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Abstract: Building collapse leads to mechanical injury, which is the main cause of injury and death,
with crush syndrome as its most common complication. During the post-disaster search and rescue
phase, if rescue personnel hastily remove heavy objects covering the bodies of injured individuals
and fail to provide targeted medical care, ischemia-reperfusion injury may be triggered, leading
to rhabdomyolysis. This may result in disseminated intravascular coagulation or acute respiratory
distress syndrome, further leading to multiple organ failure, which ultimately leads to shock and
death. Using bio-radar to detect vital signs and identify compression states can effectively reduce
casualties during the search for missing persons behind obstacles. A time-domain ultra-wideband
(UWB) bio-radar was applied for the non-contact detection of human vital sign signals behind obsta-
cles. An echo denoising algorithm based on PSO-VMD and permutation entropy was proposed to
suppress environmental noise, along with a wounded compression state recognition network based
on radar-life signals. Based on training and testing using over 3000 data sets from 10 subjects in
different compression states, the proposed multiscale convolutional network achieved a 92.63% iden-
tification accuracy. This outperformed SVM and 1D-CNN models by 5.30% and 6.12%, respectively,
improving the casualty rescue success and post-disaster precision.

Keywords: bio-radar; crushing injury; ultra-wideband; variational modal decomposition;
convolutional neural network

1. Introduction

Natural disasters and local wars have become frequent in recent years. According to
statistical data, the proportion of mechanical injuries to the human body caused by heavy
object crushing after disasters and conflicts has reached 48.37% [1]. Crush syndrome caused
by external heavy objects (such as collapsed buildings) is the most common complication of
mechanical injury caused by heavy object crushing and usually refers to ischemic necrosis
of muscle tissue [2,3]. If the compression of an injured person is casually released without
careful diagnosis during a rescue, local lesions and ischemia-reperfusion injury can result in
rhabdomyolysis of the injured person [4]. In severe cases, diffuse intravascular coagulation
or acute respiratory distress syndrome may also occur, leading to multiple organ failure,
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and ultimately shock and death of the injured person [5,6]. Compared with traditional non-
contact post-disaster search and rescue devices, such as visible light or thermal imaging [7],
bio-radar can detect vital signs, such as breathing and a heartbeat, caused by human
cardiopulmonary activity at longer distances and behind obstacles [8,9]. It has become one
of the most promising technologies for disaster rescue detection [10–17].

Research on the application of bio-radar in the field of vital sign detection in casualties
can be traced back to the 1980s. KunMu Chen from Michigan State University in the United
States used an X-band bio-radar to detect human subjects behind cinder brick walls [18].
This study explored a method that can confirm location information and monitor the phys-
iological information of wounded soldiers in a non-contact manner to maximize rescue
efficiency. With the continuous advancement of research, this non-contact life-detection
method has received increasing attention from researchers worldwide. Liu from the Uni-
versity of Connecticut conducted an electromagnetic simulation of human heart and lung
signals based on the finite-difference time-domain (FDTD) method and carried out ex-
periments using a bio-radar with a central frequency of 1 GHz. Through data processing
combined with the Hilbert Huang (HHT) algorithm, they successfully recognized and
distinguished the three respiratory characteristics of different subjects after obstacles [19].
Zhang from the Air Force Medical University of China used a dual-frequency bio-radar
for wall-penetrating vital sign detection and adaptive filtering algorithms to filter out
respiratory interference outside the detection background, further improving the detection
accuracy of the bio-radar [20]. Wu used an ultra-wideband linear array to detect the respira-
tory signal of a human body under rubble and estimated the human respiratory movement
and position of the human body behind obstacles [21]. Yan from the Nanjing University of
Science and Technology proposed a time-varying vital sign separation algorithm based on a
variational modal decomposition, which is used to suppress interference and aliasing in the
detection of multi-target radar vital signals behind walls. This method was verified to be ef-
fective at extracting respiration signals from multiple human targets [22]. Researchers have
also explored the vital status information of these targets in addition to being interested in
the number and location of human targets behind obstacles. In 2019, Yin et al. from the Air
Force Medical University conducted a study on the changes in the vital statuses of animals
in a scenario involving obstacles and blood loss using bio-radar. This study made progress
in distinguishing the vital statuses of animals in terms of their instantaneous frequency
characteristics and energy ratios [23]. Afterward, Ma proposed an early warning method
for biological depletion periods based on “M”-shaped radar breathing signals. In this study,
the physiological signals of animals under water and food deprivation were monitored
using bio-radar for a long time. It was found that the radar respiratory signals of animals in
the decompensated period frequently changed from a sine curve to an “M” shaped curve.
It was inferred that insufficient pulmonary surfactants caused by the rupture of lamellar
bodies (LBs) in type II alveolar epithelial cells lead to respiratory distress syndrome. An
“M” shaped curve is a feature of respiratory distress syndrome [16].

By summarizing the literature, we found that bio-radar can be used for the non-contact
detection and localization of casualties under the conditions of penetrating non-metallic
materials (such as bricks and wood). If more accurate physiological parameters of the
injured can be extracted from the radar echo and used to determine the compression state
of the injured, rescue workers can be guided to scientifically formulate rescue sequences
and prepare relevant treatment drugs and medical equipment in advance to ensure the
survival rate of the trapped injured person. However, one of the main challenges is that the
vital signs of trapped individuals are easily affected by clutter and noise. Another challenge
is identifying the compression state of injured individuals by fully utilizing hidden features
in bio-radar data.

Currently, in the field of through-wall vital sign detection, commonly used bio-radars
can be categorized into two types: continuous wave (CW) radar [24] and ultra-wideband
(UWB) radar. CW radar applications are significantly limited, as they do not obtain distance
information of the target. In contrast, UWB radar has attracted more and more attention
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due to its powerful penetrating capability and range-detecting capability. Among the
sub-category of UWB radars, the frequency domain UWB radar and noise radar have
disadvantages of more complex hardware implementation and the influence of sidelobes,
respectively, even though they can achieve high receiver sensitivity. Therefore, mainly
considering the penetration ability, range resolution ability of different targets at differ-
ent range bins, and anti-interference ability, a time-domain UWB radar was applied for
this study.

In summary, this study proposed a non-contact detection and recognition method
based on bio-radar for the compression state of post-disaster wounds. It was divided into
two parts: human-life signal extraction and post-disaster compression state recognition.
The organizational structure of the study is as follows: In Section 2, a brief introduction
is given to the working principle of UWB bio-radar and the preprocessing methods for
raw radar echo data. In Section 3, for the extraction of human life signals, we used the
PSO-VMD algorithm to filter out the clutter and noise in the echo signal and complete
the reconstruction of human radar life signals based on permutation entropy to select
effective modes. Section 4 showcases a post-disaster scenario simulated by designing
experiments, and multiple non-contact life signals were collected from subjects in four
typical post-disaster compression states to verify the reliability of the proposed method.
Section 5 and 6 provides a discussion and conclusion, respectively. This study allows for
the development and updating of casualty rescue strategies, thus reducing casualties in
actual rescue scenarios [25,26].

2. UWB Bio-Radar

The UWB bio-radar is a pulse radio-based radar system that utilizes the Doppler
effect to detect biological targets. Radar emits signals in the form of pulses with very short
durations in the nanosecond range. The corresponding spectra of these emitted signals
were concentrated in the frequency range of 30 MHz to 8000 MHz. The electromagnetic
waves in these frequency bands have the ability to penetrate some non-metallic materials,
making them suitable for application scenarios of penetrating debris and debris detection.
Using a wide frequency band, the system can effectively obtain rich scattering information
about the target, which is beneficial for the detection of detailed information.

When operating UWB bio-radar, the radio frequency (RF) synthesis unit generates
a series of pulse signals with the same pulse repetition period under the control of a
microcontroller in the radar transmitter. These pulse signals are split into two channels as
trigger signals. One channel of the pulse generator generates an ultra-wideband signal,
which is amplified by a power amplifier and transmitted into space. The other channel
enters a delay circuit, which is adjusted by the microcontroller to generate a corresponding
delay and form a local reference signal. The waveform of the echo reflected by the target is
similar to that of the transmitted waveform but is loaded with the Doppler shift caused by
the motion of the human surface. Subsequently, the antenna receives the modulated echoes,
and the received signal was filtered and amplified using a low-noise amplifier. When these
received signals reach the digital integrator inside the radar, there is a time shift between
the echo and range-gate signals. If the time delay of the echo signal matches that of the
range gate signal, a series of output levels are obtained. These levels are then sampled
using an ADC and converted into digital signals, which are transmitted to an upper-level
computer via a universal serial bus for further processing. The center frequency of the UWB
bio-radar used in this study was 7.29 GHz, with a bandwidth of 1.4 GHz, a pulse repetition
frequency of 15.18 MHz, and a slow-scanning frequency of 17 Hz. The radar system utilizes
a pair of microstrip antennas placed side by side, which offer advantages such as small size,
high gain, and good directivity. The fast time dimension contains 93 distance-sampling
points, corresponding to a maximum detection distance of 5 m. The optimal detection
angle is facing the human target, within an angle range of ±30 degrees in the sagittal plane.
This deployment enables the radar to efficiently receive signals reflected from the body
surface, enhancing the signal amplitude and signal-to-noise ratio. Once the angle range
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is exceeded, the target will almost completely out of the radar main lobe, resulting in a
significant decrease in amplitude and SNR. The structure diagram of the UWB bio-radar
system and the schematic diagram of non-contact cardiopulmonary activity detection are
shown in Figure 1.
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Figure 1. Structure diagram of a UWB bio-radar system and schematic diagram of non-contact
cardiopulmonary activity detection.

A fast-time signal is a data vector composed of all the distance sampling points of a
bio-radar at a certain acquisition time. Fast-time signals at different times are sequentially
concatenated to form a Dori(m× n) data matrix. In this matrix, m = 1, 2, · · · , M represents
the sampling points along the distance direction, which is the fast-time dimension, whereas
n = 1, 2, · · · , N represents the sampling points along the data collection time, which is the
slow-time dimension. Figure 2 shows the raw data matrix collected by the UWB bio-radar;
Figure 2a shows a two-dimensional image based on the data matrix, and Figure 2b presents
a three-dimensional image.
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color map.

The collected raw radar echo data not only contain vital signs of the detected human
body targets but also contain a large amount of static background interference. These static
background interferences can be filtered out by subtracting the fast-time signal mean from
the echo data. The background removal steps for the radar echo data can be expressed as

D1(m, n) = Dori(m× n)− 1
N

N

∑
n=1

Dori(m× n) (1)
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Additionally, electromagnetic attenuation occurs during the propagation of radar
waves through obstacles, resulting in the received echo amplitude being significantly
smaller than that of the initial transmitted pulse. If normalization processing is performed
based on the collected channel signals, compensation can be provided for distant target
echoes. The steps of attenuation compensation preprocessing can be expressed as

D2(m, n) =
D1(m, n)− min

1≤l≤L
[D1(m, n)]

max
1≤l≤L

[D1(m, n)]− min
1≤l≤L

[D1(m, n)]
(2)

Finally, by calculating the energy sum of each position point in D2(m, n) along the
fast-time dimension, the energy distribution curve {E} = {E1, E2, · · · , EL} for the fast-time
dimension can be obtained. The maximum value of EMAX in the energy distribution curve
can be searched to determine the fast-time sampling point at its corresponding position.
The fast-time sampling point can be converted into the radial distance between the human
target and the bio-radar detector. The results obtained after the preprocessing steps are
shown in Figure 3, where Figure 3a represents the two-dimensional pseudocolor image
after the preprocessing steps, and the results of the three-dimensional expansion are shown
in Figure 3b. Using the radial distance calculation algorithm to determine the data vector
corresponding to the fast-time position of the detection target in the radar echo data matrix
and mapping it to the time domain, the radar echo signal at the human target position can
be obtained, as shown in Figure 3c. It can be seen that the echo signal at this time already
contains rich fluctuation information about the body’s surface, which means that the above
preprocessing steps can eliminate the interference existing in the original radar echo signal.
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Figure 3. Preprocessed UWB radar data map: (a) two−dimensional color map; (b) three−dimensional
color map; (c) radar echo signal at a human body’s position.

3. Method

By preprocessing radar echoes, it is possible to suppress interference while extracting
radar echo signals from the target location. However, because the vibrations caused by
human heart motion on the body’s surface are much smaller than the chest expansion
caused by breathing, the radar cardiac signals reflected in the echo signals are very weak
and are easily overshadowed by strong background noise and slow-drift interference
caused by slight movements of the human body. This makes it difficult to separate and
reconstruct the radar vital signs of injured targets from the echoes, thereby affecting the
determination of the compression state of injured individuals. To address these issues,
this study proposed a non-contact sensing and identification method for the post-disaster
compression state of injured individuals based on UWB bio-radar. The method consists of
two steps: first, the reconstruction of radar vital signs from noisy echo signals, and second,
the automatic recognition of the compression state of injured individuals using neural
networks. A flowchart of the proposed method is shown in Figure 4.
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3.1. Reconstruction of Human Radar Life Signals
3.1.1. Principle of Variational Modal Decomposition

Variational mode decomposition (VMD) is an adaptive and completely non-recursive
signal-processing method. The objective was to iteratively determine the optimal solution
of the variational model and determine the bandwidth and center frequency of each mode.
Therefore, the VMD can deconstruct a given radar echo s(t) into K IMFs and ensure the
estimated bandwidth and minimization of each IMF. The above process can be expressed as

min
{ci}{wi}

∑
i

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
+ ci(t)

]
e−jwit

∥∥∥∥∥
2

2

 (3)

ci(t) represents the i-th IMF obtained through decomposition, and ωi is the center
frequency corresponding to the i-th IMF. By introducing the quadratic penalty term α
and Lagrange multiplier λ(t), the constraint problem is transformed into a non-constraint
problem:

L({ci(t)}, {ωi}, λ(t))

= α ∑
i

∥∥∥∂t

[(
δ(t) + j

πt

)
× ci(t)

]
e−jωit

∥∥∥∥2

2
+

∥∥∥∥ f (t)−∑
i

ci(t)
∥∥∥∥2

2
+

〈
λ(t), f (t)−∑

i
ci(t)

〉
(4)

Subsequently, the variational problem of the VMD method is solved using the alternat-
ing direction multiplier iteration algorithm, and ĉn+1

i (t), ω̂n+1
i , and λ̂n+1(t) are iteratively

updated using Equations (5)–(7):

ĉn+1
i (ω) =

f̂ (ω)−∑i 6=k ĉi(ω) +
λ̂(ω)

2

1 + 2α(ω−ωi)
2 (5)

ω̂n+1
i =

∫ ∞
0 ω|ĉi(ω)|2dω∫ ∞

0 |ĉi(ω)|2dω
(6)

λ̂n+1(ω) = λ̂n(ω) + τ

(
f̂ (ω)−∑

i
ĉn+1

i (ω)

)
(7)

Finally, given the accuracy ε, until the condition ∑
i

[∥∥∥∥ĉn+1
i

(t)− ĉn
i
(t)
∥∥∥2

2

/∥∥∥ ĉn
i
(t)
∥∥∥2

2

]
< ε

is met, an exit needs to happen. Otherwise, the above iterative steps will continue to be
performed to ultimately obtain the optimal solution to the unconstrained problem. On
the one hand, VMD utilizes its inherent Wiener filtering characteristics to achieve better
noise-filtering performance compared with algorithms, such as EMD, and on the other
hand, due to its lack of adaptive characteristics, such as EMD and LMD, the effectiveness
of VMD largely depends on the user’s selection of the quadratic penalty term α and the
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number of submodes K for VMD. If the K value is too small, it will cause aliasing, while if
it is too large, it will lead to excessive signal decomposition. In addition, if the value of α is
too large, it will cause the frequency bands of each mode to be too narrow, resulting in the
loss of useful information. In contrast, it will cause the frequency band to be too wide and
carry excess interference information in the mode. Therefore, the user experience needs to
be relied on to manually adjust the parameters α and K, which makes it difficult to achieve
the optimal decomposition effect.

3.1.2. Particle Swarm Optimization for VMD

Particle swarm optimization (PSO) is an evolutionary computation technology. It
adjusts the fitness of particles to the environment by iteratively comparing the optimal state
of individual particles and the global optimal state in the fitness function area and then
finds the optimal solution in the area. When tuning the parameters of VMD, selecting the
appropriate fitness function is the key to the smooth operation of PSO. Due to the influence
of the parameters α and K, each IMF decomposed using VMD often exhibits varying degrees
of artifacts. The strengths of these artifacts can be evaluated by comparing the number of
interrelationships between each IMF and the original signal and then quantifying them by
calculating the overall mean of these correlation coefficients. Taking the correlation number
Ri between the i-th IMF and the original signal as an example, the formula is as follows:

Ri =

T
∑

t=1
(s(t)− s)(ci(t)− c)√

T
∑

t=1
(s(t)− s)2 T

∑
t=1

(ci(t)− c)2

(8)

s(t) is the preprocessed radar echo signal, ci(t) is the i-th IMF, and T represents the
sampling duration; the mean correlation number between each IMF and the original signal

can be expressed as R =
n
∑

i=1
Ri/n. The variance index between the correlation numbers is

introduced to eliminate fluctuations in the mean value of the correlation numbers. Finally,
a scheme that uses the maximum ratio of the mean value of the correlation numbers
and its variance as the fitness function was formulated to optimize the VMD parameters.
Maximum cross-correlation (MCC) is introduced as the optimality function in PSO and is
expressed as follows:

F =
R

n
∑

i=1

(
Ri − R

)2
/

n− 1
(9)

n represents the number of decomposed modes and R represents the mean of the
cross-correlation coefficient. After the PSO parameter initialization, the parameters [α,K] of
the VMD were iteratively optimized within the ranges [200, 2000] and [2, 8], respectively.
Figure 5 shows the results of the fitness function for different parameter combinations. The
red area in the figure indicates that when α = 1053 and K = 4, it will minimize the artifact
components contained in the decomposed IMF, which means that they have the strongest
correlation with the original signal.
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3.1.3. Life Signal Reconstruction Based on Permutation Entropy

Owing to the sensitivity of VMD to noise, the partial IMF center frequency ωk falls
within the main noise frequency band. Permutation entropy (PE) is a method used to detect
the randomness of a time series and quantitatively evaluate the random noise contained
in signal sequences. Therefore, the degree of noise in each mode can be quantitatively
evaluated using the permutation entropy. High-noise modes were automatically identified
and removed according to the set entropy threshold. A time series X(i) of length N was
phase-space-reconstructed and the reconstruction matrix Y was obtained:

Y =


x(1) x(1 + τ) · · · x(1 + (m− 1)τ)
x(2) x(2 + τ) · · · x(2 + (m− 1)τ)

x(j) x(j + τ) · · ·
...

x(j + (m− 1)τ)

x(K) x(K + τ) · · · x(K + (m− 1)τ)

 (10)

m represents the embedding dimension, τ represents delay time, and K = N −
(m− 1)τ. Each row in the matrix can be regarded as a reconstruction component, and Y has
a total of K reconstruction components. The j-th reconstruction component (x(j), x(j + τ),
· · · , x(j + (m− 1)τ)) is reconstructed in the X(i) reconstruction matrix in ascending order
based on the numerical value, and j1, j2, · · · , jm represents the column index where each
element in the reconstruction component is located:

x[i + (j1 − 1)τ] · · · x[i + (j2 − 1)τ] ≤ · · · ≤ x[i + (jm − 1)τ] (11)

Therefore, the column indexes form a set of symbol sequences:

S(l) = (j1, j2, · · · , jm) (12)

l = 1, 2, · · · , k, k ≤ m!, and there are a total of m! types of symbol sequences of m-
dimensional phase space mapping. Subsequently, the probability of occurrence of each
symbol sequence P1, P2, · · · , Pk is calculated by dividing the number of occurrences of the
symbol sequence by m!. Then, the entropy of k different symbol sequences in the time
series X(i) can be defined as

Hpe = −
k

∑
j=1

Pj ln
(

Pj
)

(13)
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Using Hpe = Hpe/ln(m!) normalizes the entropy value to the interval of [0, 1]. The
value of the entropy represents the randomness of the time series X(i). Choosing an
appropriate permutation entropy threshold is the key to automatically removing noise,
and is the foundation to ensure accurate life signals reconstruction. After several testing
experiments, it was found that the permutation entropy threshold of 0.78~0.8 was more
suitable according to the linear relationship between the randomness of the time series and
its corresponding Hthreshold value. In this situation, IMFs above Hthreshold can be removed.
Finally, reconstructing the target life signal based on the preserved IMF effectively preserves
the useful human life signals while removing noise. The specific implementation steps are
as follows:

(1) The maximum cross-correlation between each IMF and the radar echo signal after
VMD processing was used as the fitness function of the PSO to optimize the VMD
parameters.

(2) The radar echo signal was processed based on the parameter-optimized VMD and
decomposed into a series of IMFs;

(3) The entropy value of each IMF arrangement was calculated separately;
(4) The entropy values of each IMF were compared and filtered with Hthreshold = 0.8,

high-noise IMFs larger than Hthreshold were directly removed, and the remaining IMFs
were reconstructed to restore the radar life signal of the human target. A flowchart of
this method is shown in Figure 6.
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3.2. Identification of the Compression State of the Injured
3.2.1. Building the Radar Life Signal Time-Frequency Dataset

Performing time-frequency domain analysis on the reconstructed human radar life
signal can obtain the corresponding time-frequency images. These images can intuitively re-
flect the variation in the frequency components with time. Compared with one-dimensional
radar life signals, such as breathing and a heartbeat, the time-frequency images are more
suitable as inputs for network models to achieve identification of the compression state. A
continuous wavelet transform uses finite length and convertible wavelet basis functions to
enhance its local generalization ability. The commonly used wavelet bases include Haar
and Morlet wavelets, Symlet, and the Db wavelet series. In order to select wavelet basis
functions suitable for analyzing radar life signals, the four wavelet bases mentioned above
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were used individually to process the reconstructed radar life signals. The results based on
different wavelet bases are shown in Figure 7.
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It can be seen that the Morlet wavelet had a clearer time-frequency resolution and
was selected for the time-frequency analysis of the reconstructed radar life signals. The
processed time-frequency images were used as the dataset for the subsequent network
training and recognition.

3.2.2. Establishment of the Compression State Identifying Network

As a hierarchical neural network, a convolutional neural network (CNN) essentially
imitates the working principles of the human visual system by constructing convolutional
kernels of different sizes to extract unique local features from input data, thereby achieving
accurate data recognition. A large number of experiments [27] showed that when perform-
ing complex classification tasks, the deeper the network structure can learn and capture
different features from the data, the stronger the ability to express data features. However,
in practical applications, increasing the depth of a neural network increases the number of
weight parameters to be updated, making the network increasingly difficult to train.

To prevent gradient dispersion and network degradation caused by deepening layers
while fully extracting feature information, this study proposed an improved CNN scheme
based on multiscale feature extraction and a residual structure by referring to the inception
structure in the GoogLeNet neural framework and combining it with residual networks.
First, in a multiscale feature-extraction structure, parallel stacking is used to increase the
network width, and the feature-extraction ability is improved by utilizing convolutional
kernels of different sizes. The feature dimensions of the different branches were then
concatenated to obtain a set of multichannel feature maps. For feature maps with a large
number of channels, a channel attention mechanism is used to help the network learn
more important feature channels. This not only improves the expression and classification
performance of the network but also reduces the impact of redundant information and
improves the robustness and generalization ability of the network. Finally, a 1 × 1-pixel
convolutional kernel in the inception structure is used to downscale the input feature
map, achieving the goal of reducing the amount of parameter computation, and thus,
accelerating the network model training.
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Additionally, in a traditional CNN, the convolutional modules in the upper layer
and the convolutional modules in the lower layer are usually end-to-end, but such a
network structure often prevents the latter from utilizing the initial input information of
the previous convolutional module, thereby limiting the feature-learning ability of the
convolutional layer on the input data. Therefore, by introducing a residual structure with
the characteristic of “cross layer connection”, the network can synchronously transmit
the original features to the next layer during forward propagation, thereby avoiding
information loss or redundancy. Finally, the extracted features are converted into one-
dimensional data through the fully connected layer, and the classification results of the
human compression state are output through the cross-entropy loss function. The structure
of the multiscale feature learning network is shown in Figure 8.
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The detailed network parameters are shown in Table 1.

Table 1. Network parameters.

Network Module Hierarchy

Network Parameters

Number of
Input

Channels

Number of
Output

Channels
Kernel Size Step

Multiscale feature extraction
Convolution 3 16 (1 × 1) 1 × 1
Convolution 3 32 (3 × 3) (5 × 5) (1 × 1) 1 × 1
Convolution 3 16 (5 × 5) (3 × 3) (1 × 1) 1 × 1

Channel attention mechanism Pooling ~ ~ (3 × 3) 2 × 2

Inception-Resnet

Convolution 32 32 (1 × 1) 1 × 1
Convolution 32 32 (1 × 1) (3 × 3) 1 × 1
Convolution 32 32 (1 × 1) (5 × 5) 1 × 1

Pooling ~ ~ (3 × 3) (1 × 1) 2 × 2
Convolution 32 128 (3 × 3) 1 × 1
Convolution 128 256 (3 × 3) 1 × 1

Pooling ~ ~ (3 × 3) 2 × 2

Note: “~” indicates no parameters.

In order to recognize the compression state of the injured, it is necessary to preprocess
the raw echo radar data first, and then use the PSO-VMD algorithm based on permutation
entropy to denoise the preprocessed signal and reconstruct the radar human life signal.
Due to the fact that the human vital sign characteristic information is mainly contained in
the spectrum of the reconstructed radar life signal, the reconstructed human life signal is
conducted via time-frequency analysis. Then, the time-frequency maps with compression
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state information are sent into a network to complete the training process. Finally, the
trained network is applied to evaluate the type of compression state. Figure 9 shows the
flow chart of the proposed recognition method.
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4. Experiment Results
4.1. Experiment on Reconstructing Human Life Signals
4.1.1. Indoor Free Space Detection Experiment

An indoor free-space detection experiment was conducted to verify the performance
of the proposed PSO-VMD algorithm based on permutation entropy. The subjects were
detected without any obstacles by using UWB bio-radar. Simultaneously, two contact
detection devices—an RM6240E pressure breathing detector and an IX-B3G portable
electrocardiograph—were used for synchronous data collection as a reference. The pro-
posed algorithm was applied to extract radar respiratory and cardiac signals from the
radar echo signals. Finally, the radar respiratory and cardiac signals were compared with
contact reference signals. Figure 10 shows the experimental setup under indoor free-space
detection conditions.
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Figure 11. Schematic diagram of comparison between radar life and reference signals: (a) time do-
main comparison of respiratory signals; (b) radar respiratory signal spectrum; (c) time domain com-
parison of cardiac signals; (d) radar heartbeat signal spectrum. 

The signals collected by the contact and contactless devices exhibited strong con-
sistency. As shown in Figure 11b, d, after a fast Fourier transform, the main frequencies of 
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Figure 11 shows the results of the contact and non-contact data from the same subject
in an indoor free-space detection scenario. The black solid line represents the contact
reference signal, and the red dashed line represents the processed radar signals.
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Figure 11. Schematic diagram of comparison between radar life and reference signals: (a) time
domain comparison of respiratory signals; (b) radar respiratory signal spectrum; (c) time domain
comparison of cardiac signals; (d) radar heartbeat signal spectrum.

The signals collected by the contact and contactless devices exhibited strong consis-
tency. As shown in Figure 11b,d, after a fast Fourier transform, the main frequencies of the
radar respiratory signal and radar heartbeat signal were 0.41 Hz and 1.2 Hz, respectively.

4.1.2. Outdoor Obstacle Barrier Scenario Detection Experiment

It should be noted that some damp building materials will cause significant losses
above 1 GHz. In this work, to mainly verify the compression states recognizing the
effectiveness of the proposed method, the optimal test scenario with an obstacle barrier of
multi-layer dry gypsum board was set. Figure 12 illustrates the experimental setup under
outdoor-obstructed detection conditions.
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In this experiment, five signals were collected from each participant, each lasting
30 s. Using the contact signal as a reference, the average respiratory rate and heart rate
measurement error rates of each subject for the five signals are shown in Figure 13.
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Figure 13 shows that the average respiratory rate measurement error rate of all subjects
was 2.53%, and the average heart rate measurement error rate was 5.24%, which met
the accuracy requirements for extracting injury target life signals in post-disaster rescue
scenarios. The effectiveness of the proposed PSO-VMD based on permutation entropy
was demonstrated.

4.2. Compression State Identification Experiment

To replicate a scene of human bodies trapped under the ruins of squeezing, radar
signal collection experiments were conducted on 10 adult subjects (six males and four
females) aged between 21 and 45 years using a self-developed squeezing platform. All
ten volunteers signed an informed consent form. A self-developed squeezing platform
was designed to simulate heavy objects pressing on a human torso after a disaster. To
better replicate a real post-disaster scene and ensure the subjects’ safety simultaneously, the
maximum weight that the subjects could accept was used as the upper weight limit of the
heavy objects applied in the experiment, and two different states, namely, “compression”
and “no compression”, were set. Considering the different trapped postures of buried
personnel after actual disasters, two different postures, namely, “supine” and “prone”, were
also set in this experiment. The four types of states for subjects with different compression
levels and postures are listed in Table 2.

Table 2. Four typical compression states.

Compression No Compression

Supine Under compression in a supine state Not compressed in a supine state
Prone Under compression in a prone position Not compressed in a prone position

In the “no compression” state, four layers of 15 mm thick gypsum board were used
as the obstacle between the subject and the radar, and the obstacle did not contact the
subject’s body. The “compression” state refers to the situation where bricks were placed
on a wooden board to build a compressive device with a total weight of 10 kg. The device
was pressed on the subject’s body with its weight regardless of whether the subject was
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in a supine or prone position. This pressure was evenly distributed throughout the torso
of the subject. The intensity of the pressure was determined by the contact area between
the compressive device and the human body. Therefore, the pressure and intensity of
pressure were independent of the subject’s weight, gender, and posture. To expand the total
number of signals, four random detection distances between the UWB bio-radar and the
subject within the range of 1.5 to 2 m were set to collect signals for each subject (40 signals
for 10 people). Four sets of signals with different compression levels and postures were
collected at each distance with a single collection time of 180 s. A control group under the
detection scene with no target was also set up to simulate an actual post-disaster rescue.
Figure 14 shows the four types of experimental scenarios with subjects under different
compression states.
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Figure 14. Four types of compression state identification experimental scenarios.

To avoid overfitting owing to the small sample size of the training set, a data augmen-
tation method was adopted to expand the training set sample size. By adding random noise
to the time-frequency images, the dataset was expanded three times to the original size,
and the training and test sets were configured in a ratio of 8:2. This not only expanded the
number of training sets but also enabled the neural network to adaptively learn to improve
its anti-noise ability during the training process, which further enhanced the anti-noise
performance and classification generalization ability. Table 3 provides a detailed list of the
dataset compositions.

Table 3. Dataset composition.

Squeeze State Type Number of Training Set
Samples

Number of Test Set
Samples

Supine + no compression 720 180
Supine + compression 720 180

Prone + no compression 720 180
Prone + compression 720 180

Targetless control group 240 60
total 3120 780

This study used Tensorflow 2.0 to build a classification network for compression state
recognition and trained it based on the above dataset. The loss and accuracy curves in the
training phase are shown in Figure 15, while Figure 16 shows the confusion matrix results
of the compression state recognition for the test set.
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The overall classification accuracy of the network and the recall and precision of
each category were calculated and are listed in Table 4. The overall classification accuracy
and macro-F1 values of the model were 0.9278 and 0.9422, respectively. By observing the
results of the confusion matrix, it was found that the network accurately identified the
presence of a target in the detection area and distinguished the trapped postures. However,
the recall rate for the category of “Under compression in supine state” was only 0.726.
According to the confusion matrix, 27% of samples were incorrectly identified as being
under compression in the prone position. The reason for this phenomenon may be that
as the human body is compressed for a longer time, the breathing mode of the subject
in the supine compressed state may gradually converge to the prone posture owing to
muscle paralysis and respiratory distress. Although the recall rate of the category of “under
compression in supine state” was relatively low, the network did not classify the subject
as the wrong type of pressure. Therefore, the network met the correct recognition rate
requirements for the status of squeezed subjects during a post-disaster rescue.
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Table 4. Macro-F1 score, accuracy, recall, and precision.

Control Group
(No-Target)

Supine Prone

No Compression Compression No Compression Compression

Recall 1.000 1.000 0.726 0.977 0.988
Precision 1.000 0.966 1.000 0.994 0.773
Accuracy 0.9278
Macro-F1 0.9422

To further verify the superiority of this method, the network was compared with
a support vector machine (SVM) based on respiratory features and a 1D-CNN network
based on radar life signals. The SVM based on respiratory features was shown to exhibit
good classification performance in the field of human and animal identification using bio-
radar [15]. To successfully apply an SVM to compression state recognition, it is necessary
to extract and analyze features from radar life signals. In this study, a total of 10 respiratory
features containing the average respiratory amplitude, linear peak deviation of respiration,
average velocity of expiration and inspiration, and average interval time between expiration
and inspiration were selected for the dataset production and the training of the SVM. The
1D-CNN has a network structure similar to that of a traditional CNN. Except for the input
data being a one-dimensional time series, the main difference is that the one-dimensional
array in the hidden layer replaces the two-dimensional matrix to handle kernel functions
and feature maps. This network had four convolutional layers, four pooling layers, and
a fully connected flattening layer. The processed radar life signal was transformed into a
series of feature vectors through the first convolutional module, and then downsampling
was completed through the pooling layer. The above steps were repeated until the end, and
the output feature map of the previous layer was sent to the fully connected flattening layer
and transmitted to a softmax function to complete the five classifications of the compression
state. In the comparison experiment, the original dataset was divided randomly into three
parts: A, B, and C. During training, one of the three datasets was used as the training
dataset and the other two parts were selected with one of them as the test dataset. These
three methods were used to identify the state of the compression victims. The experimental
results are shown in Figure 17. A-B and A-C in the figure represent the use of dataset A as
the training sample and datasets B and C as test samples, respectively.
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From Figure 17, it can be observed that the accuracy of the proposed method was
higher than that of the other two methods. The average recognition accuracy of the CNN
based on multiscale feature extraction and residual structure was 92.59%, whereas the
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average recognition accuracies of the SVM based on respiratory features and 1D-CNN
based on radar life signals were 88.48% and 86.58%, respectively. In summary, the proposed
method could fully extract the vital sign information contained in the radar life signal while
avoiding degradation caused by the deepening of the network layers. Compared with the
SVM and 1D-CNN, the recognition accuracies of the proposed method improved by 4.19%
and 6.01%, respectively.

Owing to the correlation between the probability of a subject suffering from crush
syndrome and the duration of compression, the longer the duration of compression, the
more severe the crush injury and the higher the incidence of crush syndrome. Therefore,
wounded patients who may suffer from crush syndrome should be identified as soon as
possible and the crushing of heavy objects should be relieved as soon as possible. If the
injured limbs are exposed, a tourniquet should be used at the proximal end of the injured
limb, and an alkaline liquid should be injected to correct acidosis and hyperkalemia and
prevent the occurrence of acute renal failure.

5. Discussion

This study focused on the various challenges faced by bio-radar in the field of post-
disaster life detection and proposed a full-process solution based on UWB bio-radar for post-
disaster casualty life signal detection and compression state recognition. In this scheme,
a parameter-optimized VMD was proposed to process the radar echo signal, and the
permutation entropy algorithm was applied to achieve a fast and accurate reconstruction
of the subject life signal. Subsequently, an improved CNN based on multiscale feature
extraction and a residual structure was proposed to achieve automatic recognition of the
compression state. This network could fully learn the input data feature information
while preventing gradient dispersion and network degradation caused by deepening the
layers. According to the experimental results, the accuracy of this method in identifying
the compression state of the subject improved by 4.19% and 6.01% compared with the
SVM and 1D-CNN, respectively. This study is of great significance for extracting the vital
signs of squeezed subjects and guiding rescue workers in performing correct and scientific
rescues in practical applications.

However, this study has certain limitations. On the one hand, the trapped postures of
the simulated wounded were only summarized as supine and prone in this work, without
fully considering the various trapped postures that a rescue worker may face after a disaster
occurs. To protect the subjects outdoors during the obstacle experiment, we controlled the
weight of the cover plate acting on the human torso to only 10 kg. In actual disasters, the
weight of the crushed ruins may be much greater than this value. In addition, the rubble
that covers the injured in a real-life earthquake is randomly orientated and highly scattered.
Therefore, in the future, we will construct more realistic post-disaster rescue scenarios and
apply different modulation schemes of UWB radar to research more complex and heavier
compression state identification.

6. Conclusions

Owing to its ability to detect vital signs caused by the human heart and lung activity
at a certain distance and through certain obstacles, UWB bio-radar is often used in post-
disaster searches and rescues to detect the life signals of subjects in buried situations.
However, noise from the detection environment and spontaneous sway interference of the
trapped human body cause the detected radar life signals to exhibit a low signal-to-noise
ratio and strong randomness, making it difficult to obtain more effective information and
further evaluate the compression state. Focusing on the above problems, we proposed
a method that combines PSO-VMD based on permutation entropy and an improved
CNN based on multiscale feature extraction and residual structure. The effectiveness
and progressiveness of this method were verified with experimental results. This study
provides a foundation for further in-depth analyses of the life status of trapped individuals.
This novel method is expected to be applied in post-disaster rescues, battlefield searches,
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and rescue tasks and can provide guidance for the optimization of rescue strategies and
rational allocation of medical resources, promote the safety of trapped personnel, and
reduce the casualty rate in disaster relief areas.
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