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Abstract: In the event of disease or injury, restoration of the native organization of cells and extracel-
lular matrix is crucial for regaining tissue functionality. In the cornea, a highly organized collagenous
tissue, keratocytes can align along the anisotropy of the physical microenvironment, providing a
blueprint for guiding the organization of the collagenous matrix. Inspired by this physiological
process, anisotropic contact guidance cues have been employed to steer the alignment of keratocytes
as a first step to engineer in vitro cornea-like tissues. Despite promising results, two major hurdles
must still be overcome to advance the field. First, there is an enormous design space to be explored in
optimizing cellular contact guidance in three dimensions. Second, the role of contact guidance cues
in directing the long-term deposition and organization of extracellular matrix proteins remains un-
known. To address these challenges, here we combined two microengineering strategies—UV-based
protein patterning (2D) and two-photon polymerization of topographies (2.5D)—to create a library
of anisotropic contact guidance cues with systematically varying height (H, 0 µm ≤ H ≤ 20 µm)
and width (W, 5 µm ≤ W ≤ 100 µm). With this unique approach, we found that, in the short term
(24 h), the orientation and morphology of primary human fibroblastic keratocytes were critically
determined not only by the pattern width, but also by the height of the contact guidance cues. Upon
extended 7-day cultures, keratocytes were shown to produce a dense, fibrous collagen network
along the direction of the contact guidance cues. Moreover, increasing the heights also increased
the aligned fraction of deposited collagen and the contact guidance response of cells, all whilst the
cells maintained the fibroblastic keratocyte phenotype. Our study thus reveals the importance of
dimensionality of the physical microenvironment in steering both cellular organization and the
formation of aligned, collagenous tissues.

Keywords: contact guidance response; collagen alignment; UV-based protein patterning; two-photon
polymerization of topographies; cornea; corneal fibroblasts

1. Introduction

Corneal blindness is the most common visual impairment worldwide, and is mostly
treated via the transplantation of corneal donor tissue. With only one cornea available for
every seventy needed, there is a severe global shortage of donor tissue. As a consequence,
more than 12 million patients remain untreated, indicating the urgent need for therapeutic
alternatives for corneal regeneration [1]. As the outermost part of the eye, the cornea is
responsible for the focusing of all incoming light, and is thus a crucial tissue that enables
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proper vision. This function is enabled by the precise organization of cornea-specific cells
and extracellular matrix (ECM). This is especially true for the corneal stroma, the thickest
and central layer of the cornea, which consists of densely packed, anisotropic collagen
bundles arranged in orthogonally oriented lamellae with corneal keratocytes dispersed
throughout. This orthogonal organization not only allows light to properly pass through
the cornea, but also provides a specific biomechanical and topographical environment to the
resident cells, corneal keratocytes [2]. The corneal ECM predominantly consists of fibrous
collagens type I and V, which are tightly packed with well-defined and highly conserved
inter-fibril spacing. Corneal keratocytes are sparsely populated throughout the collagen
lamellae, and are responsible for the production and maintenance of this highly organized
stromal tissue [3]. In the healthy adult cornea, keratocytes remain quiescent and typically
adopt a dendritic shape [4]. However, upon disease or injury, keratocytes can quickly lose
their quiescent phenotype and dendritic shape to become activated (myo)fibroblast-like
cells that no longer maintain the precise organization of the tissue. Instead, these cells
produce aberrant ECM components, leading to a disorganized, opaque ECM that eventually
impairs vision [5]. In order to repair the dysfunctional stromal ECM and restore vision,
controlled regeneration by the precisely organized keratocytes is necessary [5,6].

Multiple bioengineering approaches have been used to mimic the organization of cells
and ECM in the stromal tissue, and thereby restore the function of the stromal ECM [7].
A widely used approach is to harness the ability of adherent cells to align along their
direct environment, a so-called “contact guidance” response. To this end, contact guidance
has been extensively recapitulated and studied using a variety of laboratory setups, for
example, using highly defined in vitro substrates presenting grooves (nanoscale [8–12]
and microscale [10,11,13–22]), lattices [13], micropits [13,22], anisotropic liquid crystalline
networks [23], and electrospun fibers [24–29]. Depending on the precise dimensions of the
(anisotropic) nano- and micro-scale cues, activated keratocytes can spread out and align
along the direction of the environmental cue, after which the newly formed collagen is
deposited along the same direction [24,30].

Despite the number of studies demonstrating the power of contact guidance cues for
steering cell behavior, researchers often focus on a single or limited number of pattern
dimension(s) that to some extent resembles the organization of the native environments.
Furthermore, most studies mainly focus on the width of contact guidance cues. Excitingly,
in recent years, more attention has been paid to the role of topography height, which is
increasingly appreciated as an important parameter responsible for distinct cell behav-
iors [31–33]. Indeed, from previous in vitro research, it is known that cue dimensionality
(e.g., topography width and height) can have a major influence on cell behavior [34,35].
Since most existing in vitro contact guidance cues are oversimplified compared to the
native cellular environment, it is therefore crucial to investigate the relevance of cue di-
mensionality on keratocyte alignment and collagen deposition. To our knowledge, there
have not been systematic investigations into the impact of the dimensionality of contact
guidance cues on the morphological organization of corneal keratocytes and the produc-
tion of aligned ECM components at the mesoscale, which is a vital step for corneal tissue
engineering. Here, we undertook an in-depth characterization of the effects of the width
and height of contact guidance cues on fibroblastic primary corneal keratocyte behavior,
also referred to as activated keratocytes, and collagen alignment. Guided by the organiza-
tion of decellularized human corneal stroma, we generated a library of surface patterns.
We systematically simplified the native 3D physical cues in a stepwise approach to 2.5D
protein-coated substrate topographies [36,37] and 2D protein patterns [38] to elucidate the
role of cue dimensionality on cell behavior [39] and collagen alignment. We examined the
cellular contact guidance response and morphology after 1 day, and the orientation of both
cells and collagens after 14 days. This systematic approach to understand the impact of
contact guidance cues allows us to pinpoint the dimensional needs of activated, collagen-
producing keratocytes, and aids tissue engineers in the development of more representative
microenvironments for the in vitro culture of primary (fibroblastic) keratocytes.



Bioengineering 2024, 11, 402 3 of 18

2. Materials and Methods
2.1. Scanning Electron Microscopy Imaging of Corneal Stroma

All human corneal tissues used in this study were obtained from leftover human
corneoscleral transplant material from Descemet Membrane Endothelial Keratoplasty
surgery. Tissues were obtained from the Cornea Department of the ETB-BISLIFE Multi-
Tissue Center (Beverwijk, The Netherlands). Consent from the next-of-kin of all deceased
donors was obtained, and the research was performed in compliance with the tenets of
the Declaration of Helsinki. The cross-section of the tissue was prepared as described
previously [40]. Briefly, the cornea was decellularized in 10% sodium hydroxide solution
(Merck, Darmstadt, Germany) at room temperature for 6 days followed by dehydration
in a graded series of ethanol (70–90–100%, Merck, Darmstadt, Germany). After fixation
with 1% osmium tetroxide (Electron Microscopy Sciences, Hatfield, PA, USA), the specimen
was cut on the Y-axis with a single-edge razor blade (Tmall). After coating with 10 nm
gold in a sputter coater (108auto, Cressington, Watford, United Kingdom), the corneal
Y-plane was imaged using Scios DualBeam scanning electron microscopy (SEM, 5 kV,
1000× magnification, Thermo Fisher Scientific, Waltham, MA, USA).

2.2. Design of Contact Guidance Patterns

To allow us to mimic the dimensionalities of native corneal stroma, the architecture of
human cornea was examined. The dimensions of the voids between orthogonally oriented
lamellae (Figure S1) were measured on the SEM images using Fiji (Version 1.52p, NIH) [41].
Subsequently, anisotropic contact guidance patterns were designed with gradually increas-
ing widths (W) and accompanying spacing of 5, 10, 20, 50, and 100 µm (Figure 1A). The
height (H) of the 2.5D cues varied from 20 µm, to 10, 5, and 2.5 µm. The 2D contact guidance
cues were designed similarly, with similar cue widths and no height. The nomenclature
used for all contact guidance cues is described in Table 1.

Table 1. Dimensions of the various contact guidance cues and accompanying nomenclature.

Width (µm)

Height (µm)
2D 2.5D

0 2.5 5 10 20

0 Control
5 H0W5 H2.5W5 H5W5 H10W5 H20W5
10 H0W10 H2.5W10 H5W10 H10W10 H20W10
20 H0W20 H2.5W20 H5W20 H10W20 H20W20
50 H0W50 H2.5W50 H5W50 H10W50 H20W50

100 H0W100 H2.5W100 H5W100 H10W100 H20W100

2.3. 2D Contact Guidance Cues

Two-dimensional contact guidance cues were realized as adhesive protein line patterns
by means of a UV-photopatterning approach. Patterning of glass substrates was then
performed using the light-induced molecular adsorption of proteins (LIMAP) method
using PRIMO equipped with Leonardo software (version 4.13, Alvéole, Paris, France) [38].
First, glass slides (Menzel-Gläser, 13 and 32 mm Ø, #1) were treated with O2-plasma
(30 s at 20 W, K1050X, Quorum, Laughton, UK) to activate the substrate. Immediately
after plasma treatment, poly-L-lysine (PLL, 0.01%, P4707, Sigma-Aldrich, Burlington, MA,
USA) was incubated for 30 min at room temperature, followed by 3× washing with N-2-
hydroxyethylpiperazine-N-2-ethane sulfonic acid (0.1 M, HEPES, 8.0 < pH < 8.5, 15630080,
Gibco, Waltham, MA, USA) and incubation with mPEG-succinimidyl valerate (mPEG-SVA,
50 µg/mL in 0.1 M HEPES (8.0 < pH < 8.5), MW 5000 Da, Laysan Bio, Inc., Arab, AL, USA)
for 60 min at room temperature. After incubation with mPEG-SVA, samples were washed
3× using PBS (P4417, Sigma) and transferred to the PRIMO setup for UV-photopatterning.
Here, photoinitiator (4-benzoylbenzyl-trimethylammonium chloride (PLPP), Alvéole, Paris,
France) was pipetted on the passivated glass slide, after which the digital pattern was
projected on top of the glass slide using UV light with a dose of 1000 mJ/mm2. After
patterning, substrates were transported to sterile culture cabinets and washed with ethanol
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(70% v/v, 0005250210BS, Biosolve, Dieuze, France) and 5× with sterile PBS before being
incubated with fluorescently labeled gelatin (fluorescein-gelatin, 0.01%, G13187, Invitrogen,
Waltham, MA, USA) for 15 min at 37 ◦C. Finally, the substrates were washed extensively
with sterile PBS to remove excess fluorescein-gelatin.
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Figure 1. (A) The simplification of 3D corneal stromal architecture into line patterns, followed by the
fabrication of cell culture substrates with 2.5D and 2D contact guidance cues using 2PP and LIMAP,
respectively. All 2.5D cues contained pattern widths of 5, 10, 20, 50, and 100 µm combined on a
single substrate. An example of a false colored scanning electron micrograph shows the top-view of a
substrate with 20 µm tall ridges and a width of 5 µm (blue), 10 µm (orange), 20 µm (pink), 50 µm
(green), and 100 µm (purple). The height of the topographies was systematically decreased from
20 µm to 10, 5, and 2.5 µm on separate cell culture substrates. For 2D contact guidance cues, the height
of the patterns was further reduced to 0 µm, whereas the width was identical to that of 2.5D contact
guidance cues. (B) Characterization of contact guidance cues using a laser scanning profilometer
shows dimensional accuracy. The 3D profile of patterned cell culture substrates H20, H10, H5, H2.5,
and H0 with pattern heights of 20, 10, 5, 2.5, and 0 µm, respectively. (C) Cross-sectional height profile
of patterned substrates, with H20 (black), H10 (blue), H5 (red), H2.5 (green), and H0 (yellow).
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2.4. 2.5D Contact Guidance Cues

The 2.5D contact guidance cues were produced on indium tin oxide (ITO)-coated soda
lime glass slides (25 mm × 25 mm × 0.7 mm, Nanoscribe GmbH & Co. KG, Eggenstein-
Leopoldshafen, Germany). Glass slides were first rinsed with acetone, distilled water,
and isopropanol (VWR, Netherlands), after which all substrates were blow-dried with
nitrogen and activated using oxygen plasma (2 min at 70 W, oxygen flow at 2 sccm, Diener
electronic Femto plasma etcher). Next, the substrates were placed in a glass petri dish
with a 150 µm droplet of 3-(trimethoxysilyl)propyl methacrylate (98%, Sigma-Aldrich,
Burlington, MA, USA) and put in a vacuum oven overnight (180 mbar, 110 ◦C, Vacutherm,
Thermo Fisher Scientific, Waltham, MA, USA). Functionalized ITO-coated glass slides were
stored at 4 ◦C until further use. Line and space patterns to fabricate 2.5D contact guidance
cues were designed using computer-aided design (CAD) software (SolidWorks 2015), and
exported to an STL format, which was further processed by Nanoscribe DeScribe software
to optimize the printing process for two-photon polymerization (2PP) lithography. The
contact guidance cues were printed in low-fluorescence IP-Visio resin (Nanoscribe GmbH
& Co. KG, Eggenstein-Leopoldshafen, Germany) using a 2PP lithography setup (Photonic
Professional GT, Nanoscribe GmbH & Co. KG, Eggenstein-Leopoldshafen, Germany) on
the functionalized ITO-coated glass slides. Once the printing process was finished, the
slides were developed in Mr-Dev 600 (Micro Resist Technology GmbH, Berlin, Germany)
for 20 min, followed by 30 s in methoxy-nonafluorobutane (Novec 7100, 3M) and gentle
blow-drying. Before cell culture, substrates were washed 3× with ethanol (70%, VWR) and
3× with PBS, and incubated with 200 µL fluorescein-gelatin (0.01%, G13187, Invitrogen)
for 15 min at 37 ◦C. After incubation, excess gelatin was aspirated and substrates were
extensively washed with PBS.

2.5. Characterization of 2D and 2.5D Contact Guidance Substrates

Height maps for all substrates were obtained using confocal laser scanning profilom-
etry (VK-X200, Keyence, Osaka, Japan). The profilometry data were processed using the
Keyence Multifile Analyzer software and plotted using MATLAB (version 2020a, The
Mathworks, Natick, MA, USA). The 2D contact guidance cues were characterized using
confocal microscopy (TCS SP8X confocal microscope, 10× 0.4 NA objective, Leica, Wet-
zlar, Germany). The 2.5D contact guidance cues were inspected using scanning electron
microscopy (SEM) (JSM-IT200 InTouchScope, Jeol, Tokyo, Japan) to qualitatively evaluate
the fabrication process. For SEM imaging, samples were sputter-coated with a 10 nm layer
of gold (108auto, Cressington, Watford, UK) and affixed to SEM chucks using double-sided
carbon tape.

2.6. Cell Isolation and Culture on Contact Guidance Substrates

Primary human keratocytes were isolated from donated human cornea (Euro Tissue
Bank, ETB-BISLIFE Multi-Tissue Center, Beverwijk, The Netherlands). Endothelial and
epithelial cells were removed from the tissue by means of scraping with a flat razor
blade. Any limbal and scleral tissues were removed by using an 8 mm biopsy punch
in the center of the cornea. Using a sterile blade, the remaining tissue was minced into
pieces of approximately 1 mm × 1 mm. The pieces were placed in a 15 cm petri dish
and incubated in a cell culture incubator (37 ◦C, 5% CO2) for 6–8 h in 7 mL of digestion
medium (Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12 Glutamax (DMEM
F12, Gibco, Waltham, MA, USA) supplemented with 5% fetal bovine serum (FBS, Sigma–
Aldrich, Burlington, MA, USA), 1 mM ascorbic acid (ASAP, Sigma–Aldrich, Burlington,
MA, USA), 10 IU/mL penicillin (Gibco, Waltham, MA, USA), 0.1 mg/mL streptomycin
(Gibco, Waltham, MA, USA), 1 mg/mL collagenase I (Thermo Fisher Scientific), and
0.1% bovine serum albumin (BSA, Sigma–Aldrich, Burlington, MA, USA)), until 90% of
the tissue was digested. Digestion was carried out up to 12 h, since digestion of more
than 16 h is detrimental for cells [42]. When the tissue was easily malleable with pipette
tips and minimal force, digestion was considered to be 90%. Here, cells were present in
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the media, whereas ECM particulates remained present. After incubation, large pieces
of undissociated material were removed by first using a 100 µm cell strainer, followed
by a 40 µm cell strainer. The filtrate was diluted 3× with PBS and centrifuged (350 g,
7 min) to separate all cells. The supernatant was removed, and the pellet was washed in
3 mL PBS, followed by an additional centrifugation step (350 g, 7 min). Collected cells
were counted and seeded (10,000 cells/cm2) in expansion medium (Dulbecco’s Modified
Eagle Medium/Nutrient Mixture F-12 Glutamax (DMEM F12, Gibco, Waltham, MA, USA))
supplemented with 5% fetal bovine serum (FBS, Sigma Aldrich), 1 mM ascorbic acid (ASAP,
Sigma–Aldrich, Burlington, MA, USA), 10 IU/mL penicillin (Gibco, Waltham, MA, USA),
and 0.1 mg/mL streptomycin (Gibco, Waltham, MA, USA)). Upon seeding on substrates,
250 µL of cell suspension (40,000 cells/mL) was incubated on control (fluorescein-gelatin-
coated glass, 0.01%, G13187, Invitrogen, Waltham, MA, USA), 2.5D, and 2D substrates for
1 h at 37 ◦C and 5% CO2. After 1 h, all samples were gently rinsed with medium to remove
any unattached cells, after which an excess of medium was added. Since the same medium
composition (including 5% FBS) was used throughout the entire study, keratocytes were
assumed to be ECM-producing, fibroblast-like cells. Samples were cultured for 1 day and
7 days with medium changes every 3 days. Keratocytes from multiple donors were used
up to passage 4. Live-cell imaging was performed using a CytoSMART Lux3 BR (Axion
BioSystems B.V., Eindhoven, The Netherlands).

2.7. Staining and Imaging of Keratocytes and Extracellular Matrix Proteins

All fibroblastic keratocytes on the cell culture substrates were fixed for 15 min at room
temperature using 3.7% paraformaldehyde (formalin 37%, 104033.1000, Merck, Darmstadt,
Germany). After washing with PBS, samples from day 1 were stained for nuclei using
4′,6-diamidino-2-phenylindole dihydrochloride (DAPI, D9542, Sigma-Aldrich, Burlington,
MA, USA), F-actin using Phalloidin-Atto647 (65906, Sigma-Aldrich, Burlington, MA, USA),
and vinculin (1st: 1:600 mouse anti-vinculin IgG1 antibody, Sigma, V9131, 2nd: 1:300
goat anti-mouse IgG1-Alexa555, Molecular Probes, A21127). Seven-day cultures were
stained for nuclei (DAPI), F-actin (Phalloidin-Atto647), and collagen (CNA35-mCherry [43],
manufactured in-house). A TCS SP8X confocal microscope with 10× 0.4 NA and 40×
0.95 NA objectives (Leica, Wetzlar, Germany), and a Dmi8 epi-fluorescent microscope
with 10× 0.4 NA objective (Leica, Wetzlar, Germany) were used to obtain Z-stacks (5 µm
Z-spacing) of all samples.

2.8. Quantification of Cell Morphological Parameters

Initial analysis of microscopy data was performed using Fiji to create maximum-
intensity projections of acquired Z-stacks. Subsequently, CellProfiler (4.2.1, Broad Insti-
tute, Inc., Cambridge, MA, USA) [44] was used to analyze morphological parameters of
primary keratocytes on day 1 samples. To this end, the projected cell and nuclear areas
were determined by the number of pixels, from each object on maximum-intensity pro-
jections, and were converted into an area (µm2). The minor and major axis length was
determined as the minor and major axis of an ellipse that contains the object. Eccentricity
as a measure for the roundness of objects was calculated as the ratio between the major and
minor axis of that same ellipse, with 0 representing a perfect circle and 1 a perfectly straight
line. The organization of both cells and collagen on 7-day cultures was analyzed using
an in-house-developed MATLAB fiber analysis tool, FOAtool, to determine F-actin and
collagen fiber directionality by means of Frangi vesselness [45]. Herein, F-actin (phalloidin)
signals were analyzed as a representative measure for cell orientation. The orientation
of cells and collagen was quantified with respect to the direction of the patterns, with 0◦

representing perfect alignment. Cell morphology parameters were not characterized at
later time points, as the cells formed a dense layer where individual cells could no longer
be identified.
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2.9. Verification of Keratocyte Phenotype Using Real-Time Polymerase Chain Reaction

Two-step reverse transcription–quantitative polymerase chain reactions (RT-qPCR)
were used to assay for markers of interest expressed by keratocytes cultured on selected
substrates (H0W10 and H20W10) for 7 days. Q-PCR results were analyzed and standard
deviation was propagated using the 2−∆∆Ct method [46]. Cells and scaffolds were homoge-
nized using Trizol (Life Technologies, Waltham, MA, USA). RNA was isolated following
chloroform-mediated phase separation and purified using a RNeasy kit (Qiagen, Hilden,
Germany) as per manufacturer’s instructions. cDNA was synthesized using an iScript™
cDNA Synthesis Kit (Biorad, Hercules, CA, USA), according to manufacturer’s instruc-
tions. Gene expression levels were normalized using expression of the housekeeping gene
Peptidylprolyl isomerase A (PPIA) and presented as a relative expression compared to
keratocytes cultured on flat glass substrates. Aldehyde dehydrogenase 3 Family member
A1 (ALDH3A1), Lumican, Keratocan, Alpha smooth muscle actin (α-SMA), Cluster of
differentiation 90 molecule (CD90), vimentin, and Cluster of differentiation 34 molecule
(CD34) were investigated. Exons spanning forward and reverse primers (Sigma) were
designed using the free-to-access NCBI PrimerBLAST and are detailed in Table S6 [47].

2.10. Statistical Analysis

Relative frequency distributions (orientation) were calculated using Origin (version
2018, OriginLab, Northampton, MA, USA), and statistical differences between conditions
were determined using the Kolmogorov–Smirnov test in MATLAB. All other morphometric
data were first subjected to outlier removal (based on median, MATLAB), followed by a
normality test and the Wilcoxon rank-sum test for statistical analysis in MATLAB. Data
plots are visualized using Origin, and the heatmaps using Heatmapper [48]. All data were
collected from a minimum of three replicates per condition. All data presented are the
mean ± standard error of the mean, unless indicated otherwise. The 2−∆∆Ct values from
the RT-qPCR assay were subjected to a Shapiro–Wilk test for normality, followed by an
ANOVA or Kruskal–Wallis test with Dunn’s multiple comparison analysis in MATLAB.
p-values were as follows: * p ≤ 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

3. Results and Discussion
3.1. Fabrication of Contact Guidance Substrates

The extracellular environment can steer keratocytes into a behavior indicative of
the normal and healthy healing response, leading to the formation of aligned collagen
lamellae and eventually tissue regeneration and restoration of functionality. Within their
native environment, dendritically shaped keratocytes are organized in linear arrays aligned
with, and scattered between, collagen lamellae. In vivo, this complex 3D microniche both
supports and is maintained by keratocytes. To elucidate the natural contact guidance cues
provided by the 3D environment, we used the dimensions provided by SEM imaging of a
decellularized donor cornea. To map the dimensions of anisotropic 2.5D and 2D contact
guidance cues (Figure 1A), the dimensions of the voids between orthogonally oriented
lamellae in the decellularized cornea were measured, where keratocytes likely reside in the
healthy tissue (Figure S1), and it was found that the average lateral and vertical dimensions
of the voids are 25 ± 13 µm and 9 ± 2 µm, respectively. Next, line arrays were designed in
a format that simultaneously enables the assessment of various cue widths on cell behavior,
combining contact guidance cues of W = 5, 10, 20, 50, and 100 µm for all individual heights
(Figure 1A). Using 2PP and UV-photopatterning, highly reproducible cell culture substrates
containing arrays of contact guidance cues were produced. Cue dimensionality was verified
and proven accurate and consistent across all substrates (Figure 1B,C). To fairly compare
any following cell culture results between the 2.5D and 2D contact guidance cues, an
identical surface coating with gelatin-fluorescein was applied on all samples. Gelatin was
used as a collagen-mimicking surface coating on all samples to avoid uncontrolled contact
guidance responses that are normally induced by fibrillar collagens.
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3.2. Orientation of Fibroblastic Keratocytes Is Affected by 2.5D and 2D Contact Guidance Cues

We firstly investigated how the various cue dimensions influence the orientation of
activated keratocytes. Confocal microscopy and orientation analysis of single cells after 24 h
of cell culture revealed that fibroblastic keratocytes exhibit a strong orientation response in
the presence of 2.5D and 2D contact guidance cues (Figure 2 and Figure S2, Table S1). The
fractions of aligned cells (Figure 2A) on all contact guidance substrates were significantly
higher than on flat, control substrates (aligned fraction of 0.126 ± 0.003), consistent with pre-
vious studies showing the keratocyte response on patterned substrates [10,11,13–17,19–22].
Keratocytes on all 2.5D cues showed a stronger alignment (Figure 2C–F) compared to on
2D (Figure 2B), providing a first indication that topography height directly influences the
orientation of fibroblastic keratocytes. Moreover, cell alignment on 2D contact guidance
cues of various widths followed a different trend than on 2.5D cues. While the highest
alignment of activated keratocytes on 2D samples was observed on 20 µm wide patterns
(Figure 2B), alignment in 2.5D environments was highest on narrow (H5, H10, H20) to-
pographies (Figure 2C–F). Despite the minor (2.5 µm) height difference between H0W5 and
H2.5W5, the orientation of cells was increased almost four-fold (Figure 2B,C). This effect
was strongest on narrow cues, such as W5 and W10, compared to the wider cues, such as
W50 and W100. The relevance of topography height in activated keratocytes shown here
corroborates recent findings with other cell types [32].
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Figure 2. Fibroblastic keratocyte orientation is strongly influenced by the height of contact guidance
cues. (A) The cells aligned in a 20◦ range around 0◦, with 0◦ representing perfect alignment along
the surface patterns, or a perfect contact guidance response. The fraction of cells aligned on (B) 2D
cues lacking any height; 2.5D topographies with a height of (C) 2.5 µm, (D) 5 µm, (E) 10 µm, and
(F) 20 µm. For each sample, the data were visualized as condition mean ± standard error of the mean.
Complete (180◦ range) orientation distributions are given in Figure S2. Results from the statistical
analysis are given in Table S1.
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3.3. Cue Dimensionality Directly Influences Morphology and Focal Adhesions of
Fibroblastic Keratocytes

As shown in the previous section, in the presence of contact guidance cues, fibroblastic
keratocytes notably changed their adhesion morphology. To further investigate the effect
of cue dimensions on the morphological change, additional cell and nuclear morphometric
properties such as projected area, eccentricity, and major and minor axis lengths were ana-
lyzed (cell bodies: Figures 3 and S4; nuclei: Figures S3 and S5). Overall, heatmaps revealed
that cell and nuclei morphology follow the same trend on all substrates. Although both
topography height and width influenced cell morphology, the impact of topography height
was more pronounced compared to the cue “width” (cell bodies: Figures 3B,E and S4; nu-
clei: Figures S3 and S5). Another important observation was that the cell projected area
for the same width but different heights showed biphasic response, i.e., an increase in area
with the increase in topography height up to 5 µm followed by a decrease in area with
the further increase in topography height until 20 µm (Figure 3B). These data suggest that
fibroblastic keratocytes expand in the vertical dimension on topographies with heights
greater than 5 µm. In contrast, cell eccentricity, which reflects the degree of cell elongation,
monotonically increased with the increasing pattern height (Figure 3C). The major axis
length showed a similar biphasic response on topography height as cell projected area
(Figure 3D). This can also explain the increase in cell eccentricity at heights equal to and
smaller than 5 µm. Interestingly, the decreasing major axis length with increasing topogra-
phy height at heights greater than 5 µm is accompanied by a general decrease in minor axis
length (Figure 3E), explaining the further increase in cell eccentricity at this height range.
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Figure 3. (A) Heatmap of morphological parameters of fibroblastic keratocytes when cultured on
contact guidance cue presenting substrates. Gray scales are normalized for each readout. (B) The
projected area, (C) eccentricity, (D) major axis length, and (E) minor axis length of cells on substrates
with and without (control, grey) contact guidance cues. All data are presented as mean ± standard
error of mean. Statistical differences between conditions are described in Tables S2–S5.
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Further quantification of cell adhesion, shape, and morphology indicates an interesting
trend that the dimensionality of the patterns invoked different adhesion strategies of the
activated keratocytes (Figure 4). Cells were able to spread across multiple 2.5D and 2D cues
when the height was either 0 or 2.5 µm (white arrows in Figure 4), but became increasingly
confined in between the higher anisotropic cues (H5, H10, and H20, red arrows in Figure 4).
On taller cues, most fibroblastic keratocytes adhered to either the top or the bottom surface.
Additionally, cells were observed to adhere to the sides of the taller features (yellow
arrows in Figure 4), leading to a decrease in projected area with increasing topography
height. Therefore, in this case, the projected area is expected to be an underestimation
of the total adhesion area of the cells. On substrates with topography heights smaller
than 5 µm, fibroblastic keratocytes showed adhesion behavior previously also observed by
myofibroblasts, bridging multiple cues [49]. The presence of taller contact guidance cues
induced the confinement of keratocytes. On these substrates, fibroblastic keratocytes could
not bridge multiple cues, resulting in adhesion in between two individual ridges. This
adhesion behavior was mainly seen on the substrates with cues between 5 and 20 µm wide,
in which the spacing between two subsequent cues varied between 5 and 20 µm. In the case
of 50 and 100 µm wide patterns, the size of individual cells limited the ability to adhere to
multiple topographic ridges at the same time. As a consequence, cells adhered to the sides
of a single ridge. Overall, the distinct adhesion strategies of fibroblastic keratocytes stress
the importance of both the lateral and vertical dimensions of substrates presenting contact
guidance cues.

3.4. Maintaining the Cellular Phenotype and Steering Collagen Formation Using Contact
Guidance Cues

In addition to the cell morphology and adhesion behavior, it is known that the genetic
profile of keratocytes can also be influenced by the physical environment [10,14,17,50–52].
Damage to the highly organized collagen fibers in the native ECM activates keratocytes in
the corneal stroma and leads to unwanted fibrosis, resulting in scar tissue formation [6]. It
is crucial to understand how such fibrosis can be prevented and how to culture functional
keratocytes in vitro. Therefore, the potential of contact guidance cues that can prevent the
formation of fibrotic cells even under the harsh isolation process and culture conditions
involving soluble cues promoting fibrotic behavior, such as FBS, was investigated [53].
Given that the impact of topography height on cellular behavior was more significant than
that of cue width (cell bodies: Figures 3B,E and S4; nuclei: Figures S3 and S5), we fabricated
two new culture substrates comprising entirely 10 µm wide cues, with heights of either
0 or 20 µm. Using these two conditions (H0W10 and H20W10), a reverse transcription
RT-qPCR to assess the impact of topography height on cellular phenotype was conducted.
Fibroblastic keratocytes cultured on H0W10 contact guidance cues showed no change in
expression of all keratocyte markers, including ALDH3A1, a protective corneal crystalline,
Keratocan, one of the major proteoglycans of the stroma, CD34, an alternate keratocyte
marker downregulated in injured corneas, and Lumican, which regulates collagenous
matrix assembly as a keratan sulfate proteoglycan (Figure 5A). There was a significant
increase for vimentin, which is a major structural intermediate filament (type III) protein
expressed in injured corneal fibroblasts compared to keratocytes cultured on flat substrates
(Figure 5B). On H20W10 topographies, keratocytes showed a significantly lower expression
of ALDH3A1 (Figure 5A). Since the expression of most markers remained unchanged
upon culture on the contact guidance substrates, no phenotypic switch was found in
these conditions.
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Figure 4. Representative maximum-intensity projections scaled to the size of single fibroblastic
keratocytes on surface patterns. Visualized are the gelatin cues and coating (green), nuclei (blue),
F-Actin (red), and Vinculin (magenta). White arrows indicate cells spreading across multiple cues,
red arrows indicate confined cells, yellow arrows indicate cells adhering to the sides of the cues. Scale
bars represent 20 µm.

Aligned adhesive cells secrete collagen through fibripositors, mainly located at the
rear and front poles of the cells [54]. To investigate the influence of the defined surface
patterns on collagen fiber alignment, the activated keratocytes were cultured for 7 days
on contact guidance cue presenting substrates. On all substrates, fibroblastic keratocytes
were able to produce dense fibrous networks of collagen (Figure 6). After 7 days of
culture, in the absence of any contact guidance cues, no global organization of cells was
present, and the deposited collagen network was observed (Figure 6A). The 2D contact
guidance cueswith widths equal to and smaller than ~50 µm were completely covered
with fibroblastic keratocytes, including the non-adhesive space in between lines (Figure 6A,
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Video S1). However, on substrates with lines wider than 50 µm, cells only adhered on top
of the protein pattern, thereby avoiding adhesion on any non-adhesive area. Consequently,
the deposited collagen network was also only present on top of the adhesive, protein-
patterned lines (Figure 6A). The 2.5D contact guidance cues presenting substrates with
heights of 2.5 µm and 5 µm induced the fibroblastic keratocytes to proliferate in between
and on top of the cues (Figure 6B), where cells mostly stayed in between the cues on
substrates with cues 10 µm and 20 µm tall. Therefore, the deposited collagen was mainly
located in between the cues 10 µm and 20 µm tall. Moreover, the result showed that the
collagen fibers deposited by the cells were aligned parallel to the cells and oriented in the
direction of contact guidance cues (Figures 6C,D, 7, and S6). This orientation was uniform
as topography height increased (Figure 7B–F). For both cells (Figure S6E,F) and the newly
deposited collagen (Figure 7E,F), the highest degree of alignment was found on the taller
cues 10 µm wide due to the confinement of cells between cues.
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Figure 5. Quantified gene expression of (A) keratocyte markers ALDH3A1, keratocan, CD34, and lu-
mican, and (B) fibroblast markers α-SMA, CD90, and vimentin with respect to fibroblastic keratocytes
on flat substrates. ** p < 0.01.
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Figure 6. Fibroblastic keratocytes and deposited collagen after 7 days of culture on contact guidance
cue presenting substrates. Maximum intensity projections show F-actin (red), nuclei (blue), and
collagens (white), with (A) 2D; control (no pattern), 5, 10, 20, 50, and 100 µm wide lines, and (B) 2.5D;
2.5, 5, 10, and 20 µm tall and 5, 10, 20, 50, and 100 µm wide contact guidance cues. Scale bars represent
200 µm. (C) Representative 3D visualization of the contact guidance cues (H20W10) with cells and
collagen mainly in between the cues. Visualized are F-actin (red), nuclei (blue), gelatin (green), and
collagens (white). Scale bar represents 40 µm. (D) Maximum-intensity projection of a zoomed-in
region of the cues, showing the location and alignment of newly deposited collagen (white). Scale
bar represents 20 µm.
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As can be seen in the orientation distributions of collagen on 2D substrates (Figures 7B
and S6B), activated keratocytes collectively oriented in one direction, albeit with a clockwise
rotation. This behavior was not observed on the substrates with topographical contact
guidance cues, as the physical 2.5D environment most probably limited the collective
rotation of cells and collagen during culture. The clockwise rotation of both activated
keratocytes and the deposited collagen is consistent with in vivo observations during
stromal development in chickens [55].

4. Conclusions

For many patients, loss of vision is a direct consequence of a disorganized corneal
stroma. In healthy tissue, collagen fibers are organized in tight, orthogonal bundles called
lamellae. Keratocytes are responsible for the production and maintenance of the col-
lagenous ECM, and are influenced by the anisotropic collagen bundles in the cellular
environment. Taking inspiration from the architecture of the human corneal stroma, we
have distilled complex physical cues into simplified anisotropic 2.5D and 2D contact guid-
ance cues in order to elucidate the impact of cue guidance on (activated) corneal keratocyte
behavior. These cues were precisely engineered with diverse widths and heights, reca-
pitulating key morphological features of the inherent architecture of the stroma. Our
findings demonstrate that the dimensional features of these contact guidance cues pro-
foundly steer the orientation of fibroblastic keratocytes. For instance, a 2.5 µm height
difference between 2D and 2.5D cues led to a remarkable increase in cell orientation, up to
four-fold. Furthermore, in the presence of topographical variation in height, the alignment
effect was particularly pronounced on narrower cues, without inducing any phenotypic
switching. Notably, the orientation of collagen deposition after 7 days of culture was also
profoundly influenced by the dimensions of the contact guidance cues. This effect was
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distinct, with orientation increasing up to three-fold in response to elevated topographical
heights. Collectively, our findings showed the potential of employing simplified 2.5D
and 2D contact guidance cues to effectively modulate cell behavior, subsequently influ-
encing collagen deposition. Overall, the height of the surface topographies emerges as
a pivotal factor. Reducing the contact guidance cues to 2D and eliminating the height
component could potentially result in the absence of specific instructive cues crucial for
activated keratocyte behavior. While 2D cues alone exhibit competence in cell guidance,
it becomes evident that the synergistic effect of surface topography with its associated
height holds significant importance. This systematic approach, aimed at comprehending
the intricate influence of contact guidance cues, enables us to precisely identify the dimen-
sional prerequisites governing the behavior of fibroblastic keratocytes. This, in turn, assists
tissue engineers in designing more faithful microenvironments for the in vitro culture of
(activated) keratocytes. Future research should be directed to exploiting these insights to
develop three-dimensional engineered corneal tissues and examining how their functions
are influenced by the cell and tissue architecture.
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