34]. Issues related to data privacy, informed
consent, and potential biases in AI models need to be adequately addressed. Guidelines
and regulations need to be established to ensure the responsible and ethical use of AI in
cancer prognosis.

Looking ahead, there are several promising avenues for future work. The application
of novel AI technologies, such as multitask deep learning models [84], to WSI analysis
could lead to more powerful and flexible models. The exploration of unsupervised and
self-supervised learning methods could provide ways to leverage the large amounts of
unlabeled WSIs, potentially uncovering novel histopathological features predictive of
cancer prognosis.

Additionally, developing robust and interpretable models that can adapt to changes
over time, such as the evolution of cancer morphology or treatment effects, could offer
exciting prospects. In line with this, there is a growing interest in integrating deep learning
models with dynamic temporal data, such as longitudinal clinical data or time-series
molecular data, to capture the temporal aspects of cancer progression. Ultimately, the goal
is to advance the field in such a way that deep learning models can serve as reliable
and useful tools for pathologists, augmenting their capabilities, reducing their workload,
and contributing to more accurate and timely cancer prognosis, ultimately improving
patient outcomes.
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5. Conclusions

Based on the comprehensive literature review presented, it is evident that the appli-
cation of deep learning techniques on WSIs has brought remarkable advancements in the
field of cancer prognosis. These novel methodologies have not only enabled the processing
of large amounts of complex histopathological data, but they have also facilitated the
development of sophisticated predictive models, enhancing the accuracy and reliability of
cancer prognosis.

The research reviewed demonstrates a broad spectrum of applications across various
types of cancer, each with its distinct characteristics and complexities. From leveraging
CNNs for survival predictions in brain and liver cancer to exploring tumor microenviron-
ments in bladder and colon cancers, these methodologies have made significant strides in
enhancing our understanding of cancer prognosis. The innovative integration of WSIs with
clinical, genomic, or transcriptomic data points to the potential for a truly holistic approach
to cancer prognosis.

The quantification of immune infiltration and cell distribution through the application
of deep learning models further underscores the richness of the insights that can be derived
from WSIs. These advancements in predictive modeling have not only improved our
understanding of various cancer types but also facilitated the development of effective
strategies for diagnosis, treatment, and management.

The significant progress made in the field of cancer prognosis using WSIs is encourag-
ing, indicating a promising future for cancer diagnosis and management. The ability to
accurately predict survival rates and recurrence risk using deep learning methods has signif-
icant implications for clinical practice and patient care. As more sophisticated models and
techniques are developed, the potential to revolutionize the field of oncology is immense.

While the accomplishments made thus far are substantial, the field is still in its in-
fancy, with considerable scope for further research and development. Challenges persist,
including the need for more comprehensive, diverse, and robust datasets, the development
of standards for the evaluation of predictive models, and the need for integrating these
advanced techniques into clinical practice. As the field matures and these challenges are
addressed, the potential for deep learning techniques applied to WSIs to transform the field
of cancer prognosis is immense.

The advancements made in the field of deep learning applied to WSIs for cancer prog-
nosis are promising. They offer the potential for a significantly improved understanding
of the complex interplay of factors influencing cancer prognosis, and the development of
more accurate and personalized strategies for cancer management. The future of this field
is vibrant with possibilities, and the continued exploration and refinement of these method-
ologies will undoubtedly contribute to significant improvements in cancer prognosis and
patient care.
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