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Abstract: To address the limitations of alginate and gelatin as separate hydrogels, partially oxidized
alginate, alginate dialdehyde (ADA), is usually combined with gelatin to prepare ADA-GEL hy-
drogels. These hydrogels offer tunable properties, controllable degradation, and suitable stiffness
for 3D bioprinting and tissue engineering applications. Several processing variables affect the final
properties of the hydrogel, including degree of oxidation, gelatin content and type of crosslinking
agent. In addition, in 3D-printed structures, pore size and the possible addition of a filler to make
a hydrogel composite also affect the final physical and biological properties. This study utilized
datasets from 13 research papers, encompassing 33 unique combinations of ADA concentration,
gelatin concentration, CaCl2 and microbial transglutaminase (mTG) concentrations (as crosslinkers),
pore size, bioactive glass (BG) filler content, and one identified target property of the hydrogels,
stiffness, utilizing the Extreme Boost (XGB) machine learning algorithm to create a predictive model
for understanding the combined influence of these parameters on hydrogel stiffness. The stiffness
of ADA-GEL hydrogels is notably affected by the ADA to GEL ratio, and higher gelatin content
for different ADA gel concentrations weakens the scaffold, likely due to the presence of unbound
gelatin. Pore size and the inclusion of a BG particulate filler also have a significant impact on stiffness;
smaller pore sizes and higher BG content lead to increased stiffness. The optimization of ADA-GEL
composition and the inclusion of BG fillers are key determinants to tailor the stiffness of these 3D
printed hydrogels, as found by the analysis of the available data.

Keywords: machine learning; ADA-GEL; osteochondral regeneration; XGBoost algorithm

1. Introduction

Natural polymeric hydrogels such as gelatin and alginate are commonly studied for
tissue engineering applications and are being increasingly considered in 3D bioprinting
approaches [1–5]. Alginate is an FDA-approved biopolymer exhibiting biocompatibility,
hydrophilicity and high water absorption capacity [1,6]. Due to its remarkable properties,
alginate (sodium salt of alginic acid) is a widely studied component of bioinks [7,8]. How-
ever, alginate-based hydrogels have some disadvantages for 3D bioprinting [9–11]. For
example, alginate has relatively low viscosity which leads to a low printing accuracy [12,13].
Additionally, alginate hydrogels have uncontrolled degradation kinetics [7,8]. Moreover, as
alginate does not contain any adhesive molecular ligand to enable cell attachment, other
biopolymers, ideally protein-based, can be combined with it to enable a more effective
cell–material interaction [2,7,14]. An alginate derivative produced by controlled chemical
oxidation of sodium alginate from brown algae is oxidized alginate (alginate dialdehyde,
ADA) [15–17]. Dialdehyde groups form in the alginate backbone by the oxidative trans-
formation of the hydroxyl groups at positions C-2 and C-3 [18,19]. ADA-based hydrogels
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have been shown to be attractive matrices for vascular, bone, cartilage, and wound healing
applications [20–24].

Gelatin is produced by breaking the triple helix of collagen fibrils by basic or acidic hy-
drolysis [7,25,26]. Gelatin incorporates cell adhesion peptides through the RGD (Arg-Gly-Asp)
collagen sequence, which improves cell–material interactions and enhances cell adhesion and
proliferation [2,8]. However, gelatin has poor mechanical properties [1,2,27]. To address the
drawbacks of alginate and gelatin taken separately, the combination of partially oxidized
alginate and gelatin (ADA-GEL) hydrogels is being increasingly investigated for 3D bio-
printing [15,28,29]. Gelatin contains ε-amino groups of lysine and hydroxylysine, which
are covalently bonded to the generated aldehyde groups of ADA through Schiff’s base
formation [7,8,30]. The ADA-GEL system offers a wide range of tunable properties such
as controlled degradation and hydrogel stiffness [31,32]. Moreover, ADA-GEL hydrogels
have been shown to support cellular (e.g., osteoblasts and fibroblast cells) activities [1,33].

Transglutaminases are a class of enzymes, present both inside the human body and
externally, responsible for catalyzing the formation of ε(γ-glutamyl) lysine isopeptide
bonds among protein side chains [34–36]. Microbial transglutaminase (mTG) is a specific
type of transglutaminase produced by bacteria, notably Streptoverticillium mobaraense and
Streptoverticillium ladakanum [37–39]. Unlike some other transglutaminases, mTG functions
independently of calcium and has been utilized in various applications, including the
fabrication of gelatin scaffolds [40,41]. One of the remarkable characteristics of mTG is
its ability to crosslink ADA-GEL hydrogels [15]. This crosslinking process allows for the
fine-tuning of hydrogel properties, such as degradation rate, stiffness, and promotion of
cell attachment. Notably, this method has proven effective for improving the stability and
mechanical properties of gelatin-based materials, addressing the issue of rapid degradation
often associated with a high gelatin content [7,15]. Importantly, the crosslinking approach
facilitates a precise control over hydrogel stiffness within a broad range, from less than 5 kPa
to as high as 120 kPa [15]. To enhance the mechanical properties and biological activity of
hydrogels, often rigid inorganic particles, such as calcium phosphate and bioactive glass
(BG) particles, are added to the hydrogel forming composites. Such composites can be also
applied in 3D (bio)printing [42–44].

Since the application of ADA-GEL hydrogels in 3D bioprinting involves numerous vari-
ables, it is challenging to fully understand how each parameter taken independently impacts
the resulting properties of the printed structure. The Extreme Gradient Boosting (XGB) machine
learning technique is an easy-to-use technique with fast performance and high accuracy. Gener-
ally, it prevents overfitting and works well with small datasets [45,46]. However, it is prone to
overfitting if not well tuned, and hypertuning may be time consuming [45,47]. This study
aims to enhance the prediction of mechanical properties, in particular the stiffness of ADA-
GEL 3D printed constructs reducing the need for extensive trial and error when preparing
such ADA-GEL hydrogel structures. The research examined the importance of BG filler
content, ADA to GEL concentration ratio, mTG and CaCl2 concentration (as cross-linkers),
pore size, and the established correlation of such parameter through a heatmap to assess
their relationship with stiffness. Then, in detail, the effect of ADA concentration, CaCl2
concentration, pore size, and filler (BG) content on stiffness was examined.

2. Methodology
2.1. Data Collection

A search from 2000 to 2024 was performed with the search engines Web of Science, Sco-
pus, and Google Scholar. The search terms were as follows: ADA-GEL, oxidized alginate,
gelatin, mTG, CaCl2, stiffness, modulus, and mechanical properties. ADA, gelatin, CaCl2,
mTG, scaffold pore size, BG filler content, and whether biomaterials were printed or not
were used as independent variables while the measured stiffness was used as the dependent
variable from 13 research papers, which were finally used by the XGB algorithm [1–13].
Overall, this dataset covered 33 possible combinations of the independent variables in
set ranges of ADA concentration (2.5–7.5 w/v), gelatin concentration (2.5–7.5 w/v), CaCl2
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concentration (0.1–0.6 w/v), (mTG) concentration (0–10 w/v), pore size (0–4000 µm), filler
content (0–5 wt%), and stiffness (0–417 kPa). Table 1 shows the printing parameters and
Table S1 (presented in the supplementary file) shows all processing conditions and resultant
stiffness values.

Table 1. Printing parameters used in the relevant papers [1,2,7,8,40,42,48–50].

Printing Temperature (◦C) Printing Speed
(mm/s)

Pressure
(kPa) Ref.

30 N/A N/A [42]

30 2 160 [48]

30 5 165 [2]

30 N/A 8 [1]

30 10 250 [49]

30 N/A N/A [50]

30 14 35 [8]

30 10 100 [40]

In other studies, ADA-GEL scaffolds were not printed but their stiffness was evalu-
ated [31,43,51].

2.2. Computational Modeling

Python programming language is utilized for data analysis and machine learning [52].
Phyton has Pandas, Numpy, and Scipy libraries have tools for data manipulation, numerical
computing, and scientific computing, respectively. Additionally, Matplotlib and Seaborn
libraries were used for data visualization. Finally, Scikit-learn was used for utilizing
XGB algorithm for data analysis [53,54]. The Python codes which are utilized in the
study are given at https://github.com/duyguege/machine-learning.git (accessed on 30
November 2023).

2.2.1. XGB Regressor

XGB regressor is an ensemble gradient boosting algorithm which was developed
by Guestrin and Chen in 2016 [55,56]. In this model, after evaluation of previous trees,
sequential trees are added [57]. This way, a strong learner is developed by training weak
learners [45]. The predictions are made by adding up the score of each leaf node [58]. XGB
is a scalable tree boosting system with great efficiency and prediction accuracy, that is
often employed in the field of regression. To avoid over-fitting to outliers, XGB applies
second-order Taylor expansion to the loss function, and normalisation to the objective
function [45,55,56,59–62].

2.2.2. Training, Hyper Tuning and Validation Processes

The dataset was divided into training (80%) and test (20%) divisions for this inves-
tigation. The training dataset was used to develop the model, and the test dataset was
used to evaluate it. The Python Scikit-learn library was used to apply the models. After
determining the optimal parameters for the XGB model, hyperparameter tuning was per-
formed for the subsample ratio of columns, number of estimators, maximum depth, and
learning rate (shrinkage factor), as shown in Table 2. To avoid underfitting and overfitting,
the optimum parameter for both training and test sets was chosen [60]. For performance
evaluation, 10-fold cross-validation was utilized, which randomly divides the dataset into
ten equal folds [63]. The model was then used again in the final stage to get the expected
stiffness values [64].

https://github.com/duyguege/machine-learning.git
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Table 2. Hyperparameters and their best parameters for tuning by XGB model.

Hyperparameters Subsample Ratio
of Columns

Number of
Estimators

Maximum
Depth Learning Rate

Parameters 0.5, 0.6, 0.8, 0.9 1000, 2000 4, 6, 10 0.01, 0.05, 0.1, 0.3

Best parameters 0.8 1000 4 0.3

2.2.3. Correlation Heatmap

A correlation heatmap visually represents the correlations between multiple variables
in a dataset. This graphical tool demonstrates patterns and relationships within complex
datasets. It uses colors to indicate the strength and direction of these correlations, with
warmer colors (orange) indicating stronger positive correlations and cooler colors (purple)
indicating weaker or negative correlations [65]. The Seaborn module of Phyton gener-
ated a correlation heatmap to identify the strength of the association between the seven
independent factors (ADA and GEL concentration, CaCl2 and mTG concentrations, pore
size, whether the biomaterial is printed, filler (BG) content), and the dependent variable
(stiffness). Additionally, a greater correlation coefficient (r) for different variables suggests
that the independent variables are multicollinear [66].

2.2.4. Feature Importance

Feature importance analysis ranks the influential factors within a dataset for gaining
insights into the key variables [67]. The significance of the features was calculated using
an integrated function in the Scikit-learn implementation of the XGB model. The features
were then ranked in order of importance [68,69].

2.2.5. Determination of the Model Performance

Higher R2 values with lower mean absolute error (MAE) values show that the mod-
els are more likely to succeed [70,71]. To assess model performance, the coefficient of
determination (R2), MAE calculation, and RMSE were utilised [72].

2.2.6. Shapley Additive Explanation

In 2017, Lundberg and Lee [73] introduced the Shapley additive explanation (SHAP)
technique, which allows for the study of complex relationships in machine learning models.
SHAP, a model interpretation tool in Phyton, is used in this work to further understand
the marginal link between predicted stiffness value and each feature. SHAP value is
calculated as the average forecast produced with each feature value’s contribution minus
the prediction made without a feature value. A negative or positive SHAP value implies
that the feature value has a negative or positive contribution to the prediction of stiffness,
respectively. The SHAP summary plot is used to show the impact of each parameter on
stiffness. The primary y-axis displays the SHAP value, while the secondary y-axis shows a
color bar displaying the high feature values.

3. Results and Discussion

In this study, factors affecting the stiffness of ADA-GEL composites are evaluated and
then predictions are made by using XGB modeling. This approach is useful to evaluate
the complex relationships between processing parameters and stiffness in a snapshot.
Therefore, the study may support the design of future experimental investigations using
ADA-GEL-based hydrogels. Figure 1 shows the average concentration of each independent
variable used in the reviewed papers. For the independent variables, constraints would
occur due to different factors, such as high viscosity or fluidity of the hydrogels, which
influence the 3D printing process. In the study, the parameters used were constrained
within the range found in the literature.
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Figure 2. Correlation heatmap for the independent and dependent variables.

A correlation coefficient exceeding 0.8 signifies a very strong correlation, while a
coefficient between 0.6 and 0.8 suggests a good correlation. Within the range of 0.4 to
0.6, a moderate correlation is observed, whereas a coefficient between 0.2 and 0.4 demon-
strates a comparatively weak correlation. Values below 0.2 indicate an extremely weak
correlation [66]. Additionally, negative coefficients indicate an inverse correlation, with the
same interpretation applying to the strength of these correlations [74]. As shown in the
correlation heatmap, there is a negative but weak correlation between printing and stiffness.
This indicates that printing leads to reduced stiffness compared to hydrogel scaffolds which
are produced by casting. Firstly, layer-by-layer deposition is prone to weakened interlayer
adhesion [75]. The data available thus indicate that 3D printing conditions should be
improved to produce scaffolds with enhanced mechanical performance. Pore size also has
a negative correlation with mechanical stiffness; when pore size increases, the mechanical
properties, in this case stiffness, deteriorate. BG fillers have a high and positive correlation
of (0.82), which shows a positive effect of the presence of BG filler on stiffness. The relative
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effect of gelatin, ADA and CaCl2 concentrations, which show relatively weak correlation
with stiffness, will be analyzed in detail in this paper. On the other hand, mTG has a very
small correlation coefficient of −0.031 and this could be indicated as an extremely weak
correlation with stiffness.

Another important aspect to consider is multicollinearity between different variables.
Lack of identification of multicollinearity may lead to misinterpretation of data [76,77].
If there is a high correlation coefficient for different independent variables, this may in-
dicate multicollinearity [76]. In this study, independent variables have low correlation
coefficients between themselves. The highest correlation coefficients were between mTG
and gelatin concentration (0.52) and CaCl2 concentration and printing (0.51), respectively,
however, it is still relatively a low value and these parameters can be considered rela-
tively independent [76]. Therefore, it can be stated that multicollinearity was not found
in the dataset considered for this study. Figure 3 shows the feature importance of the
independent variables.
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Feature importance analysis illustrates the most influential factors in predictive mod-
eling, providing valuable insights into key variables impacting model outcomes. It is
known that understanding these influential parameters enhances model interpretability
and guides decision-making processes [68,69]. According to Figure 3, the addition of BG
filler has a very high impact on the stiffness of ADA-GEL composites, following with the
concentration of gelatin and the pore size. The printing, ADA content, CaCl2 and mTG
concentrations have a much weaker effect on stiffness. In Figure 4, the success rate of the
XGB model for predicting stiffness from the provided data is shown.

The R2 value is an important indicator of the success of the prediction [70,71]. A value
of 0.6 or below indicates an unsatisfactory prediction. A value between 0.6 and 0.75 proves
a satisfactory prediction. A value between 0.75 and 0.95 shows a good prediction and a
value above 0.95 means an excellent prediction [78]. According to Figure 4, XGB can predict
the test values well, which is confirmed by R2 value of 1, which indicates an excellent
prediction. However, according to Figure 4b,c, there is overfitting of the data for test values.
In Figure 4b, the fitting of the predicted values to the test values is illustrated for different
test values, which is indicated by their index values from the dataset. According to the
figure, the fitting demonstrated a superior fitting for some of the test values, while others
(index between 25 and 27) showed inferior fitting. Figure 4c,d supports this observation
from Figure 4b. This is apparent from the low train values for both RMSE and MAE,
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however, much higher RMSE and MAE values were found for the test data. This probably
occurs due to the relatively small sample size. The discrepancy between the R2 value and
RMSE/MAE may also arise if the range of observed values in the dataset is limited. In such
cases, the model may appear to fit the data perfectly, but the absolute errors between the
predicted and observed values are still relatively high, leading to a high RMSE/MAE [79].
This problem could be solved if a larger sample size could be obtained.
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for XGB, (b) distribution of experimental (test) and predicted values with XGB, (c) MAE train and
test values, (d) RMSE train and test values, (e) SHAP summary plot based on XGB model for
feature values.

A SHAP summary plot illustrates the contribution of each feature to the model’s
output [80]. According to Figure 4e, it is clearly observed that lower concentrations of BG
filler component reduced stiffness values and higher BG content improved the stiffness.
According to Figure 4e, high SHAP values lead to higher predictions of SHAP value,
whereas low SHAP values reduce the predicted value. Blue colour is used for small values
and red colour is used for high values of the variables. According to Figure 4e), low
concentrations of ADA supported the model to make high predictions of stiffness. On the
other hand, usually high ADA values lead to negative SHAP values which indicate that
it had a negative impact on stiffness. Low pore size values also led to higher predicted
values as expected, and higher values led to decrease of stiffness. Due to reduced resistance
to deformation, as pore size decreases, fewer voids form and less variability occurs in
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the microstructure. This leads to less scattering of the material properties and higher
mechanical properties can be achieved [81–83]. Lower BG content led to lower stiffness
predictions and higher BG content led to higher stiffness predictions. For mTG, CaCl2 and
gelatin content, no such distinct relationship could be observed from the SHAP values, as
high values and low values of the dataset are distributed more randomly. After analyzing
the data with SHAP summary, predictions were made for different variables to analyze
their influence on stiffness. In Figure 5, the predictions made are shown for different
concentrations of ADA and gelatin.
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As can be seen from Figure 5a, as the ADA/GEL content increases, the stiffness
increases. When the concentration of ADA is higher than that of gelatin, usually a higher
stiffness is achieved. Figure 5b shows that when the w/v% of gelatin increases, the stiffness
decreases, which is likely because some of the present gelatin cannot covalently crosslink
with aldehyde groups of ADA. Unbound gelatin in the hydrogel leads to a weaker scaffold.
A similar explanation has been previously made in the studies of Distler et al. [15] and
Sarker et al. [43] for the effect of ADA/GEL content ratios on stiffness. For instance, when
gelatin content increases from 2.6 to 7.5% w/v% for 5 w/v% ADA, the stiffness reduces from
60 kPa to 20 kPa. This reduction is quite abrupt, and this result proves clearly that high
gelatin content reduces the mechanical performance. ADA content also significantly affects
stiffness. Lower ADA content systematically led to higher stiffness values in the predictions
in Figure 5. This aligns well with the SHAP summary plot for ADA dataset which indicated
that lower ADA values led to higher stiffness (higher SHAP values). According to Figure 5,
2.5 w/v% ADA with 2.5 w/v% GEL leads to the highest stiffness of 200 kPa among study
groups. However, some of these ADA/GEL concentration ratios are not experimentally
practiced and therefore require experimentation to determine their applicability. Figure 6
shows the effect of pore size and CaCl2 concentration on stiffness.

Pore diameters of 3D scaffolds ranging from 20 to 500 µm are critical in tissue engineer-
ing because they allow for cell ingrowth, bone regeneration, and vascularization [48]. The
optimal pore size for collagen fibre production was reported to be in the nanometric range
(100 nm), whereas the pore size required for cell seeding, migration, and distribution is in
the range of 100 µm to mm depending on the cell type. A size of 100 µm is appropriate for
chondrocytes [7]. The literature shows that addition of gelatin to ADA can reduce the pore
size and the addition of BG can also further reduce pore size [43]. A balance of pore size and
mechanical properties is required to achieve tissue regeneration. It has been reported that
an ideal pore size of 300 µm may enable both suitable mechanical performance and tissue
regeneration [43]. In principle, according to Figure 6, a pore size in the range 200–400 µm
appears appropriate to maintain suitable mechanical properties. The elastic modulus of
mammalian chondral tissue (matrix surrounding chondrocytes) (25 ± 5 kPa) is much lower
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than that of bone (cortical bone 15 ± 5 GPa). Brain tissue has a stiffness of approximately
~1 kPa. For example, for cartilage regeneration, 200 µm pore size would enable suitable me-
chanical performance [31,48]. It is possible to modulate the mechanical performance of the
ADA-GEL hydrogels by varying the relative ADA and gelatin concentrations. Crosslinker
concentration is also important for obtaining desired mechanical properties. For alginate,
CaCl2 is the most commonly used crosslinking agent [84]. In Figure 6b, CaCl2 concentration
was found to lead to an optimum stiffness with a concentration of 0.1 w/v%. With further
increase of CaCl2, no apparent change of stiffness was obtained.
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Figure 7 shows the effect of BG filler on stiffness. In some studies, BG fillers are
blended in ADA-GEL not only to enhance hydrogel bioactivity, but also to increase the
mechanical properties and the stability of the hydrogel in physiological conditions [43].
BG fillers support gelation and increase the crosslinking degree of ADA-GEL [42]. In a
previous study, Sarker et al. [43] showed that the gelation time of ADA-GEL decreased
in the presence of BG. According to XGB model, there is an increase of stiffness with the
increase of w/v% of BG in the hydrogels. However, higher w/v% of BG leads to hydrogels
that cannot be printed due to the increase of viscosity, which limits the w/v% of BG to 0.1.
Moreover, in this study, mTG concentration effects were not considered. mTG was usually
used as 1 w/v% in the literature and high concentrations of mTG may be toxic, therefore in
the predictions mTG was kept as 1 w/w% [85].

A limitation of this study arises from the diverse range of techniques employed to
assess the stiffness of the hydrogels. The methods of measurement include nanoindentation,
compression test, and dynamic mechanical analysis [20]. This may lead to differences of
measured values of stiffness due to wide variation of conditions used in the different
tests. Additionally, in some studies, gelatin has been heat-treated previously to its use
in making the ADA-GEL, however, this could not be taken in consideration as it could
drastically reduce the dataset’s sample size [48]. Moreover, 3D printed scaffolds had
varying numbers of layers, which may also affect the measured stiffness as well as different
printing speed and printing pressure applied for printing the scaffolds. Another important
parameter determining the stiffness of ADA-GEL is the degree of oxidation of alginate,
which may ultimately affect the mechanical properties. However, as can be seen from
Table 1, this parameter is not provided in some of the research papers, therefore we could
not incorporate it into the model. Finally, in some studies, 3D printed scaffolds were cell
laden while in others, they were not. It is reported in the literature that cell seeding density
significantly impacts the mechanical properties of alginate hydrogels [86]. As can be seen
from Table S1, in the study by Kara et al. [40], 3D printed MC3T3-E1 cell laden ADA-GEL
(3.75–7.5%) scaffolds were produced and the stiffness values were found to be relatively
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lower (10 kPa) than the 3D printed ADA-GEL scaffolds without cells. Furthermore, Schwarz
et al. [7] 3D printed chondrocyte laden ADA-GEL (3.75–3.75%) scaffolds and a stiffness
value of 27 kPa was achieved, which was also found to be relatively low. In the the future,
it would be beneficial to concentrate on these parameters in order to more precisely control
the mechanical properties of printed scaffolds. Furthermore, changes of molecular weight
among different studies would also lead to inaccurate predictions and need to be taken
into consideration, however, this information is not provided in all the papers [47].
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In the studies, the used bioactive glass also showed variation. It was not possible to
find enough datasets for the same type of bioactive glass to be incorporated to the algorithm.
However, in all studies, bioactive glasses were observed to positively impact stiffness.
Therefore, this parameter was incorporated to the study. In the future, it would be beneficial
to study the effect of only a single type of bioactive glass on the mechanical properties of
ADA-GEL, to have a more precise outcome. If these limitations could be addressed, and a
larger sample size could be obtained, the model might not exhibit overfitting which was
illustrated in Figure 4b,c.

The data analysis for stiffness of ADA-GEL is not sufficient to fully comprehend the
hydrogel mechanical performance. Unfortunately, in the literature there is not sufficient
data on compressive strength, % strain at break, and toughness of these hydrogels to build
models for these features. These are also important parameters to be considered while
evaluating the appropriateness of these hydrogel-based scaffolds for tissue engineering
applications. Nevertheless, this preliminary study can guide the identification of additional
study groups. This could facilitate the inclusion of a larger sample size in future machine
learning models to re-analyze ADA-GEL hydrogels for tissue engineering applications.
Finally, another important and heavily investigated class of hydrogels for biofabrication
and tissue engineering is gelatin methacrylate (GelMA) [87–89]. We anticipate that a much
larger dataset exists for GelMA-based hydrogels than for ADA/GEL. In the future, a similar
model can be also applied to GelMA (or other heavily exploited biomaterials) yo analyze
their mechanical properties as a result of combination of determined processing variables.

4. Conclusions

In this study, the XGB model was used to study the effects of various preparation
parameters, including BG filler content, ADA/GEL concentration ratio, pore size, mTG and
CaCl2 concentration (as cross-linkers) on the stiffness of ADA/GEL hydrogel composites.
This research emphasized the impact of the ADA/GEL concentration ratio, indicating
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the critical role of the ADA component in modulating hydrogel stiffness. Additionally,
the gelatin component showed an inverse correlation with stiffness as higher gelatin con-
centrations led consistently to decreased stiffness. SHAP analysis further indicated that
lower ADA concentrations increased the predicted value of stiffness. Additionally, it was
identified that the pore size of the printed scaffolds (with 200–400 µm pore diameters) led
to an ideal balance for mechanical performance and suitable pore size for applications in
tissue engineering. The incorporation of BG fillers demonstrated a significant increase
in ADA/GEL composite stiffness, providing a potential option for enhancing hydrogel
stability and mechanical properties. In conclusion, this study provides insight into the ef-
fects of key processing and material parameters on ADA-GEL hydrogel composite stiffness
in a snapshot. This knowledge is useful for researchers to fine-tune these parameters for
specific tissue engineering applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering11050415/s1, Table S1: Composition, crosslinker
concentrations and physical properties of the prepared hydrogels [1,2,7,8,15,31,40,42,43,48–51].
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