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Abstract: Background: Dyskinesias and freezing of gait are episodic disorders in Parkinson’s disease,
characterized by a fluctuating and unpredictable nature. This cross-sectional study aims to objectively
monitor Parkinsonian patients experiencing dyskinesias and/or freezing of gait during activities of
daily living and assess possible changes in spatiotemporal gait parameters. Methods: Seventy-one
patients with Parkinson’s disease (40 with dyskinesias and 33 with freezing of gait) were continuously
monitored at home for a minimum of 5 days using a single wearable sensor. Dedicated machine-
learning algorithms were used to categorize patients based on the occurrence of dyskinesias and
freezing of gait. Additionally, specific spatiotemporal gait parameters were compared among patients
with and without dyskinesias and/or freezing of gait. Results: The wearable sensor algorithms
accurately classified patients with and without dyskinesias as well as those with and without freezing
of gait based on the recorded dyskinesias and freezing of gait episodes. Standard spatiotemporal gait
parameters did not differ significantly between patients with and without dyskinesias or freezing
of gait. Both the time spent with dyskinesias and the number of freezing of gait episodes positively
correlated with the disease severity and medication dosage. Conclusions: A single inertial wearable
sensor shows promise in monitoring complex, episodic movement patterns, such as dyskinesias and
freezing of gait, during daily activities. This approach may help implement targeted therapeutic and
preventive strategies for Parkinson’s disease.

Keywords: Parkinson’s disease; dyskinesias; freezing of gait; wearable sensors; long-term monitoring

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by a wide
range of motor and non-motor symptoms [1]. Among the most disabling manifestations of
the disease are certain motor disorders that manifest abruptly and unpredictably, such as
dyskinesias and freezing of gait (FOG). Dyskinesias are a phenomenon characterized by
involuntary movements that can manifest as writhing, twisting, or jerking motions in any
body segment, typically arising from the complex interplay between long-term dopamin-
ergic therapy and disease progression [2]. Dyskinesias typically fluctuate throughout the
day, sometimes in an unpredictable manner [2,3]. By causing sudden shifts in posture and
weight distribution, they can lead to unexpected falls in any direction [3]. Concerning FOG,
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this entails sudden and transient episodes of immobility during walking, with a paroxysmal
interruption of stride and/or marked reduction in forward foot progression [4,5]. It is
heavily influenced by emotional, attentional, and environmental factors, so it often does
not manifest under medical observation but predominantly occurs at home during daily
activities [4].

The unpredictability and multifactorial nature of dyskinesias and FOG make it chal-
lenging to identify and manage these disorders solely through hospital clinical assessments
and self-reports. Indeed, these phenomena may not occur during the limited observation
period of the medical visit. Furthermore, patients and caregivers often fail to accurately
recognize dyskinesias and FOG or may not be fully aware of them, thereby limiting the
utility of medical history collection and the use of home-based diaries [6,7]. Accordingly, it
would be advantageous to have a non-invasive technology capable of accurately identifying
and quantifying these paroxysmal events. This approach would allow us to properly assess
the occurrence and severity of dyskinesias and FOG and implement targeted interventions
to reduce patients’ risk of falls and injuries.

The automatic recognition of complex motor patterns is now facilitated by innovative
wearable technologies designed for the long-term and non-invasive monitoring of move-
ments in young [8] and elderly healthy subjects [9], as well as patients with PD [10–16].
These technologies can incorporate advanced machine-learning algorithms to identify
several motor disorders in PD, including postural instability [9,17,18], bradykinesia [19–21],
dyskinesias, and FOG [22,23]. However, while high diagnostic performances have been
demonstrated in laboratory settings under supervised conditions, only a narrow number
of studies have assessed dyskinesias or FOG using wearable sensors in ecological, unsuper-
vised environments [24–29]. Most authors used inertial sensors to monitor dyskinesias by
simulating daily scenarios, which do not completely reflect ecological settings [25,28,30,31].
Indeed, in these studies, patients were asked to execute pre-defined motor tasks under
medical observation during a relatively short monitoring period, spanning from 30 min
to 4 h [25,28,30]. Accordingly, despite high diagnostic performances in identifying dyski-
nesias, these recordings failed to capture the typical day of Parkinsonian patients. Other
authors monitored patients with PD for a prolonged time (i.e., 7 days) by using wrist-
or waist-worn inertial sensors [32,33]. However, the adopted systems demonstrated a
notably low sensitivity (i.e., 0.38) in detecting dyskinesias [32] as well as a weak agreement
between sensor-based data and clinical scores [33], thus limiting their potential practical
application. Concerning FOG, several authors performed long-term monitoring of this
disorder through inertial sensors [27,34–37]. For instance, Denk et al. [34] investigated
the accuracy of a smartphone and two inertial sensors in evaluating FOG compared to
standardized clinical tools, demonstrating the high value of their combination. However,
this study included a small group of subjects (i.e., 28 patients), and the average duration
of monitoring was only 4 h per day [34]. A similar approach was also adopted by other
authors with the primary aim of validating wearable sensors, providing limited practical
clinical implications [35–37]. Overall, previous studies on dyskinesias and FOG in PD
mostly relied on the use of multiple wearable sensors (potentially impractical for routine
use), small patient samples, and short monitoring periods, ultimately failing to lead to
valid solutions for clinical implementation [38]. Moreover, these studies did not compare
spatiotemporal gait parameters in patients with and without dyskinesias and/or FOG in
free-living situations nor did clarify whether patients with these paroxysmal disorders
have prominent abnormalities in spatiotemporal gait parameters, as suggested by previous
laboratory-based evaluations [39,40].

In this context, our main research question focused on the feasibility of unobtrusively
identifying individuals with and without dyskinesias and FOG during daily activities,
along with examining potential differences in spatiotemporal gait parameters among these
patient subgroups in real-world settings. Accordingly, we continuously monitored a large
cohort of patients with PD, with and without dyskinesias and/or FOG, by using a single
wearable sensor for an extended period. We adopted a validated and approved class IIA
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medical device, incorporating ad hoc machine-learning algorithms for the recognition of
dyskinesias and FOG [41]. We evaluated the psychometric properties of the wearable sensor.
Furthermore, we examined spatiotemporal gait parameters in subgroups of patients, with
and without dyskinesias and/or FOG, matching subjects according to demographic and
clinical characteristics. Our first hypothesis was that continuous monitoring of patients with
a single wearable sensor would demonstrate good diagnostic performance in recognizing
individuals with and without dyskinesias and/or FOG. Furthermore, we also hypothesized
that patients with and without dyskinesias or FOG would exhibit different spatiotemporal
gait parameters when recorded during free-living, unsupervised situations. To this aim,
unlike prior studies, the novelty of our measurements consists of the assessment of the
diverse practical implications of sensors in the clinical management of dyskinesias and
FOG in PD in addition to the evaluation of the performance of the wearable system.
Lastly, by examining specific spatiotemporal gait parameters, we enhanced our study with
pathophysiological insights that could increase our understanding of dyskinesias and FOG
in PD.

2. Materials and Methods

This cross-sectional study followed the guidelines provided in the “Strengthening the
Reporting of Observational Studies in Epidemiology” (STROBE) document, as detailed in
Supplementary Materials S1.

2.1. Subjects

Patients with PD were longitudinally enrolled at the movement disorder outpatient
clinics of the Sapienza University of Rome and the University of Turin (Italy) between
January 2023 and February 2024. The inclusion criteria for the study encompassed diag-
nosis of idiopathic PD based on current consensus criteria [1]; Hoehn and Yahr (H&Y)
between 1.5 and 4; PD duration of at least 3 years; and chronic therapy with L-Dopa ± other
dopaminergic drugs. Exclusion criteria included diagnosis of possible or probable atypical
parkinsonism; inability to walk independently; and comorbidities potentially affecting gait
(e.g., neurological conditions other than PD, orthopedic and/or rheumatologic issues). All
participants were regularly followed up by an expert in movement disorders and classi-
fied as patients with (PD-Dys) and without dyskinesias (PD-nDys) based on the use of
the Unified Parkinson’s Disease Dyskinesia Rating Scale (UDysRS) (score ≥ 1 at item 1)
and the direct observation of dyskinesias on at least one visit. Likely, the classification of
participants as patients with (PD-FOG) and without FOG (PD-nFOG) was based on the
clinical diagnosis of FOG through the direct observation of the disorder on at least one visit
and using the FOG-Questionnaire. Before the long-term gait monitoring using wearable
sensors at home, all patients underwent comprehensive clinical evaluations conducted
by movement disorder experts in the outpatient clinic. These evaluations involved the
administration of standardized scales, including the following: H&Y; Movement Disorders
Society—Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) parts III–IV; UDysRS
parts III-IV; Wearing-OFF Questionnaire-19 (WOQ-19); FOG-Questionnaire; Montreal Cog-
nitive Assessment (MoCA); Frontal Assessment Battery (FAB); Beck Depression Inventory
(BDI); and Beck Anxiety Inventory (BAI). A follow-up clinical visit was conducted upon
the return of the wearable sensor following the period of continuous monitoring at home.
The clinical evaluations were conducted during the ON state of therapy (1 h after L-Dopa
intake), reflecting prevalent clinical conditions at home during daily activities. The Lev-
odopa equivalent daily doses (LEDDs) were calculated for each patient using standardized
protocols [42]. No participants were receiving other neuropsychiatric medications possibly
affecting gait during the study period.

All participants provided written informed consent, and the study protocol was
approved by the Institutional Review Board of Sapienza University of Rome, Italy, in
accordance with the principles outlined in the Declaration of Helsinki.
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2.2. Study Protocol

Each patient underwent long-term gait monitoring for a minimum of 5 days, at least 8 h
per day, during daily life activities using a single wearable device (STAT-ONTM, Sense4Care,
Barcelona, Spain) on the left side of the waist through an elastic belt (Figure 1). The device
was positioned so that the x, y, and z axes of the embedded sensors represented the anterior,
vertical (upward), and lateral (left) directions.
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Figure 1. Wearable sensor (STAT-ONTM) position and axes orientation.

Patients received thorough instructions on the proper use of the wearable sensor,
including precise guidance on its placement, considering specific anatomical landmarks
(e.g., left anterior–superior iliac spine). Patients were instructed to wear the sensor directly
at home during waking hours and remove it during sleep or non-routine daily activities
such as physical exercise, or extended travels by means of transportation. The wearable
sensor was preconfigured by medical staff with the patient’s clinical data (i.e., H&Y, age,
lower limb length measured from the left anterior–superior iliac spine to the ground).
Therefore, patients were not required to perform any additional tasks except for wearing
the sensor throughout the designated period, as the device would operate automatically
for the entire battery life without the need for manual activation or deactivation. Figure 2
summarizes the experimental protocol, including the setting, study sample, adopted device,
and resultant outcomes.
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Figure 2. Experimental protocol of the study in patients affected by Parkinson’s disease (PD) with
and without dyskinesias and/or freezing of gait (FOG). #FOG, number of FOG episodes; TwFOG,
time spent with FOG; #Dys, number of dyskinesia periods; TwDys, time spent with dyskinesias.
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2.3. Wearable Sensor: Hardware

STAT-ONTM is an inertial wearable medical device intended to continuously monitor
motor manifestations in patients with PD during daily activities. The sensor measures
9 × 6.3 × 2.1 cm and weighs 86 g. Internally, the system is composed of two ultra-low
triaxial nano-accelerometers, two microcontrollers, and a Bluetooth low-energy system,
among other parts. The three-axis accelerometer has a full scale of ±6 g, a resolution of
12 bits, a sampling rate of 50 Hz, and a power consumption of 12 A. The device has a
battery life of 7 days for continuous operation in normal conditions. STAT-ONTM provides
spatiotemporal gait parameters, such as step length, stride speed, and cadence, and can
automatically detect motor patterns reflecting dyskinesias and FOG by using advanced
machine-learning algorithms. Data are stored in an internal memory and can be down-
loaded by users (patients and clinicians) to any mobile phone that has the application
provided by the manufacturer installed. The system has been certified as Medical Device
Class IIa and has successfully passed the electromedical equipment tests, including those
for home environment use.

2.4. Wearable Sensor: Embedded Algorithms

The acceleration recordings are segmented into fixed-length timeframes of 3.2 s, over-
lapped by 50%. Gait detection is based on a support vector machine (SVM) classifier with a
radial basis function. SVM represents a well-known and commonly used machine learning
algorithm. It offers several advantages over other classic machine-learning algorithms,
including memory-efficient implementation for on-device data processing [43], high gen-
eralization capability, and efficacy in handling non-linear decision boundaries [44]. For
these reasons, SVM has been used in a large variety of applications, including activity [45],
gait [46], and FOG recognition [47]. Two features are input to the SVM model, consisting of
the energy contained within the frequency bands [0.1, 3] Hz and [0.1, 10] Hz [48]. If gait
is detected, strides are identified by searching for the minima of the forward acceleration
signal [49]. These latter represent the initial contact of the heel to the ground, also known
as a “heel strike”. The two initial and two final strides are excluded from the analysis to
increase consistency. From each stride detected, some gait-related parameters are extracted.
Stride fluidity is computed as the energy content in the 0.1–10 Hz frequency band [48].
Step length is calculated based on the inverse pendulum model, which takes as input the
leg length for correct estimation [50]. Cadence is computed as the ratio of the number
of steps divided by the walking bout duration. This value is then multiplied by 60 to
express the measure in steps/min. The 10 min dyskinesia output is positive when the
energy content in the 1–4 Hz frequency band is above a certain threshold and that in the
0–20 Hz band is below a second threshold, for at least 6 sec. The second threshold is set to
ensure that dyskinesias are searched when the patient is in a static position, thus reducing
false positives due to voluntary movements [51]. The FOG detection algorithm is based
on an SVM classifier with a radial basis function. The model is fed with specific temporal
(e.g., increments, standard deviation, correlation among axes) and spectral (e.g., harmonic
peaks, spectral skewness, and kurtosis) features extracted from the three-axis accelerometer
signals [36]. The percentage of time spent with dyskinesia is computed every 10 min, while
the number of FOG episodes and the time spent with FOG are calculated every minute, as
previously reported [41].

2.5. Statistical Analysis

Descriptive statistics were used to describe the demographic and clinical characteris-
tics of patients with PD by expressing continuous variables as median and interquartile
range. The Mann–Whitney U-test was used to compare demographic and clinical features
of subgroups of patients (i.e., PD-Dys vs. PD-nDys, PD-FOG vs. PD-nFOG), with a signifi-
cance level of p < 0.05. Standardized effect sizes were computed by using Cohen’s d metric.
Concerning the sample size, the significant methodological variability in existing literature
made traditional power analysis challenging. To ensure robustness and applicability, we
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addressed this point by recruiting a larger cohort of patients compared to previous investi-
gations [27,30,34,35]. Our sample size selection was thus based on participant enrollment
from prior studies, supporting the robustness and reliability of our approach.

Data for each variable of interest were collected using wearable sensors. The primary
outcome measures included the number of dyskinesia periods and the time spent experi-
encing dyskinesias, as well as the number of FOG episodes and the time spent with FOG.
We selected these measures as study outcomes because they may reflect patients’ motor
impairment extent and fall risk [52,53]. The cumulative distribution function (CDF) (which
describes the probability of a variable having values less than or equal to x) was used to
compare PD-Dys and PD-nDys as well as PD-FOG and PD-nFOG in terms of these primary
outcomes. Then, to automatically and objectively identify subjects experiencing dyskine-
sias and/or FOG during activities of daily living, a binary classification task was set. For
PD-Dys vs. PD-nDys classification, the input features comprised the number of dyskinesia
periods, time spent with dyskinesias, and percent time spent with dyskinesias. For PD-FOG
vs. PD-nFOG classification, the input features included the number of FOG episodes, time
spent with FOG, and percent time spent with FOG. The latter measure was obtained by
dividing the time spent with FOG by the total time walking. The input measures were
normalized in the range 0–1 according to Equation (1), where f ′ represents the normalized
feature, f the original features, and fmax and fmin the maximum and minimum values,
respectively:

f ′ =
f − f min

f max + f min
(1)

Then, the performance of a logistic regression model in leave-one-subject-out vali-
dation was evaluated in terms of sensitivity, specificity, positive and negative predictive
values (PPV and NPV, respectively), accuracy, and area under the curve (AUC).

A binary classification approach was also employed to differentiate patients expe-
riencing both dyskinesias and FOG from those who were unaffected by each of the two
disorders based on both dyskinesias and FOG measures.

The secondary outcome measures encompassed standard spatiotemporal gait parame-
ters, including step length (m), stride speed (m/s), cadence (steps/min), and stride fluidity
(m/s2). Given their substantial responsiveness to dopaminergic therapy, these spatiotempo-
ral gait parameters adequately mirror the patient’s motor condition, potentially serving as
a reliable surrogate for disease severity and stage [54,55]. Spatiotemporal gait parameters
were calculated as average values within a 1 min timeframe, and their variance was also
assessed. From the original recordings, zero-values and not available data were removed.
In addition, parameters related to short walking periods (i.e., periods including less than
8 steps) were excluded from the analysis to reduce non-attentive or non-representative
measures, reflecting potential confounders [27]. The Mann–Whitney U-test was used to
compare spatiotemporal parameters between PD-Dys and PD-nDys as well as PD-FOG and
PD-nFOG, with a significance level of p < 0.05. The effect size was calculated using Cohen’s
d measure. To ensure comparability and minimize confounding factors, in addition to the
implementation of rigorous data collection protocols and consistency in sensor placement,
we conducted this analysis on a smaller number of patients from the entire enrolled cohort,
allowing for the matching of subgroups based on age, disease duration, H&Y, MDS-UPDRS
III, and MoCA. To this aim, an automated matching procedure was employed, which
pairs each PD-Dys and PD-FOG with a control subject who is similar in terms of clinical
and demographic characteristics, assigning equal weight to all measures. Accordingly, a
stratified analytical approach was adopted to separately analyze subgroups of patients
presenting dyskinesias or FOG.

Finally, Spearman’s correlation analysis was performed to assess possible clinical–
behavioral associations between sensor-based measures and clinical scores. No missing
data were encountered in the dataset. This was confirmed through a thorough review of
the collected data before the analysis.
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3. Results

Table 1 presents the demographic and clinical profiles of the entire PD patient cohort
and subgroups categorized by the presence of dyskinesias and/or FOG, encompassing a to-
tal of 71 subjects. All enrolled patients meeting the study’s eligibility criteria completed the
experimental procedures without any dropouts. Subjects were monitored for 6.7 ± 1.3 days
(median: 6, IQR: 6–8 days). Following rigorous matching procedures based on demo-
graphic and clinical parameters, we identified a cohort of 48 individuals for comparing
spatiotemporal gait parameters between PD-Dys and PD-nDys (consisting of 24 individuals
each). Similarly, 48 subjects were selected to compare PD-FOG and PD-nFOG (also with
24 individuals in each). Table 2 summarizes the demographic and clinical characteristics of
PD-Dys and PD-nDys, as well as PD-FOG and PD-nFOG, after matching procedures.

Table 1. Demographic and clinical features of patients with Parkinson’s disease.

PD-ALL PD-Dys PD-nDys
PD-Dys

vs.
PD-nDys

PD-FOG PD-nFOG
PD-FOG

vs.
PD-nFOG

Sex 56 M
15 F

27 M
13 F

27 M
1 F

U = 398.0
p = 0.002

27 M
6 F

23 M
6 F

U = 466.5
p = 0.406

Age (years) 69 (62.5–76) 67.5 (61–74) 73 (66–77.5) U = 407.5
p = 0.029 67 (61.5–74) 71 (63–76) U = 378.0

p = 0.079

Disease duration (years) 8.5 (5–12) 10.5 (7–13) 5.5 (4–8) U = 240.5
p < 0.001 10 (7–13.2) 7 (4–10) U = 225.5

p < 0.001

Hoehn and Yahr 2 (2–3) 2 (2–2.5) 2 (1.8–2) U = 411.5
p = 0.015 2 (2–2.5) 2 (2--2) U = 362.5

p = 0.023

MDS-UPDRS III ON 20.5 (16–30) 20.5 (15.5–29.5) 20.5 (17–31) U = 505.5
p = 0.427 22.5 (15.5–31) 19.5 (15–25.5) U = 369.0

p = 0.122

MDS-UPDRS IV 5 (1–9) 7.5 (5–12) 0.5 (0–3) U = 148.5
p < 0.001 9 (5–12) 1 (0–5.2) U = 121.5

p < 0.001

Unified dyskinesia rating scale-III 1 (0–5) 4 (2–9) / / 4 (1–9.2) 0 (0–1.5) U = 168.0
p < 0.001

Unified dyskinesia rating scale-IV 1 (0–4) 3 (2–6) / / 3 (1–6) 0 (0–0.2) U = 161.5
p < 0.001

Wearing-off questionnaire-19 4 (1–6.8) 5 (2.2–8) 0.5 (0–4.5) U = 262.0
p < 0.001 6 (3.8–8.2) 1.5 (0–4.5) U = 179.5

p < 0.001

Montreal cognitive assessment 25 (23–27) 25 (23–27) 25 (23–27) U = 513.5
p = 0.468 25 (22.8–26) 25.5 (23–27) U = 386.5

p = 0.137

Frontal assessment battery 15 (12–17) 15.5 (12–17) 15 (14–16) U = 510.5
p = 0.354 14 (12–17) 16 (14–17) U = 369.0

p = 0.088

Beck depression inventory 6.5 (4–10.5) 6 (4–10) 7 (4–11) U = 414.0
p = 0.340 7 (4–10.2) 7 (4–12) U = 368.5

p = 0.446

Beck anxiety inventory 8 (2–10.5) 9 (2.8–29) 7 (2–8) U = 88.0
p = 0.140 16.5 (8–34) 7.5 (2.5–9.5) U = 42.5

p = 0.065
Parkinson’s disease

questionnaire-39 24.5 (15.5–38) 27 (17–38.8) 20 (13–37.2) U = 365.5
p = 0.142 30.5 (23–40) 19.5 (13.5–37.5) U = 258.5

p = 0.039

Freezing of gait questionnaire 4 (0–11) 9 (4–13) / U = 158.0
p < 0.001 10 (6.8–14) / /

Levodopa equivalent daily
doses (mg) 850 (600–1220) 1125

(805–1350) 602 (500–752) U = 251.5
p < 0.001

1170
(910–1587) 700 (503–865) U = 195.5

p < 0.001

F, females; M, males; MDS-UPDRS, Movement Disorder Society—Unified Parkinson’s Disease Rating Scale; ON,
under dopaminergic therapy; PD-ALL, entire cohort of patients with Parkinson’s disease; PD-Dys, patients with
dyskinesia; PD-nDys, patients without dyskinesia; PD-FOG, patients with freezing of gait; PD-nFOG, patients
without freezing of gait.

Table 2. Demographic and clinical features of matched patients with Parkinson’s disease.

PD-Dys PD-nDys
PD-Dys

vs.
PD-nDys

PD-FOG PD-nFOG
PD-FOG

vs.
PD-nFOG

Sex 16 M
8 F

23 M
1 F

U = 204
p = 0.005

20 M
4 F

18 M
6 F

U = 264
p = 0.245

Age (years) 68 (64–74) 73 (66–77) U = 220
p = 0.083 64 (56.5–70) 71 (62–75) U = 202.5

p = 0.051

Disease duration (years) 8.5 (6–11) 6 (4–9) U = 189
p = 0.053 9.5 (6–11) 7 (5–10) U = 220

p = 0.081

Hoehn and Yahr 2 (2–2) 2 (2–2) U = 250
p = 0.167 2 (2–2) 2 (2–2) U = 255

p = 0.199

MDS-UPDRS III ON 19.5 (12.5–23.5) 20.5 (17–32) U = 219
p = 0.166 19 (12.2–30.5) 19 (14.5–23.2) U = 251

p = 0.387
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Table 2. Cont.

PD-Dys PD-nDys
PD-Dys

vs.
PD-nDys

PD-FOG PD-nFOG
PD-FOG

vs.
PD-nFOG

MDS-UPDRS IV 6 (5–12.5) 0.5 (0–3) U = 91
p < 0.001 10 (6–12.5) 2 (0–6) U = 80

p < 0.001
Unified dyskinesia rating

scale-III 3 (1–9) / / 3 (1–9) 0 (0–3) U = 130
p < 0.001

Unified dyskinesia rating
scale-IV 2 (1.5–6) / / 2.5 (1–5.5) 0 (0–1.5) U = 118

p < 0.001

Wearing-off questionnaire-19 4 (2–5) 0.5 (0–4.5) U = 150
p = 0.003 6 (4–9) 3 (0–5) U = 107

p < 0.001

Montreal cognitive assessment 25 (22.5–26) 25 (23–27) U = 237
p = 0.279 25 (21.5–26.5) 26 (24.2–27.8) U = 207

p = 0.071

Frontal assessment battery 15 (12–17) 15 (14–16.8) U = 256
p = 0.341 14 (12–17) 16 (14.2–17) U = 194

p = 0.054

Beck depression inventory 6.5 (4–10.5) 7.5 (4–12) U = 196
p = 0.281 8 (5.5–10.5) 8 (4–13.2) U = 200

p = 0.397

Beck anxiety inventory 10 (8–29) 7.5 (3–9) U = 38
p = 0.071 29 (16–34.5) 8 (4.2–10.8) U = 13

p = 0.020
Parkinson’s disease

questionnaire-39 22 (13.8–38.2) 21 (15.5–37.2) U = 218
p = 0.485 33 (22.2–40.5) 20.5 (16–39) U = 165

p = 0.123

Freezing of gait questionnaire 6 (3–11) / U = 82
p < 0.001 10 (6.5–13) / /

Levodopa equivalent daily
doses (mg) 1050 (785–1240) 612 (500–752) U = 138

p = 0.002 1125 (866–1607) 700 (55–955) U = 142
p = 0.002

F, females; M, males; MDS-UPDRS, Movement Disorder Society—Unified Parkinson’s Disease Rating Scale; ON,
under dopaminergic therapy; PD-ALL, entire cohort of patients with Parkinson’s disease; PD-Dys, patients with
dyskinesia; PD-nDys, patients without dyskinesia; PD-FOG, patients with freezing of gait; PD-nFOG, patients
without freezing of gait.

3.1. Dyskinesias

The cumulative distribution function (CDF) showed that 57% of PD-nDys had zero
detected dyskinesias, 82% had one period at most, and all of them had less than eight
periods. Among PD-Dys, 10% of subjects had zero detected dyskinesia, 20% had one
episode at most, and 70% of them had less than eight periods (Figure 3A,B). Both the
number of dyskinesia periods (U = 192, p < 0.001, d = 1) and time spent with dyskinesias
(U = 164, p < 0.001, d = 1) were statistically different between PD-Dys and PD-nDys
(Figure 3C,D).

Regarding the classification of subgroups based on the time spent with dyskinesias,
PD-Dys could be distinguished from PD-nDys with sensitivity 0.81, specificity 0.80, PPV
0.87, NPV 0.71, accuracy 0.81, and AUC 0.86.

When comparing step length, stride speed, stride fluidity, and cadence between PD-
Dys and PD-nDys, the Mann–Whitney U-test did not show any significant differences (all
p > 0.05 and d < 0.4) (Table 3).

Table 3. Spatiotemporal gait parameters in Parkinsonian patients with (PD-FOG) and without FOG
(PD-nFOG) as well as with (PD-Dys) and without dyskinesia (PD-nDys).

PD-Dys PD-nDys
PD-Dys

vs.
PD-nDys

PD-FOG PD-nFOG
PD-FOG

vs.
PD-nFOG

Step length (m) 0.8 (0.7–0.8) 0.8 (0.7–0.8) U = 274, p = 0.39
d = 0.10 0.8 (0.7–0.9) 0.8 (0.7–0.9) U = 287, p = 0.496

d = 0.04

Stride speed (m/s) 0.5 (0.5–0.5) 0.5 (0.5–0.5) U = 281, p = 0.447
d = 0.1 0.5 (0.5–0.6) 0.5 (0.5–0.5) U = 257, p = 0.265

d = 0.02

Stride fluidity 8.1 (7–9.1) 7.3 (6.9–8.2) U = 217, p = 0.073
d = 0.4 8 (7.3–9.3) 7.8 (7–8.5) U = 261, p = 0.292

d = 0.2

Cadence 38.9 (37.9–40) 39.1 (37.6–40) U = 271, p = 0.367
d = 0.05 38.9 (37.7–40.5) 39.1 (37.6–40) U = 285, p = 0.479

d = 0

Std step length (m) 0.2 (0.2–0.2) 0.2 (0.2–0.2) U = 234, p = 0.140
d = 0.4 0.2 (0.2–0.2) 0.2 (0.2–0.2) U = 246, p = 0.196

d = 0.4
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Table 3. Cont.

PD-Dys PD-nDys
PD-Dys

vs.
PD-nDys

PD-FOG PD-nFOG
PD-FOG

vs.
PD-nFOG

Std stride speed (m/s) 0.1 (0.1–0.1) 0.1 (0.1–0.1) U = 284, p = 0.471
d = 0.1 0.1 (0.1–0.1) 0.1 (0.1–0.1) U = 275, p = 0.398

d = 0.2

Std stride fluidity 1.5 (1.2–2) 1.4 (1.1–1.8) U = 242, p = 0.174
d = 0.3 1.5 (1.3–2) 1.7 (1.3–1.9) U = 272, p = 0.375

d = 0.1

Std cadence 5.3 (4.6–5.6) 5.4 (4.8–5.8) U = 256, p = 0.258
d = 0.2 5.5 (4.8–6) 5.4 (4.9–5.7) U = 249, p = 0.214

d = 0.3

PD-Dys, patients with dyskinesia; PD-nDys, patients without dyskinesia; PD-FOG, patients with freezing of gait;
PD-nFOG, patients without freezing of gait; Std, standard deviation.
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Figure 3. Cumulative distribution function (CDF) plots (A,B) and box plots (C,D) show a greater
number of dyskinesia periods (#Dys) and time spent with dyskinesias (TwDys) in dyskinetic (PD-Dys)
compared to non-dyskinetic Parkinsonian patients (PD-nDys).

Finally, the Spearman’s correlation test demonstrated that the time spent with dyski-
nesias significantly correlated with the MDS-UPDRS IV (r = 0.41, p < 0.001), UDysRS III
(r = 0.52, p < 0.001) and IV (r = 0.52, p < 0.001), as well as LEDDs (r = 0.43, p < 0.001).

3.2. Freezing of Gait

As shown by the CDF (Figure 4A,B), 59% of PD-nFOG had zero episodes detected, 83%
had one episode at most, and all of them had less than seven episodes. By contrast, 12% of
PD-FOG had zero episodes detected, 27% had one episode at most, and 51% of them had
more than seven episodes. Both the number of FOG episodes (U = 127, p < 0.001, d = 0.9)
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and the time spent with FOG (U = 124, p < 0.001, d = 0.9) were statistically different between
PD-FOG and PD-nFOG (Figure 4C,D). These findings did not change when normalizing
the derived measures by the total time spent walking.
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Figure 4. Cumulative distribution function (CDF) plots (A,B) and box plots (C,D) show a greater
number of freezing of gait (FOG) episodes (#FOG) and time spent with FOG (TwFOG) in Parkinsonian
patients with FOG (PD-FOG) and compared to those without FOG (PD-nFOG).

When classifying subgroups based on the number of FOG episodes and time spent
with FOG, PD-FOG could be distinguished from PD-nFOG with the following perfor-
mances: sensitivity 0.82, specificity 0.79, PPV 0.82, NPV 0.79, accuracy 0.81, and AUC 0.83.

Concerning spatiotemporal parameters of gait, no statistically significant differences
in step length, stride speed, stride fluidity, and cadence, as well as the variance of these
parameters, emerged between PD-FOG and PD-nFOG (all p > 0.05) (Table 3).

Lastly, Spearman’s correlation analysis showed that the number of FOG episodes
was positively associated with scores of MDS-UPDRS IV (r = 0.54, p < 0.001), UDysRS III
(r = 0.51, p < 0.001) and IV (r = 0.54, p < 0.001), WOQ19 (r = 0.48, p < 0.001), and LEDDs
(r = 0.41, p = 0.001). In PD-FOG, neither the number of episodes (p = 0.29) nor the total
duration of FOG (p = 0.21) showed a significant correlation with the FOG-Q. No significant
correlations were found between clinical scores and the time spent with FOG.

3.3. Dyskinesias plus Freezing of Gait

When distinguishing patients concurrently experiencing dyskinesia and FOG (n = 30)
from those unaffected by both these conditions (n = 28), the classification reached the
following metrics: sensitivity of 0.83, specificity of 0.76, PPV of 0.83, NPV of 0.76, accuracy of
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0.80, and an AUC of 0.92. Examining the individual contributions of features to the overall
performance, the time spent with FOG presented the most robust outcome (AUC 0.87),
followed by the number of FOG episodes (AUC 0.87) and the time spent with dyskinesias
(AUC 0.83).

4. Discussion

In this study, we have continuously monitored a large cohort of patients with PD
in ecologically valid environments, by using a validated and approved wearable sen-
sor for an extended period. We have confirmed satisfactory psychometric properties of
the wearable sensor in recognizing dyskinesias and FOG in patients with PD through
dedicated machine-learning algorithms. Furthermore, we have provided novel findings
regarding spatiotemporal gait parameters obtained during everyday activities in PD-Dys
and PD-FOG.

By carefully adopting stringent inclusion criteria and methodological precautions, we
have prevented several confounding factors possibly leading to misinterpretation. More
in detail, we only included patients with idiopathic PD and we confirmed the presence of
dyskinesias and FOG through direct observation of the disorder on at least one occasion.
Moreover, to compare spatiotemporal gait parameters, we meticulously matched PD-Dys
and PD-nDys, as well as PD-FOG and PD-nFOG, to avoid confounding arising from clinical
variables influencing gait. Lastly, clear and precise instructions were provided for sensor
placement to mitigate potential patient errors when using the device.

4.1. Dyskinesias

In line with clinical evidence indicating that dyskinesias are a motor complication of
advanced disease [3], PD-Dys presented longer PD duration and greater severity of motor
symptoms than PD-nDys. Advanced disease may pose a potential confounding factor in
distinguishing dyskinesias from intentional gestures of daily life [56]. This task may be even
more challenging when considering the broad spectrum of activities and their variability
in unsupervised real-life conditions, as proposed by our study. Indeed, as the disease
progresses, patients face increasing challenges in motor control, leading to voluntary move-
ments that may deviate significantly from physiological motor patterns [57]. However,
specific motor features, such as lower frequency components, irregular amplitude signals,
and diminished coordination, may play a crucial role in differentiating dyskinesias from
voluntary movements through kinematic analysis [56,58–60]. Despite the challenges associ-
ated with advanced disease, in our study, the wearable system has demonstrated moderate
accuracy in distinguishing PD-Dys from PD-nDys, thus confirming our research hypothesis.
The diagnostic performances of the wearable sensor were only slightly inferior to those
previously reported in patients recorded under supervised conditions [28,61]. Moreover, in
line with a previous study [30], clinical–behavioral correlations supported the robustness
of sensor-based measures and their close association with oral dopaminergic therapy. The
objective identification of dyskinesias in PD offers potential clinical advantages, given that
this condition often requires a transition to infusion-based treatments (e.g., continuous
intestinal infusion of Levodopa/Carbidopa gel or subcutaneous apomorphine) and/or
surgical interventions (e.g., deep brain stimulation of the subthalamic nucleus or globus
pallidus pars interna) [62]. Indeed, quantifying dyskinesias in daily life through the use
of a single wearable sensor may facilitate the identification of patients who could benefit
from invasive treatments and help manage therapeutic adjustments in the postoperative
period [63].

When considering dyskinesias, the body position of the wearable sensor holds a
certain importance [64,65]. Indeed, a sensor placed at the waist can provide information
regarding trunk and lower limb dyskinesias but may not identify possible dyskinesias
occurring in the upper limbs. Supporting this observation, previous authors demonstrated
that the concordance between waist-worn sensor measurements and clinical assessments of
dyskinesias notably increases when concentrating specifically on the trunk and lower limbs,
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as opposed to evaluating all body regions. [30]. Nonetheless, it should be considered that
trunk and lower limb dyskinesias are likely of greater clinical interest as they have a more
significant impact on static and dynamic postural control and, consequently, on the likeli-
hood of falls [66]. Furthermore, given that the trunk is commonly affected in “peak-dose
dyskinesias” (occurring when Levodopa is at its highest concentration in the body), while
the lower limbs are implicated in “biphasic dyskinesias” (occurring during both the as-
cending and descending phases of medication effectiveness) [67], sensor-based monitoring
could offer relevant insights on dyskinesias timing to optimize pharmacological treatment.

A further comment concerns the assessment of spatiotemporal gait parameters in
PD-Dys. As dyskinesias disrupt the ability to walk smoothly and cohesively [68], measures
such as step length and walking speed would be expected to be more severely impaired in
PD-Dys than in PD-nDys [69]. In disagreement with our research hypothesis, we found
comparable spatiotemporal gait parameters in clinically matched PD-Dys and PD-nDys,
possibly underestimating the impact of dyskinesias on gait in PD. Several interpretations
could be proposed on this issue: First, it is possible that the severity of patients’ dyskinesias
was insufficient to significantly impair gait during the sensor-based recordings; alterna-
tively, patients might have refrained from walking during periods of severe dyskinesias
to minimize their risk of falls, thereby concealing the effects of involuntary movements
on gait; lastly, it cannot be excluded that the sensitivity of a single wearable sensor may
be inadequate to detect subtle changes in spatiotemporal gait parameters in real-world
settings, where various environmental factors come into play [70]. Given the lack of
prior studies comparing spatiotemporal gait parameters between PD-Dys and PD-nDys
in both laboratory and home environments, we believe it is advisable to interpret this
finding cautiously.

4.2. Freezing of Gait

Our PD-FOG cohort presented more severe disease characteristics compared to PD-
nFOG, including longer disease duration and higher motor and non-motor impairment.
This aligns with previous studies indicating that FOG is associated with advanced stages
of PD, marked by more severe motor dysfunction, emotional impairment, and cognitive
decline [71]. These findings emphasize the value of wearable sensors for objectively
monitoring motor disorders in PD-FOG, as these patients may face greater challenges
in accurately and reliably reporting their health status due to recall bias or inaccurate
self-assessments [6,72]. Additionally, the greater clinical impairment in PD-FOG further
underscores the need to minimize the number of devices used to enhance usability and
reduce obtrusiveness [73]. Indeed, the reduced accuracy of single-sensor measurements
compared to multiple devices is offset by a reduced wearability burden and increased
long-term patient compliance [73]. In this context, placing the device on the waist or lower
back may offer the right balance between low obtrusiveness and accurate recognition of
FOG, as demonstrated by our findings and previous authors [73,74]. Accordingly, our
methodological approach utilizing a single wearable sensor may offer greater convenience
for implementation in daily clinical practice compared to previous studies that employed
two or more devices for detecting FOG [27,34].

By stratifying patients based on sensor-based measures, in agreement with our research
hypothesis, the number of FOG episodes and time spent with FOG allowed us to effectively
differentiate PD-FOG from PD-nFOG with satisfactory diagnostic performances, both in
terms of sensitivity and specificity. When looking at the number of FOG episodes, a lower
frequency was observed in our study compared to similar research [27,34], potentially
due to either a milder severity of the disorder in our patients or a reduced rate of false
positives generated by our device. Also, the classification performance is notably lower
compared to that observed in controlled laboratory environments, where the accuracy
levels in FOG recognition are excellent [75,76]. However, it is essential to consider that,
while in a laboratory setting patients are recorded under controlled conditions, long-term
monitoring during routine daily activities introduces a high number of interfering factors
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that can impact patients’ gait, such as floor variations, environmental distractions, and
variable task complexity [70]. Indeed, the performance of the adopted wearable system is
fully comparable with that from previous at-home recordings of FOG in PD [36,77,78].

When comparing step length, stride speed, cadence, and stride fluidity, as well as
their variance between PD-FOG and PD-nFOG, we did not find any significant differences,
in contrast with what we initially hypothesized. This result apparently disagrees with
some previous studies showing greater continuous gait abnormalities, such as shorter
stride length and increased step-to-step variability, in PD-FOG than in PD-nFOG [39,40,75].
Moreover, our observations would also disagree with the pathophysiological hypothe-
sis that suggests FOG in PD arises from a progressive deterioration of spatiotemporal
gait parameters until reaching a threshold of impairment triggering the paroxysmal inter-
ruption of step (i.e., sequence effect) [79,80]. However, it should be considered that we
monitored patients in real-life and unsupervised conditions, whereas studies reporting
different gait parameters between PD-FOG and PD-nFOG were conducted in controlled
laboratory environments [39,40]. It has been previously demonstrated that the assess-
ment of mobility under supervised versus unsupervised conditions can yield markedly
different results [81,82]. It is plausible that, in addition to environmental interfering ele-
ments, various attentional and emotional states significantly impact gait performances in
free-living situations [83]. Therefore, it could be challenging to accurately measure subtle
changes in spatiotemporal gait parameters in ecological settings. Indeed, consistent with
our findings, other authors similarly found no differences in other spatiotemporal gait
parameters between PD-FOG and PD-nFOG in home settings [27]. Overall, while the
sensor accuracy in detecting subtle changes in spatiotemporal gait parameters may appear
limited in PD, the system appears effective in identifying complex motor patterns like
FOG. Our clinical–behavioral correlations further support this observation, also in line
with previous findings [27,34]. Accordingly, future studies will need to explore alternative
approaches for characterizing the gait signal in PD, recognizing that conventional methods
for gait detection and stride segmentation may not be as efficacious to measure standard
spatiotemporal gait parameters in unsupervised environments as they are in controlled
laboratory settings.

While our study offers new valuable insights, it is important to also acknowledge some
limitations. First, the absence of a gold standard tool for at-home use makes it challenging
to directly assess the sensor performance in detecting dyskinesias and FOG in PD. This
limitation is compounded by the inherently complex nature of these phenomena, making it
difficult to establish a definitive benchmark. Moreover, the presence of the wearable sensor
may have introduced a “Hawthorne effect”, potentially altering patients’ behaviors and
thus affecting the ecological validity of the recorded data. These limitations underscore
the need for further research to validate our findings and address these methodological
challenges. Nonetheless, the study offers robust external validity and generalizability
of the results. Indeed, strict inclusion criteria and careful research methodology were
implemented to maximize the representativeness of participants compared to the reference
population. Moreover, the highly heterogeneous and non-standardized home environment
where patients were monitored suggests the potential adaptability of the methodological
approach to various settings.

5. Conclusions

This study has demonstrated the potential to accurately recognize patients with PD
experiencing dyskinesias and/or FOG in real-life settings, using a single unobtrusive wear-
able sensor embedding dedicated machine-learning algorithms. While highly sensitive
in identifying complex motor patterns, this approach did not allow for the detection of
possible changes in spatiotemporal gait parameters among patients with and without dysk-
inesias or FOG. Wearable sensors have undergone extensive laboratory testing, but their
utilization in domestic environments remains limited, emphasizing the necessity for more
real-life experiences to facilitate the transition of these tools from experimental to clinical
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settings. Overall, our findings offer the opportunity to improve the clinical care of patients
with PD in advanced disease stages by accurately identifying individuals with motor com-
plications and optimizing treatment strategies. Additionally, it opens up the prospect of
implementing telemedicine procedures in patients affected by movement disorders.
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