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Abstract: Mechanomyography (MMG) is an important muscle physiological activity signal that can
reflect the amount of motor units recruited as well as the contraction frequency. As a result, MMG
can be utilized to estimate the force produced by skeletal muscle. However, cross-talk and time-series
correlation severely affect MMG signal recognition in the real world. These restrict the accuracy of
dynamic muscle force estimation and their interaction ability in wearable devices. To address these
issues, a hypothesis that the accuracy of knee dynamic extension force estimation can be improved by
using MMG signals from a single muscle with less cross-talk is first proposed. The hypothesis is then
confirmed using the estimation results from different muscle signal feature combinations. Finally,
a novel model (improved grey wolf optimizer optimized long short-term memory networks, i.e.,
IGWO-LSTM) is proposed for further improving the performance of knee dynamic extension force
estimation. The experimental results demonstrate that MMG signals from a single muscle with less
cross-talk have a superior ability to estimate dynamic knee extension force. In addition, the proposed
IGWO-LSTM provides the best performance metrics in comparison to other state-of-the-art models.
Our research is expected to not only improve the understanding of the mechanisms of quadriceps
contraction but also enhance the flexibility and interaction capabilities of future rehabilitation and
assistive devices.

Keywords: knee dynamic extension force estimation; mechanomyography; crosstalk; grey relational
analysis; long short-term memory network; improved grey wolf algorithm

1. Introduction

Knee movement is an essential part of lower limb movement, and knee force produced
by skeletal muscle plays a critical role in completing lower limb movements and interacting
with the external environment. In recent years, rehabilitation and assistive devices have
achieved a wide range of application prospects in areas such as rehabilitation medicine,
military operations, and disaster relief. To improve the naturalness and flexibility of device
movement, these devices need to know the human movement intention before human
movement [1]. Therefore, it is vital to supply effective intelligent control information, which
will directly affect the comfort and efficient interaction of these devices [2].

Over the past decades, a lot of work has been performed by many experts using
muscle activity to predict joint angle [3], acceleration [4], torque [5], muscle force [6–9],
fatigue effect [10], etc. In particular, estimating muscle force from muscle activity in
these investigations is a challenging task, which has many potential applications such
as diagnosis of muscle dysfunction, rehabilitation training, prosthetic assistive devices,
etc. [11,12].
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In general, direct measurement of muscle force requires a complicated and costly
acquisition device, limiting not only portability but also real-time performance. Therefore,
many researchers have investigated indirect ways of assessing muscle force utilizing human
surface bio-signals, such as surface electromyography signals (sEMG) and MMG.

sEMG can represent the number and firing rates of active motor units, which are
closely related to muscle activity during muscle contraction, making it a reliable mainstream
approach for estimating skeletal muscle force/torque [13,14]. Although sEMG contains
abundant physiological motion information and reflects human motor intention, and has
been proven to be closely related to the corresponding muscle activity [15], it is severely
limited in related domains due to relatively small signal amplitude, interferences from
other electrical equipment, skin impedance changes, etc.

MMG, which is pressure waves created by the activation of muscle fibers and their
dimensional changes during muscle contraction [5], and represents the muscles’ mechani-
cal output, is comparable to sEMG. Thus, MMG can also provide important information
on muscle activity and motor unit recruitment patterns [16], which can be detected on
the skin surface above the target muscle by accelerometers, piezoelectric microphones,
etc. [1,4,13,17]. Even though MMG is influenced by many factors such as muscle morphol-
ogy and the physical environment [18], it has significant advantages over sEMG with no
skin preparation, negligible skin impedance, no need for precise test positioning, and less
electronic noise interference [13]. Notably, MMG has been applied to human motion recog-
nition and kinetic parameter estimation [1,4–6,13,18–21]. However, it is still a challenging
issue to establish direct relationships between MMG signals and interactive forces due to
the complexity and variety of muscle motor unit (MU) recruitment. One of the problems
that cannot be ignored is cross-talk during muscle contraction, which is a critical issue that
prevents the clinical application of MMG [22].

Cross-talk in MMG signals refers to the contamination of the signal from the muscle
of interest by the signal from another muscle or muscle group in very close proximity [23].
Some scholars have conducted considerable study on cross-talk, indicating that cross-talk
seems to be related to many factors, including anthropometric parameters, the direction
of the collected signal, the proximity of the muscles, etc. Talib et al. [24] employed cross-
correlation coefficients (CCC) to quantify the magnitude of cross-talk between elbow flexor
muscle pairs at 80% of maximum voluntary isometric contraction (MVIC) and found
the root mean square (RMS) and cross-talk seemed to be unrelated to anthropometric
parameters. Beck et al. [25] found a strong correlation between MMG signals detected in
the vertical and horizontal axes, implying that detecting MMG signals in the multi-axis
direction may be unnecessary. Among these factors, cross-talk from adjacent muscles
is the most direct. Mohamad Ismail et al. [10] investigated cross-talk in MMG signals
from forearm extensors and flexors before and after fatigue, and found that cross-talk is
consistently higher in the extensors than the flexors and that cross-talk values increase
as the distance between two adjacent muscles decreases. In addition, related evidence
indicates that cross-talk in forearm muscle MMG signals [26] is greater than in quadriceps
MMG signals [27], possibly due to the closer distance between forearm muscles than
quadriceps muscles.

In specific rehabilitation and assistive device control, muscle force often needs to be
identified. The above reports also further indicate that all MMG signals obtained from the
muscle surface are affected by cross-talk. Unfortunately, the participation of muscles in
joint movements is still not well understood. Similarly, the effect of cross-talk in muscle
signals on muscle force estimation has been also consistently overlooked. It may also
be an important reason of poor accuracy of the estimation of the relevant muscle force.
For example, Youn et al. [28] did not take cross-talk into account in estimating elbow
flexion force, and obtained results with the normalized root mean square error (NRMSE)
of not less than 0.130 and the correlation coefficient (R) of not more than 0.904; similarly,
in another of their studies on elbow flexion force estimation, they also obtained the best
results of NRMSE of not less than 0.1 and R of not more than 0.93 [18]. Furthermore, a
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similar occurrence was observed in both MMG-based and sEMG-based related muscle
force estimation studies [6,8,9,15,29]. Nevertheless, there have been no reports so far on
how to identify a muscle with less cross-talk for muscle force estimation.

When MMG signals are employed for muscle force estimation, apart from the consid-
eration of cross-talk, a significant technical difficulty is the development of an appropriate
muscle force estimation model. In the previous stage, we constructed knee static extension
force estimation models using support vector regression (SVR) [30,31] and achieved high
accuracy. However, when applying these models to knee dynamic extension force estima-
tion, the results were not satisfactory. Recent related works [7,9,28,32] have also reported
unsatisfactory results for dynamic muscle force estimation using traditional machine learn-
ing methods. Consequently, we would like to continue to investigate suitable models for
dynamic muscle force estimation.

Among the data-driven approaches, the long short-term memory (LSTM) network is
well suited for non-linear and time-series data [33], which not only effectively alleviates the
problem of gradient explosion and gradient disappearance in a recurrent neural network
(RNN), but also solves the long-time dependence problem of RNN [34]. Dao [35] built
a lower limb muscle strength prediction model using a developed LSTM network and
achieved an accuracy of relative root mean square error (RMSE) deviation of less than
5% and Pearson correlation coefficients of greater than 95% in a real-world database, re-
spectively. Chen et al. [34] proposed an LSTM-based continuous estimation model for
estimating three-dimensional motion of the upper shoulder elbow joint (touch task and
composite task) and achieved high estimation accuracies, with the coefficient of determina-
tion (R2) of 0.9171 for the touch task and R2 of 0.8109 for the composite task. In addition,
compared to the multi-layer perceptron (MLP) model, the proposed model’s root mean
square error (RSME) was reduced by 13.57%.

In an LSTM network, hyper-parameters such as the learning rate and the number of
hidden layer neurons affect the prediction accuracy in addition to determining the training
effect and training speed of the network. Recent investigations have demonstrated that the
LSTM can achieve the same performance as a more complex structured LSTM model if its
hyper-parameters are carefully tuned or optimized [36]. When Rashid et al. [37] compared
the grey wolf optimizer (GWO) to other optimization algorithms, they noticed that the
LSTM optimized by GWO provided the best performance. However, GWO is prone to
falling into local optima in the later stages of the optimization search process and has a
slow convergence rate in the early stages [38]. Therefore, to better balance the algorithm’s
global and local search capabilities, this investigation employs the previously developed
IGWO to construct an IGWO-LSTM estimation model.

Herein, based on the characteristics of the knee extensor muscles of the lower limb,
this article chooses to use accelerometers placed on the knee extensor muscles to obtain
the MMG signals. Then, muscle signals with low cross-talk can be identified by cross-talk
analysis, which can be used as signals for dynamic knee extension force estimation to
improve the estimation accuracy. Additionally, in order to further improve the accuracy of
the dynamic extension force estimation, an IGWO-LSTM-based dynamic extension force
estimation model is proposed. The remaining sections are organized as follows. Section 2
summarizes in detail the subject profile, experimental equipment and procedures, signal
processing method, data cross-talk analysis method, model design process, and model
evaluation indicators. Section 3 presents cross-talk between different muscle pairs, the
estimation results for different combinations of muscle signals, and comparison of different
models for the knee dynamic extension force estimation. Section 4 discusses experimental
results, advantages, and limitations of the current work. Finally, Section 5 presents the
conclusions and the potential for its application, as well as future issues that need to
be addressed.
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2. Materials and Methods
2.1. Experimental Devices and Procedures

Six healthy subjects, five males and one female (mean ± SD age = 19.83 ± 1.47 years;
body weight = 75.33 ± 22.02 kg; height = 1.78 ± 0.08 m), with no history of neuromuscular
injury, volunteered to participate in the experiment. The relatively small age range of
subjects was intended to minimize the potential effect of age, which has been reported to
be associated with age-related factors in MMG signals during force generation [39]. The
experiment was approved by the Institutional Review Committee of Hefei Institute of
Physical Science, Chinese Academy of Sciences, and all participants completed a health
history questionnaire and signed an informed consent form before testing.

The experimental setup and quadriceps anatomy are illustrated in Figure 1. The signal
acquisition equipment and sensor placement referenced pre-work [31]. The subjects were
asked to sit comfortably in a test chair with their right leg fixed and bent at a 90◦ angle.

Figure 1. Experimental setup and quadriceps anatomy.

Each subject was required to visit the laboratory twice, once for the familiarization
session and once for the signal acquisition session. During the familiarization session,
subjects were not only familiarized with the experimental equipment but also provided
with training in isometric contraction experiments, while maximum voluntary isometric
contraction (MVIC) was collected, providing strong verbal encouragement during this
session. The highest value of the measured force from three maximal muscle actions was
recorded as a contraction level of 100% MVIC. Additionally, a percentage of MVIC (%MVIC)
can reduce the influence of the maximum knee extension force value of different subjects.
In the signal acquisition session, to implement knee dynamic extension force estimation
during isometric contraction, firstly, static knee extension during voluntary isometric
contraction (SVIC) was carried out in 10% increments from 20% to 60% MIVC; finally,
knee dynamic extension during voluntary isometric contraction (DVIC) was carried out in
the range of 20–60% MIVC. MMG signals obtained from three muscles (vastus medialis
(VM), vastus lateralis (VL), and rectus femoris (RF)) and knee dynamic extension force
obtained from the lower calf were collected simultaneously during each voluntary muscle
contraction action. Each knee dynamic extension task lasted 1 min. During the experiment,
subjects were not allowed to talk or move their bodies to avoid sudden variations in knee
extension force and were given a two-minute rest between two adjacent voluntary muscle
contraction actions to avoid muscle fatigue.

2.2. Signal Processing

MMG signals can be obtained by accelerometers on the skin surface above the muscle
of interest. Such sensors, as elaborated by Harrison, can measure vibration signals created
by the contraction of muscle, but they also pick up disturbances such as the movement of
the limb as it accelerates, decelerates, is lifted, or lowered [17]. To overcome these issues, we
employed the previously designed noise suppression and artifacts removal method [40] to
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filter out these interferences. Meanwhile, for the knee extension force signals, we designed
a 5 Hz third-order Butterworth low-pass filter to filter out high-frequency noise. After
signal processing, we obtained a more stable 40 ms signal sequence as experimental data by
deleting the 10 ms signal sequence preceding and following the original sequence. Figure 2
shows the filter effect on the original MMG signals and the knee extension force signals
during DVIC.

Figure 2. Denoised signals. (a) Knee extension force signals. (b) MMG signals from RF. (c) MMG
signals from VL. (d) MMG signals from VM.

MMG signals can reflect the mechanical properties of the muscle fibers recruited
during voluntary contractions and usually have non-stationary and non-linear properties.
Therefore, it is necessary to consider time domain features, frequency domain features,
time–frequency domain features, and non-linear features to describe MMG signals to
adequately reflect muscle activity. To this end, we extracted 25 features from each segment,
and a total of 75 features from the three channels [31]. Not all of these features are highly
correlated with knee dynamic extension force. Therefore, in this paper, the grey relational
analysis (GRA) method from the previous work was used for feature screening to obtain
valid features that are highly correlated with knee dynamic extension force [31]. Valid
features screened from different subjects using the GRA method are not the same due to
individual differences. In addition, for real-time estimation of knee extension force during
feature extraction, we used a window length of 250 data points (250 ms) and a sliding
overlap length of 50 data points (50 ms).

2.3. Data Cross-Talk Analysis

To evaluate the cross-talk of the three muscles (RF, VL, and VM), the denoised MMG
signals were used for the cross-talk analysis in this paper. The cross-talk in the MMG
signals from the two associated muscles was quantified using cross-correlation coefficients
(CCC) which were calculated using Equation (1) [10,23,41]:

RMMG1,MMG2(τ) =
1

a × b × ω(τ)∑
N−1
n=0 MMG1t(n)MMG2t(n + τ); 1 − N < τ < M (1)

where MMG1t and MMG2t are MMG signals from two associated muscles, N and M are
the lengths of MMG1t and MMG2t, t represents the time lag between MMG signals taken
from 1 − N to M, and a, b, and ω are given by Equations (2), (3), and (4), respectively.

a =
√

∑N−1
n=0 MMG12

t (n) (2)

b =
√

∑N−1
n=0 MMG22

t (n) (3)
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ω(τ) =


max(M,N)+τ

max(M,N)
,−N < τ < 0

1 , τ = 0
max(M,N)−τ

max(M,N)
, 0 < τ < M

(4)

The peak cross-correlation coefficients (PCCC) in three muscle pairs, namely, RF and
VL (MP1), RF and VM (MP2), and VL and VM (MP3), were employed to quantify cross-talk.
The cross-correlation coefficients range from 0 to 1, where 0 indicates no common signal
between the two muscles and 1 indicates 100% common signal. In cross-correlation analysis,
a CCC less than 0.30 usually indicates a low correlation between signals and is considered
a specific, isolated signal without cross-talk, while a CCC between 0.30 and 0.70 indicates
a moderate correlation between signals and a CCC greater than 0.70 indicates a strong
correlation between signals [22].

2.4. Estimation Model
2.4.1. BPNN Model

BPNN is a multi-layer feed-forward neural network trained by a backpropagation
algorithm based on gradient descent. Its structure consists of input, hidden, and output lay-
ers. BPNN model training consists of two sections, i.e., forward propagation of information
and backpropagation of error. In forward propagation, information is passed sequentially
from the input layer through the hidden layer until the output layer. The backpropagation
of error is mainly used to update the weights and bias parameters in case the mean square
error between the output value and the target value exceeds the target setting range. The
output value of each neural node in the current layer can be calculated by Equation (5):

yj = f (∑ wij · xi + bj)(i = 1, 2, 3, . . . , m; j = 1, 2, 3, . . . , n) (5)

where m and n indicate the neuron numbers of the current and the previous layers, re-
spectively; wij represents the connection weight between the two layers; bj is the threshold
value of the current layer; f is an activation function; xi denotes the output value of the
previous layer neuron; and yj denotes the output value of the current layer neuron.

2.4.2. IGWO-SVR Model

A support vector regression (SVR) model has obvious advantages in small-sample
nonlinear fitting. In sample prediction, SVR has a fast computing speed, high prediction
accuracy, and fewer parameters to be adjusted. The SVR model first utilizes the kernel
function to map the nonlinear data into the high-dimensional space and make the data
linearly differentiable, then processes the data according to the structural risk minimization
principle. However, the hyper-parameters C and σ in the SVR model should be carefully
determined when applying the SVR model in practice. Consequently, we used the previ-
ously developed IGWO algorithm for hyper-parameters optimization, the implementation
steps of which are described in the literature [30].

2.4.3. LSTM Model

The LSTM network combines long-time and short-time series-related information
through subtle gate control to better preserve the long-time series-related information and
to control the gradient flow, which can effectively solve the gradient disappearance or
explosion problem, enhancing network reliability, and is more suitable for continuous
estimation of dynamic extension force. The LSTM blocks consist of the forget gate, input
gate, and output gate. These units are connected in series to learn and store long-term
and short-term series-related information. The standard LSTM structure [42] is shown in
Figure 3. In the LSTM structure, input gates (it), forgetting gates ( ft), and output gates (ot)
are designed to retain or discard information, respectively.
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Figure 3. LSTM structural unit.

In the LSTM structural unit, the mapping of the current input xt to the output ht at
time t is calculated by the following formula [43]:

ft = σ (W f [ht−1, xt] + b f )
it = σ(Wi[ht−1, xt] + bi)

∼
Ct = tanh(WC[ht−1, xt] + bC)

Ct = ft · Ct−1 + it · Ct
ot = σ(Wo[ht−1, xt] + bo)

ht = ot · tanh(Ct)

(6)

where Ct−1 is the unit memory from the previous block,
∼
Ct is the candidate information of

the unit memory at the current moment, Ct is the updated value of the cell state, and ht is
the output value of the current block, which also serves as the input for the next time. ft, it,
and ot are the values of the forget gate, the input gate, and the output gate, respectively.
W∗ and b∗ represent the corresponding weights and bias terms of the layer, respectively.
In the current block, σ and tanh are two activation functions, representing the sigmoid
function and the hyperbolic tangent function, respectively, through which the functions of
the gating structure are implemented.

2.4.4. IGWO-LSTM Model

The fitting ability and training effect of an LSTM neural network are closely related
to its network parameters. Usually, the hyper-parameters of a traditional LSTM neural
network depend on empirical tuning, which greatly reduces the performance of the LSTM
model [42]. Therefore, we used the previously developed IGWO algorithm [40] to optimally
search for LSTM hyper-parameters to construct an estimation model with appropriate
hyper-parameters (e.g., the learning rate and the number of hidden layer neurons), which
is both adaptable to the data of the knee extension task and displays the outstanding
performance of the LSTM. In this paper, the LSTM model consisted of an input layer, a
hidden layer, a fully connected layer, and a regression layer in which an Adam solver was
used. In addition, the root mean square error (RMSE) was used as the fitness function.

The main idea of the proposed algorithm is to utilize the IGWO superiority capability
to search the LSTM network parameters. According to the RMSE of LSTM, more suitable
network parameters can be obtained. The specific steps are as follows.

Step 1: Initialize the population size and other parameters of IGWO and set the
initial ranges of learning rate and hidden layer neurons and other network parameters of
the LSTM.

Step 2: Determine the RMSE of the LSTM training output as the fitness function
of IGWO.

Step 3: Initialize the positions of the wolf α, β, δ, and ω.
Step 4: Execute the process of encircling prey, hunting and attacking prey, and update

the position of the wolf α, β, δ, and ω.
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Step 5: Iterate step 4 until the iterative constraint is achieved.
Step 6: Obtain the optimal network hyper-parameters from the final α-wolf po-

sition, configure the estimation model, and finally use it for knee dynamic extension
force estimation.

2.4.5. Model Evaluation Indicators

To evaluate the estimation results, the estimated forces were evaluated against the
observed forces based on the normalized root mean square error (NRMSE), mean absolute
percentage error (MAPE), and correlation coefficient (R), which are defined as follows:

NRMSE =

√
1
N ∑N

i=1 (ŷi − yi)
2

ymax − ymin
(7)

MAPE =
1
N ∑N

i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (8)

R =
Cov(ŷi, yi)√
D(ŷi)

√
D(yi)

(9)

where ŷi is the estimated value, yi is the actual value, ymax and ymin are the maximum and
minimum values of the actual values, respectively, D(·) is the calculated variance, Cov(·)
is the covariance, N is the number of samples in the test set, and the subscript i indicates
the i-th data point. Generally speaking, the closer NRMSE and MAPE are to 0, and R to 1,
the closer the estimated value of the model is to the observed value.

3. Results
3.1. Cross-Talk Analysis of Different Muscle Pairs

For cross-talk analysis, a 2 s signal segment was extracted from each muscle MMG.
Additionally, cross-correlation coefficients were used to quantify cross-talk between differ-
ent muscle pairs during contracting muscle. The results of the cross-correlation analysis
indicate that most of the PCCC was observable at a time lag (τ) of approximately 0 s, which
is consistent with the literature [44–46]. Figure 4 shows the MMG signals and the correla-
tion diagrams of different muscle pairs during 60% MVIC and DVIC, respectively. As can
be seen in Figure 4, MMG signals of all three muscles have cross-talk in the case of SVIC
and DVIC, which poses further difficulties in fully identifying different muscle activities.

To investigate MMG cross-talk between different muscle pairs, the cross-talk results
for six subjects at different levels of SVIC and DVIC are plotted in Figure 5. From the
statistical analysis, the range of cross-talk between different muscle pairs was 0.0538–0.7978,
which demonstrates that all of these adjacent muscles may contribute to the MMG signals,
i.e., all muscles are contaminated by cross-talk.

As can be seen in Figure 5, there is an overall non-significant trend of increased cross-
talk for all muscle pairs during the muscle force from 20% MVIC to 60% MVIC. In addition,
there is a significant difference in the magnitude of cross-talk between the MP1, MP2, and
MP3 muscle pairs. In almost all isometric muscle contractions, cross-talk between adjacent
muscle pairs (MP1 and MP2) is greater than the cross-talk between non-adjacent muscle
pairs (MP3). In particular, during DVIC, MP1 cross-talk is greater than MP2 for all subjects,
while MP2 was greater than MP3, except for subject S4, whose weight was far more than
normal standards. The cross-talk between MP1 and MP2 was much higher than MP3 in
all subjects, indicating that RF contains a large amount of muscle information from VL
and VM. These also further demonstrate that muscle force estimation using MMG signals
obtained from three muscles or RF may lead to unpredictable inaccuracies, which implies
that muscle force estimation using MMG signals obtained from VL or VM muscles may
perhaps improve estimation accuracy.
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Figure 4. Cross-talk analysis of MMG signal segments from RF, VL, and VM. (A) Cross-talk analysis
of MMG signal fragments at 60% MVIC. (B) Cross-talk analysis of MMG signal segments at DVIC
(20–60% MVIC).

Figure 5. Statistical results of cross-talk analysis for different muscle pairs during SVIC and DVIC.
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3.2. Knee Dynamic Extension Force Estimation with Different Muscle Feature Combinations

Usually, a single feature or a small number of features can lead to data loss; too
many features can also lead to data redundancy and possibly even dimensional disaster.
Therefore, in this paper, effective features highly related to knee extension force were
extracted from RF, VL, and VM, respectively, using GRA to reflect muscle activity. The
different feature combinations extracted from MMG signals using GRA in this paper
are defined as follows: the features extracted from RF are defined as F1; the features
extracted from VL are defined as F2; the features extracted from VM are defined as F3;
the features extracted from RF and VL are defined as F4; the features extracted from RF
and VM are defined as F5; the features extracted from VL and VM are defined as F6; and
the features extracted from RF, VL, and VM are defined as F7. To test the effect of knee
dynamic extension force estimation with different feature combinations, we used fixed
hyper-parameters of the LSTM model with the number of hidden layer neurons of 100, the
initial learning rate of 0.005, and the max. epochs of 250.

In addition, we selected the first 90% of the data sequences as the training sample and
the last 10% of the data sequences as the test sample. To suppress data that is too large
or too small, the data were standardized using the Z-score method. From the cross-talk
analysis and the quadriceps anatomy, it can be seen that estimating knee dynamic extension
force from all features obtained from RF, VL, and VM may lead to poor estimation results.
Therefore, we can further hypothesize that knee dynamic extension force estimation by a
single muscle with a small level of cross-talk can improve accuracy and validity.

To verify the above hypothesis, the results of knee dynamic extension force estimation
for six subjects with different feature combinations is illustrated in Figure 6 and Table 1, re-
spectively. Figure 6 shows the NRMSE, MAPE, and R of the LSTM model on the test sample
under different feature combinations for six subjects. From the estimated results for six sub-
jects with different feature combinations in Figure 6, it can be seen that each subject’s feature
combination F2 presents optimal results in comparison to the other feature combinations.

Figure 6. Estimated results of knee dynamic extension force during isometric contraction with
different muscle feature combinations for six subjects.

Table 1. Mean results (mean ± std) of knee dynamic extension force estimation for six subjects with
different feature combinations.

Feature Combination NRMSE MAPE R

F1 0.2076 ± 0.0827 0.1534 ± 0.0783 0.8066 ± 0.1507
F2 0.1167 ± 0.0352 0.0875 ± 0.0404 0.9714 ± 0.0106
F3 0.3794 ± 0.2080 0.3158 ± 0.2134 0.6943 ± 0.2202
F4 0.2151 ± 0.0918 0.1427 ± 0.0654 0.8443 ± 0.1320
F5 0.2295 ± 0.0830 0.1884 ± 0.1052 0.8126 ± 0.2031
F6 0.2055 ± 0.0705 0.1656 ± 0.0978 0.8788 ± 0.0905
F7 0.2126 ± 0.0934 0.1450 ± 0.0776 0.8522 ± 0.1233

The mean estimation results of different feature combinations in Table 1 show that
the feature combination F2 provides the optimal results, with NRMSE of 0.1167, MAPE of
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0.0875, and R of 0.9714, and with a smaller standard deviation, i.e., the estimated results of
the feature combination F2 are more stable than those of other feature combinations. This
also demonstrates that MMG signals from VL for knee dynamic extension force estimation
are superior to MMG signals from the other two muscles, which may be due to the fact
that the MMG from VL has less cross-talk and describes the muscle activity more directly
during knee extension. As a result, these estimation results are in general agreement with
the results of the cross-talk analysis, indicating that the muscle with larger cross-talk and
multiple muscles has a non-negligible effect on knee extension force estimation, while
a single muscle with less cross-talk can provide a more accurate knee extension force
estimation, further confirming the validity of our hypothesis.

3.3. Applying the IGWO-LSTM Model to Estimate Knee Dynamic Extension Force

To further improve the accuracy of knee dynamic extension force estimation, we used
the IGWO algorithm to optimize the LSTM hyper-parameters. In this paper, the number of
hidden layer neurons was set in the range [50, 400], the initial learning rate was set in the
range [0.001, 0.01], the max. epochs was set to 300 to prevent under-fitting, and the other
parameters were set in the same way as the LSTM model with the fixed hyper-parameters.
In addition, the population size and the maximum number of iterations in the IGWO
algorithm were set to 10 and 20, respectively.

To verify the validity of the proposed IGWO-LSTM model for knee dynamic extension
force estimation, a comparison was carried out using BPNN, IGWO-SVR, and LSTM. The
results of different estimation models for the same dataset are shown in Figure 7 and Table 2.
It can be seen that among different knee dynamic extension force estimation models for six
subjects the IGWO-LSTM model achieves the best results with NRMSE of 0.0704, MAPE
of 0.0583, and R of 0.9891. Additionally, the estimation results of the LSTM with fixed
hyper-parameters reveal poorer and less stable results, especially in the NRMSE and MAPE
performance indicators. As a result, it is shown that the proposed IGWO-LSTM model is
utilized to not only adaptively configure the LSTM hyper-parameters, but also to obtain
better estimation results based on the knee dynamic extension task data.

Figure 7. Comparison of the performance of different models in knee dynamic extension force
estimation for six subjects.

Table 2. Mean results (mean ± std of different estimation models for six subjects.

BP IGWO-SVR LSTM IGWO-LSTM

NRMSE 0.3008 ± 0.0596 0.2833 ± 0.0490 0.1168 ± 0.0352 0.0704 ± 0.0280
MAPE 0.2476 ± 0.0863 0.2241 ± 0.0508 0.0875 ± 0.0404 0.0583 ± 0.0326

R 0.6028 ± 0.0860 0.6244 ± 0.1065 0.9714 ± 0.0106 0.9891 ± 0.0048

Figure 8 shows the estimation results of different estimation models for subject S3
in the test sample, with the black line showing the observed force sequence, the red line
showing the estimated sequence from the IGWO-LSTM model, and the blue line showing
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the estimated sequence from the LSTM model. In addition, the estimated sequences from
BPNN and IGWO-SVR are also plotted in Figure 8. The closer the estimated sequence
is to the black line, the higher the accuracy of the model’s estimation. As can be seen in
Figure 8, the estimated sequence of the BPNN and IGWO-SVR models are farther away
from the observed sequence, indicating poorer estimation results, while the estimated
sequence of the IGWO-LSTM model is closest to the observed sequence. These results
indicate that the IGWO-LSTM model is far more accurate than any other model, and further
demonstrate that the proposed model is more suitable for high-precision knee dynamic
extension force estimation.

Figure 8. Knee dynamic extension force estimation of different estimation models.

4. Discussion

In most voluntary muscle contractions, the muscle fibers are activated, and the me-
chanical activity of the motor unit is superimposed non-linearly to form MMG signals.
MMG signals generated during voluntary muscle contraction are much more complex than
those recorded during neuromuscular electrical stimulation (NMES). The simultaneous
activation of different muscles facilitates a single-limb task. However, during knee dynamic
extension in all subjects, we observed cross-talk in MMG signals from all three muscles
of the quadriceps. Consequently, all of these muscles may contribute to the MMG signals
during knee extension.

The most straightforward way to assess cross-talk is to detect signals from other
muscles when selectively activating one muscle. In practice, however, it is often difficult to
selectively activate a single muscle, as reflex arcs can lead to other muscles being activated,
resulting in inaccurate estimates of cross-talk conduction. However, there is a significant
advantage in assessing cross-talk using the CCC method, which is not very complex and
only requires MMG signals from the muscles. The cross-correlation coefficients are used to
quantify cross-talk as it is more readily available, and to obtain the proportion of common
signals between two muscles without knowing any information about uncontaminated
signals. Despite criticisms of the use of CCC in past studies [10], it is currently the most
powerful method for quantifying cross-talk. This assessment supports the studies of Islam
et al. [41] and Talib et al. [16], showing a strong positive correlation between cross-talk
amplitude and isometric contraction levels. These studies have all indicated that there is a
certain degree of cross-talk between adjacent muscles. However, this paper indicates that
the cross-talk magnitude between MP1, MP2, and MP3 muscle pairs differs significantly,
which has some similarities to the above literature results, and that cross-talk between
adjacent muscles (MP1, MP2) is greater than that between non-adjacent muscles (MP3)
during almost all isometric contractions. This may be based on the fact that since non-
adjacent muscles contain more connective and adipose tissue (e.g., skin, bone, subcutaneous
fat) than adjacent muscles, it may attenuate the signal strength during muscle contraction,
thereby reducing the cross-talk amplitude between non-adjacent muscles [46]. In addition,
as can be seen from the anatomy in Figure 1, RF is very near to VL, VM; VL is not directly
adjacent to VM, further confirming the above observation.

In the experiments, it was assumed that using a single muscle to obtain MMG signals
for estimating knee dynamic extension force may improve the estimation accuracy. Among
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the different feature combinations, we observed that the estimation results using MMG
signals obtained from RF and VM are not satisfactory, whereas the estimation results using
MMG signals obtained from VL were very accurate. The result may be explained by the
fact that MMG signals obtained from the RF are more contaminated by the VL and VM,
and that VM is in close physiological contact with other surrounding muscles resulting in
more complex MMG signals. Compared to RF and VM, MMG signals obtained from VL are
less contaminated by other muscles and provides a visual and accurate representation of
extension force. It also further demonstrates that knee extension involves various muscles,
some of which primarily assist and maintain force, whereas the activity information of
some muscles intuitively represents subtle fluctuations of knee extension force.

In addition, compared with BPNN, IGWO-SVR, and LSTM, the proposed IGWO-
LSTM model can obtain superior accuracy in estimating the knee dynamic extension force.
We observed that knee dynamic extension force estimation with BPNN yields extremely
unstable results with large deviations between two adjacent results, as well as the poor
stabilization results achieved by the IGWO-SVR. Although BPNN and IGWO-SVR achieved
excellent results in knee static extension force estimation, they performed poorly in knee
dynamic extension force estimation, which could be due to two main reasons: firstly,
MMG signals are more complex during knee dynamic force compared to knee static force;
secondly, the current muscle contraction is associated with the pre-muscle contraction.

The primary aim of this study is two-fold: (1) to explore the feasibility of selecting a
single muscle from a cross-talk analysis to estimate knee dynamic extension force, and (2) to
design an effective estimation model. Through experimental comparison, the proposed
IGWO-LSTM estimation model is optimal and can estimate knee dynamic extension force
with higher accuracy, and the obtained results are better than the estimation results in the
literature [18,28,29,47]. Moreover, a sliding overlap length of 50 ms was used for feature
extraction during signal processing, which provided good real-time performance.

However, the present study includes some limitations that will be addressed in future
research. Firstly, this study ignores the fact that muscle fatigue may produce muscle
stiffness. Secondly, due to the introduction of the IGWO algorithm, it is necessary to train
the LSTM network several times, which will consume more extra computational cost and
time accordingly. Once suitable hyper-parameters are obtained after the optimization
of the IGWO algorithm, it will bring promising estimation effects for estimating knee
dynamic extension force. Finally, the experiments are limited to knee extensors during
isometric muscle contraction; however, in many cases the knee joint often involves complex
reciprocating movements, requiring consideration of a wider range of muscle groups.

5. Conclusions

In conclusion, this paper presents the results of a study on knee dynamic extension
force estimation utilizing cross-talk analysis and IGWO-LSTM. In contrast to prior research
on MMG signals for muscle force estimation, our proposed scheme can be used to accurately
estimate knee dynamic extension force. Firstly, owing to the existence of cross-talk between
different muscles, the hypothesis is given that employing MMG signals from a single
muscle with less cross-talk can increase the accuracy of knee dynamic extension force
estimation. Through cross-talk analysis and different feature combination experiments, the
results demonstrate that this hypothesis is correct, providing a foundation for accurate knee
dynamic extension estimation. Then, a novel estimation model (IGWO-LSTM) is proposed
to further improve the performance of knee dynamic extension force estimation. The results
show that the proposed IGWO-LSTM achieves the optimal performance indicators with
NRMSE of 0.0704, MAPE of 0.0583, and R of 0.9891 compared to other state-of-the-art
models. Therefore, this study has great potential for application in rehabilitation and
assistive devices. Additionally, to develop more natural and flexible device control, it is
necessary to continue to investigate the limitations mentioned in Section 4 in the future.
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