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Abstract: Cell therapy has proven to be a promising treatment for a range of neurological disorders,
including Parkinson Disease, drug-resistant epilepsy, and stroke, by restoring function after brain
damage. Nevertheless, evaluating the true effectiveness of these therapeutic interventions requires a
deep understanding of the functional integration of grafted cells into existing neural networks. This
review explores a powerful arsenal of molecular techniques revolutionizing our ability to unveil
functional integration of grafted cells within the host brain. From precise manipulation of neuronal
activity to pinpoint the functional contribution of transplanted cells by using opto- and chemo-
genetics, to real-time monitoring of neuronal dynamics shedding light on functional connectivity
within the reconstructed circuits by using genetically encoded (calcium) indicators in vivo. Finally,
structural reconstruction and mapping communication pathways between grafted and host neurons
can be achieved by monosynaptic tracing with viral vectors. The cutting-edge toolbox presented here
holds immense promise for elucidating the impact of cell therapy on neural circuitry and guiding the
development of more effective treatments for neurological disorders.

Keywords: cell therapy; functional connectivity; optogenetics; chemogenetics; DREADD; calcium
imaging; indicator; sensor; monosynaptic tracing; rabies virus

1. Introduction

In the quest to repair brain damage, cell therapy has emerged as a promising strategy
for restoring neuronal function and connectivity. But the ultimate goal to accomplish
optimum long-term recovery implies functional integration of the grafted neurons into
the host neuronal circuitry [1]. However, the assessment of effectiveness of cell-based
interventions in reconstructing neural networks poses significant challenges [2]. To address
this, researchers have turned to a sophisticated toolbox of molecular techniques that offer
unprecedented insights into the integration and function of transplanted cells within the
host brain.

On one hand, optogenetics and chemogenetics allow precise manipulation of neuronal
activity. By genetically engineering cells to express light-sensitive or chemically responsive
proteins, researchers can selectively modulate the activity of specific neuronal populations,
providing invaluable insights into the functional integration of transplanted cells [3]. Fur-
thermore, advances in calcium imaging have revolutionized our ability to monitor neuronal
activity in vivo with unparalleled precision [4]. Genetically encoded calcium indicators
enable real-time visualization of neuronal dynamics, offering a window into the functional
connectivity of neural circuits following cell therapy. Finally, monosynaptic tracing using
viral vectors has become indispensable for mapping the intricate pathways of neuronal
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communication [5]. By selectively labeling interconnected neurons, researchers can track
the integration of transplanted cells into existing neural networks, providing crucial clues
about the mechanisms underlying cell therapy-induced functional recovery.

In this article, we review the latest advancements in molecular tools and technolog-
ical applications for assessing neuronal network reconstruction after cell therapy. From
optogenetics and chemogenetics to calcium imaging and viral tracing, these cutting-edge
techniques hold immense promise for elucidating the impact of cell-based interventions
on neural circuitry and paving the way for novel therapeutic strategies in neurological
disorders (Figure 1).
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2. Actuators for Activity Modulation

In the past decades, two new techniques have been developed granting an unprece-
dented efficient and noninvasive manipulation of the grafted cells and surroundings.
Consequently, these techniques afford the assessment of grafted cells’ functional integra-
tion into the host brain tissue both in vitro and in vivo. These powerful molecular tools are
known as optogenetics and chemogenetics and have pushed the boundaries in neuroscience
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by allowing activity control on targeted cells. Now, it is possible to modulate the activity of
type- and region-specific neurons and other brain cells.

Both tools use actuators that physiologically do not affect neurons, albeit they do
when engineered receptors are expressed in the cellular membrane. Indeed, the receptor or
effector is introduced typically using viral vectors in the chosen cellular population, while
the other cell populations remain intact. For instance, stem cell-derived neuronal precursors
can be genetically engineered to express the effector protein prior to transplantation into the
host tissue, which thus will be unaltered. Then, when the actuator is administered, light for
optogenetics and small-molecule chemical compounds for chemogenetics, it will interact
with the effector in the grafted cell. An alternative strategy could be to not modify the
transplanted cells, but rather genetically engineer mice to express the effector protein under
the control of an inducible system such as the tetracycline (Tet-off) promotor [6,7] or Cre-
mediated recombination [8], and evaluate the afferent connections to the transplanted cells.

2.1. Optogenetics

Optogenetics emerged in 2005 when Deisseroth and colleagues demonstrated that
opsin genes found in microorganisms like algae could be used safely to control cellular
activity in neurons [9–12]. Channelrhodopsin-2 (ChR2) was the first light-activated channel
developed and proven in mammalian cells. This channel is activated by 470 nm wave-
length blue light [9] that leads to the passive diffusion of positively charged ions across
the channel, resulting in the depolarization of the cell membrane potential. Other opsins
generating different electrochemical responses like hyperpolarization of the membrane re-
sulting in neuronal inhibition have been discovered, including halorhodopsins (NpHR) and
archaerhodopsins (Arch), which are inward chloride pumps and outward proton pumps,
respectively [10,13]. Thenceforth, various engineered versions of natural opsins have been
developed with improved properties. Some of those properties are: (1) different activation
wavelengths like the red-shifted peak action spectra ChrimsonR and Chronos compared
to the initial blue-activated ChR2 [14,15]; (2) increased photocurrent amplitude such as
C1V1; and (3) increased channel kinetics as achieved by ChETA or ChrimsonR [16,17].
Currently, it is possible to both silence (hyperpolarize) and incite (depolarize) neuronal
firing in the same neuronal population by combining engineered opsins and wavelengths
of light [3,15,18,19].

2.2. Chemogenetics

Chemogenetics had an earlier start, although with protracted years of optimiza-
tion [20,21]. The earliest evidence for the development and use of a chemogenetic tool
was in 1991, when Strader and colleagues mutated the β-adrenoceptor to be activated
by catechol-containing esters and ketones [22]. This was followed by numerous variants
based on different proteins including kinases and ligand-gated ion channels [23–31] until
2010, when Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)
were developed by Roth and colleagues [20,21,32]. DREADDs are muscarinic G-protein-
coupled receptors (GPCRs) that are no longer activated by acetylcholine, their endogenous
ligand, but by clozapine N-oxide (CNO), an inert metabolite of the antipsychotic drug
clozapine. The same actuator, CNO, can be used to either incite or silence neuronal firing
through hM3Dq [7] and hM4Di [33], respectively. In the past years, new tools or improved
versions have been developed [34,35], as well as new actuators such as deschloroclozap-
ine [36,37] with better pharmacokinetics and fewer side effects. In addition, a pitfall for
muscarinic-based DREADDs is that all respond to the same ligands, rendering bidirectional
experiments not possible. Other chemogenetic systems responsive to different ligands have
been developed to overcome this limitation in recent years. These include systems based
on GPCRs like the κ-opioid receptor inhibitory DREADD named KORD and its ligand
Salvinorin B (SALB) [35]. Additionally, there are ligand-gated ion channels (LGICs) like the
Pharmacologically Selective Actuator Modules (PSAMs), which are engineered α7 nicotinic
acetylcholine receptor (nAChR) domains that respond to small molecules termed Pharma-
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cologically Selective Effector Molecules (PSEMs), binding to various ion-pore domains [34].
These recent additions have made it possible to control neuronal firing in the same neuronal
by using solely chemogenetics.

2.3. Advantages and Limitations

Chemo- and optogenetic tools can be used independently and combined, as shown in
many studies, being used on the same or distinct neuronal populations [38–40].

Despite both opto- and chemogenetics serve similar purposes, they offer different ad-
vantages and limitations that may make one or another more suitable for certain strategies
and research interrogations (Table 1).

Table 1. Advantages and limitations of optogenetics and chemogenetics.

Optogenetics Chemogenetics

Timing of the response Fast
(milliseconds)

Prolonged,
rely on pharmacokinetics

Control of stimulation Exogenous Endogenous

Target area Restricted to the
illuminated area

Engineered cells in
all the body

Invasiveness Invasive Noninvasive
Examples

Excitation ChR2, ChETA, ChrimsonR hM3Dq, PSAM4-5HT3
Inhibition Halo, eNpHR3.0, ArchT hM4Di, KORD, PSAM4-GlyR

Considering the nature of the actuator, they display differences in the timing of the
response and control of the stimulation. Light speed offers a high degree of temporal
resolution for optogenetics as light can be easily and quickly delivered, stopped, and/or
manipulated to another wavelength. In response to a precise light wavelength, a fast
effect on the scale of milliseconds occurs on the targeted neuron, and the consequent
physiological process in the brain can be studied [3]. On the other hand, the use of a small
compound in chemogenetics does not offer the same degree of control over timing since it
relies on the diffusion of the compound throughout the body, the activation of the receptor,
and the clearance of the drug by the body or the in vitro experimental setup. Indeed, the
administration of the actuator might result in a delay between the administration and the
initiation of the effect, followed by several minutes to hours of effect. Despite not being
able to elicit an immediate response, a sustained activation offers the possibility to study
behavior and therapeutic responses that require protracted effects. In this line, optogenetics,
but not chemogenetics, grants a fast-reversible effect and the possibility to better control
the amount of stimulation.

As mentioned above, both techniques can be targeted to specific tissues, cell types,
and/or subcellular compartments. Nevertheless, differences are observed regarding the
targeted area and the invasiveness of the approach. For instance, although the coverage of
the receptor extends to all the brain regions, by using optogenetics the effect will extend
to the limits of light delivery. On the other hand, chemogenetics will affect a broader
area and even the whole system considering the delivery approach used. Regarding the
delivery approach, the small ligands used in chemogenetics can be introduced by a simple
injection offering a less invasive and more flexible option. The main challenge is that the
ligand should be able to cross the blood–brain barrier. Meanwhile, optogenetics requires an
intracranial implant for light delivery that needs to be implanted surgically. To circumvent
this limitation for the use of optogenetics, it is also possible to work with organisms whose
brains are accessible by light, i.e., zebrafish larvae [41], or to use red-shifted opsins since
red wavelengths pose a higher penetrance [15,42].
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2.4. Proving Integration and Functionality

Cell therapy has been implemented in numerous animal models aiming to improve
impaired function or even to replace lost cells. Undoubtedly, both optogenetics and chemo-
genetics have boosted the study of cellular integration and the evaluation of its benefits
for the recovery of damaged neural circuits. Optogenetics is preferable when precise spa-
tiotemporal control of a small subset of neurons is necessary, while chemogenetics offers a
broad control of whole circuits of wide systems.

The rapid dynamics of the optogenetic response allows the dissection of synaptic
interactions between grafted and host neurons. For instance, it is possible to express
ChR2 on the host cells and perform electrophysiological recordings on the grafted cells,
so afferent synapses to the grafted cells may be elucidated. Conversely, whether grafted
neurons express ChR2 and recordings are performed from the host cells, efferent synapses
would be detected [43–45]. Beyond proving functional integration, optogenetics has also
been used for evaluating the improvement or recovery derived from cell therapy [46,47].
Steinbeck and colleagues used halorhodopsin (eNpHR), an inhibitory optogenetic tool, to
modulate electrophysiological and neurochemical properties of human embryonic stem cell
(hESC)-derived dopaminergic neurons grafted into the striatum of mice lesioned to model
Parkinson’s disease. The authors proved that motor deficits were rapidly and reversibly
re-introduced in recovered mice when grafted neurons were silenced by light [47]. Another
example of using optogenetics to prove the direct therapeutic effect of grafted cells on the
network was shown by Palma-Tortosa and colleagues, who also used halorhodopsin to
silence grafted and endogenous neuronal populations and prove that functional recov-
ery of the motor function after stroke is due to the synaptic integration of transplanted
neurons [46]. Likewise, Upadhya and colleagues used the inhibitory chemogenetic tool
hM4D(Gi) to prove that the reduction in seizure frequency observed after cell therapy in a
model of epilepsy was due to the integration of the grafted cells [48]. In this last example,
the use of chemogenetics was ideal since the effect was evaluated over a period of days.

2.5. Other Applications

In addition to the functional assessment of the integration, optogenetics has also been
used for additional purposes related to cell therapy. For instance, by using a light-inducible
system to control the expression of a transgene, i.e., Brn2, it is possible to control and
understand the endogenous mechanisms governing neuronal differentiation [49]. This
knowledge and system can be further used for directing the phenotype of the stem cells.
In this line, Giraldo and colleagues showed that optogenetic activation of neurons could
improve the survival and maturation of neural progenitor cells in vitro [50]. After repetitive
optogenetic stimulations, authors observed an increase in the proliferation and differentia-
tion of the grafted cells into oligodendrocytes and neurons. Moreover, neurons displayed
an increased branching and axonal length. Altogether, this highlights the potential of
optogenetics in improving cell therapy outcomes through improved engraftments and
cellular identity, though its effectiveness remains to be proved in vivo.

3. Monitoring Neuronal Activity

For many decades, electrophysiology has been the principal method to study neu-
ronal activity. It allows for accurately determining spike rates at high temporal resolution,
although technical complexity makes it difficult to detect firings in dense neuronal popula-
tions [51]. Thereafter, optical imaging arose as a preferred approach for targeting specific
cell populations to determine neuronal activity with high spatiotemporal resolution by
using different sensors. Moreover, it allows to simultaneously record neuronal ensembles
without damaging targeted cells [52]. The most implemented signature for functional
imaging of neuronal activity has been cellular calcium, which is considered a proxy for the
electrical activity of the brain. This is due to its influx in the soma and presynaptic terminals
when an action potential (AP) occurs and its wide concentration changes and slow kinetics.
Many different calcium indicators have been engineered throughout the years, from the
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use of chemical calcium indicators to the development of Genetically Encoded Calcium
Indicators (GECIs) (Table 2).

Table 2. Chemical and Genetically Encoded Calcium Indicators.

Calcium Sensor Category Indicators Description Ref.

Chemical calcium
indicators

Synthetic ratiometric Fura-2
High-affinity Ca2+ indicator that shifts its

excitation wavelength depending on whether
Ca2+ is bound. [53,54]

Single-wavelength Fluo-4 High-affinity Ca2+ indicator that boosts
fluorescence upon Ca2+ binding.

Genetically
encoded calcium

indicators (GECIs)

Fluorescence resonance
energy transfer
(FRET)-based

Cameleon

ECFP and EYFP are fused to calmodulin (CaM)
and calmodulin-target peptide (M13), resulting in

an increase in the FRET signal upon
Ca2+ binding.

[55,56]

Single fluorescent
protein (FP)-based

Camgaroo-1
CaM is fused to YFP, thus allowing Ca2+ to

induce an increase in fluorescence by causing a
conformational change in CaM.

[52,57]

Pericams

Circularly permuted YFP (cpYFP) is fused to
CaM and M13. The binding of calcium allows
CaM/M13 to fold tightly against YFP, greatly

increasing fluorescence.

[58,59]

GCaMP family
Circularly permuted GFP is fused to CaM and

M13. Many different GCaMP variants have been
designed (from GCaMP1 to GCaMP8).

[60,61]

The complex delivery methods required for chemical calcium indicators, alongside
their limited signal-to-noise ratio, have posed significant challenges to their practical appli-
cation. Consequently, GECIs have emerged as the most implemented and accurate calcium
indicators. The sensor color palette of fluorescent GECIs has been widened to reduce tissue
scattering, background signal, and phototoxicity as well as to increase the penetration depth,
giving rise to red-shifted or near-infrared (NIR) GECIs [62]. The combination of spectrally
separated GECIs allowed to perform multicolor optical imaging enabling the assessment
of activity from two different cell populations implicated in a disease or behavior. This
approach helps to understand spatiotemporally neuronal ensemble relationships [63–66],
or even carry out paired recordings at axonal and dendritic compartments to understand
the course of information through synapses [66,67]. Moreover, the use of spectrally diverse
GECIs and opsins has allowed for concurrently performing calcium imaging in a particular
neuronal population when optogenetically manipulating the activity of another neuronal
subset. These all-optical approaches are extremely useful for elucidating causal roles of a
subset of neurons within a neural network, to model circuit dysfunctions of neurodegener-
ative disorders (NDDs) via optogenetic manipulation while recording neighboring neurons
during behavioral testing or to perform circuit mapping [68,69]. For the latter purpose, it
is also important to study cell structures and functional connectivity which requires high
enough basal fluorescence to clearly elucidate cell structure and subcellular compartments
in both active and resting states. Some of the previously mentioned GECIs lack this capabil-
ity. Therefore, aiming at developing a GECI sensor able to provide functional highlighting
of both structure and neural activity, phototransformable sensors based on photoconvertion
(e.g., CAMPARI) and photoactivation (e.g., Pa-G-GECO, Pa-jRCaMP, Pa-R-GECI) were
engineered. Photoactivable and photoconvertible GECIs are sensors that are turned ON
or whose emission spectrum changes, respectively, in an irreversible manner by near-UV
irradiation [61]. Contrary to them, photoswitchable probes have recently been developed
to mark and erase neurons from animals in freely moving conditions. Nevertheless, photo-
transformable GECI has been implemented in small animals but scarcely in rodents, giving
room for further improvements to facilitate implementation in mammals [70].
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3.1. GECIs for In Vivo Applications

Fluorescent protein-based GECIs have been the most implemented calcium indicators
in neuroscience research since they allow long-term functional recordings of neuronal
subsets according to cell subtype, connectivity, and circuit patterns at good signal-to-
noise ratio, exhibiting high photostability and providing spike rate information [51,52].
They can even be implemented to resolve many biological questions residing in events
occurring at subcellular compartments such as the soma [71] and neuronal processes
including axons [72], dendrites [73], or dendritic spines [74]. Those properties make GECI
systems the most suitable for the in vivo study of functional activity in transplanted neurons.
Moreover, the possibility of generating transgenic mouse lines stably expressing GECIs [75]
enables the study of neuronal dynamics along neurodevelopment or disease deficits present
in NDDs [76–80].

3.2. In Vivo Calcium Imaging in Head-Restrained Animals

Optimization of fluorescent-based calcium sensors has elapsed in parallel with ad-
vancements in fluorescence microscopy for in vivo implementations. Although some in vivo
calcium imaging studies have been performed using synthetic dyes [4], two-photon mi-
croscopy in combination with GCaMP family sensors has been the gold standard for
monitoring and measuring in vivo neuronal activity in head-restrained conditions. Such im-
plementation has provided insights into neuronal patterns and dynamics in both health and
disease after cell replacement. For example, it has been implemented to unravel spatiotem-
poral dynamics of transplanted neural populations within the visual cortex [63,81,82]; or to
study the affectations in iPSC-derived cortical neurons from Down’s syndrome patients in
mice [83]. Another study has also utilized this methodology for assessing the functional
integration of ESC-derived astrocytic transplants into the somatosensory cortex of adult
mice [84].

Moreover, this methodology has also been used in head-restrained conditions while
animals were running on a treadmill or absorbed in a virtual reality environment mimicking
more unrestricted and natural conditions [85–87]. In addition, this setup has also been used
in NDD models to elucidate pathological activity and structural signatures or study calcium
dynamics in brain cells other than neurons such as microglia [88] or mural cells [89].

3.3. In Vivo Calcium Imaging in Freely Moving Animals

Introducing calcium imaging in awake freely behaving mice has been a challenge
for many decades since head-restrained in vivo recordings make inaccessible the assess-
ment of more natural behaviors with integrated environment interaction [74]. Single- and
multi-photon fluorescence microscopy are difficult to implement in freely moving animals
because components required for optical imaging are bulky and heavy, which has been
shown to introduce bias on the behavioral performance. Moreover, head-fixed conditions
involve distinct neural ensembles compared to freely navigating states [90] apart from
causing stress and not considering vestibular and eye–head movement information that
head restriction entails [76]. First attempts to perform in vivo calcium imaging in awake-
behaving animals were possible with the emergence of two-photon fiber-based microscopes
or “fiberscopes” [91,92]. Thereafter, miniature integrated microscopes or “miniscopes” [93]
arose as a result of their miniaturized optimization to adapt it to small animals. Both tech-
nologies hold one-photon and two-photon emission options to record calcium dynamics in
freely behaving conditions at cellular resolution in superficial areas by opening a cranial
window or in deep regions such as the hippocampus or infralimbic cortex by implanting
gradient index (GRIN) lenses or prism probes. The use of fiberscopes and miniscopes
with GRIN lenses provides cellular resolution recordings of deep brain areas as well as
multilayered recordings of the cortex when coupled with microprisms [94,95]. Further-
more, fiberscopes and miniscopes enable the combination of functional calcium imaging
with holographic patterned optogenetic photostimulation of single and multiple neurons
for all-optical interrogation of brain functions in behaving conditions [96–98]. Another
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alternative system to perform in vivo calcium imaging is fiber photometry, a technique
that records fluorescent changes in the overall targeted neuronal population through an
implanted optical cannula paired with an optical fiber that is connected to the external
imaging system [99].

Each technology has its advantages and limitations; therefore, selection of imaging
technology should be based on the biological question needed to be answered. Fiber pho-
tometry is the less expensive and technically demanding, quicker method that results in min-
imal invasiveness considering the size of the implanted fibers. It is suitable for large-scale
and long-term experiments based on multiregion calcium recordings in which single-cell
resolution is not required and for combining simultaneously multiregion calcium imaging
with multiregion optogenetics to study natural and causal neuronal dynamics related to
complex behaviors [99]. It has been mainly implemented in combination with calcium
indicators to record brain areas in freely moving mice during social interaction [99,100],
perform simultaneous recording of distinct neuronal populations during novel object in-
vestigation using three-color XCaMPS [66], and to elucidate the implication of neuronal
subsets within a neural circuitry during specific behaviors by combining optogenetically
stimulated opsins with calcium indicators [99–101]. The incapacity to visualize cellular
structures and the limited spatial resolution in both calcium imaging and optogenetic
remain still the main limitations of this method [102].

Therefore, optical fiberscopes and miniscopes constitute the preferred options to
perform fine-scale in vivo calcium recordings at a single brain region with higher spatial
resolution at the cellular and subcellular levels. Optical fiberscopes constitute the most
complete technology to understand the functionality of neuronal circuits since it allows
in vivo calcium recordings at population resolution (such as fiber photometry) as well as at
single-cell resolution (such as microendoscopes). Since the development of the first two-
photon fiberscopes allowing calcium imaging of multiple neurons simultaneously during
in vivo navigating conditions [92,103], several improvements have been made to increase
acquisition frequency without hampering image resolution [104], broaden the field of view
and decrease motion artifacts by engineering one-photon fiberscopes [96,105], or overcome
rotatory limitations generated by long optical fibers and electrical wires connected to the
external device [106,107].

To overcome the later limitation, miniaturization of fiberscopes led to integrated
one-photon microscopes. Portability, large FOV, and better data quality because of the
all-included optical head-mounted housing avoiding long wires are some advantages
of epifluorescence miniscopes compared to fiber-based microscopes. Moreover, it also
reduces motion disturbances in comparison with two-photon microscopy in head-fixed
mice due to increased axial resolution and faster frame rates [93]. However, clear limitations
underlying one-photon miniscopes include the quality of the emission and imaging devices
due to the miniaturization, the high background fluorescence arising from the lack of
optical sectioning which limits depth penetration, and the necessity to develop complex
algorithms to demix signals from neurons to reach single-cell resolution. Optimized wide-
field miniscopes have been engineered to achieve multiplane imaging [108] or a large FOV
containing several brain areas for mesoscale imaging in behaving rodents [76,78]. High-
resolution two-photon miniscopes intrinsically permitting optical sectioning [74] alongside
light-field based miniscopes have also been developed to achieve volumetric imaging in
freely behaving mice [109,110]. Further attempts have been made to incorporate optical
sectioning in one-photon miniscopes, but, to date, it has only been achieved in fixed-tissue
and head-restricted in vivo conditions [111].

3.4. Other Specific Indicators of Neuronal Activity

Other indicators worth considering for monitoring neuronal activity include geneti-
cally encoded voltage indicators (GEVIs), which enable real-time reporting of the electrical
activity of excitable cells on a millisecond time scale. Efforts to develop optical imaging
strategies focusing on application in the mammalian brain have resulted in the development
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of improved GEVIs variants, including near-infrared or red-shifted GEVIs with enhanced
performance properties [112,113]. Furthermore, a recent study developed a set of compati-
ble GEVIs with opposite response polarity and colors, enabling simultaneous recording
of pairs of neuronal types from the visual cortex and hippocampus with dual-polarity or
dual-color voltage recordings in awake flies and mice, and up to three neuronal types by
combining both recording strategies in running mice [114]. Thus, this approach constitutes
a potential alternative to GECIs to perform fine-scale multipopulation recordings at millisec-
ond resolution, in combination with one-photon and two-photon fluorescence microscopy,
also reaching deep areas when used with microendoscopy approaches in mice [115].

Moreover, promising alternative indicators for future neuroscience research encompass
genetically encoded fluorescence sensors for neurotransmitter dynamics. These sensors
enable real-time monitoring for chemical transmission in vivo with high spatiotemporal
precision and single-cell resolution [116]. A variety of sensors for different neurotransmit-
ters are available, including those for glutamate, GABA, or acetylcholine, among others,
and they can be detected in behaving animals by fiber photometry, stationary two-photon
excitation microscopy, and miniaturized head-mounted microscopes [116–118].

3.5. Future Perspectives in Imaging Technologies for Neuronal Connectivity

Ideally, the combination of different imaging technologies will enable a more de-
tailed and thorough insight into the functionality and connectivity of neuronal networks
involved in cognitive processes, behaviors, or diseases. For example, Revah and col-
leagues developed an exhaustive characterization of organoid-derived grafted cells into
rat somatosensory cortex by performing MRI to track grafted cells prior to calcium imag-
ing recordings. By combining both technologies, authors studied both spontaneous and
sensory-evoked activity in freely moving and anesthetized rats via fiber photometry and
two-photon microscopy in head-fixed conditions, respectively [119].

The main challenges of these imaging technologies for improving their applicability
are related with depth penetration into the brain and spatial and temporal resolution, but
also involving analysis of tridimensional data and reducing the costs. This will require the
combination of different imaging modalities, such us multiphoton microscopy, functional
magnetic resonance imaging (fMRI), and positron emission tomography (PET) together
with opto/chemogenetics, each offering unique strengths and capabilities for studying
neuronal activity in the context of cell therapy for brain repair.

4. Tracers for Neuronal Functional Connectivity

Unraveling the intricate architecture of neural circuits is essential for understanding
not only brain function and behavior but also the reconstruction of damaged neuronal
networks after cell therapy. Monosynaptic tracing, a technique used to selectively label
interconnected neurons, has undergone remarkable advancements with the integration
of viral vectors since its first description and use in the brain [120,121] and subsequent
improvement for monosynaptic specificity in 2007 [122] (Figure 2). By utilizing viral vectors
with target-specific promoters, the introduced genetic material is expressed only in the
desired neuron population, allowing the virus to spread exclusively to connected neurons.
This provides valuable insights into how transplanted cells interact with existing neural
networks and offers unique information about how cell therapy impacts neural circuitry
and contributes to functional recovery [1].

The process for monosynaptic tracing using viral vectors involves several steps [122],
as illustrated in Figure 3. First, the so-called “tracing vector” is introduced into the cells
(1) that will receive the original infection with the tracing virus, those are the “starter”
neurons. This vector will include a reporter molecule (green in the example, i.e., GFP),
a receptor for the specific infection (orange), and the protein needed for the synaptic
transmission of the virus (G-protein, purple). Second, the starter neurons will be infected
with the pseudotyped virus (2), which also contains a reporter gene (red in the example,
i.e., mCherry), thanks to the presence of a specific envelope recognized by the receptor
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(orange). And third, the presence of the protein for synaptic transmission (G-protein
introduced by the tracing vector) will allow the pseudotyped virus to infect cells that are
connected to them by functional synapses (3), spreading the reporter (red in the example) to
those “traced” neurons. Since the “traced” neurons do not express the protein for synaptic
transmission (4), the tracing will be restricted to monosynaptically connected neurons.
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Among the various methods available for monosynaptic tracing, the use of viruses
has gained significant attention due to several important advantages. The precision of
viral targeting enables researchers to selectively label specific neurons and their connected
partners, minimizing noise and enhancing the accuracy of circuit reconstruction. Addition-
ally, viruses can be engineered to express fluorescent proteins or other markers, enabling
visualization of labeled neurons in exquisite detail. This capability facilitates comprehen-
sive mapping of neural pathways, shedding light on complex circuit architectures with
unprecedented clarity. Finally, the flexibility of viral vectors also allows for cell-type-specific
targeting, enabling researchers to dissect subpopulations within a given neural network,
including tracing from individual neurons [124].

4.1. Retrograde Tracing Using Rabies Virus

Rabies virus was the first viral vector extensively used for monosynaptic tracing and
has retrograde preference [125]. Its ability to propagate across synapses in a retrograde
manner allows researchers to label neurons that provide inputs to a targeted region [126].
By engineering the rabies virus to express fluorescent markers, such as GFP or tdTomato,
researchers can track the source of inputs and reconstruct the upstream neural network.
This technique has been pivotal in unraveling intricate neural pathways in various brain
regions and has provided valuable insights into sensory, motor, and cognitive circuits in
animal models [127].

Regarding cell therapy studies, rabies virus-based monosynaptic tracing has been
crucial for addressing functional integration of transplanted cells in several animal models
such as hESCs-derived cells injected into the striatum [127], hiPSC-derived cells in the
cortex after ischemic stroke [46,123], or mouse embryonic cells after neuronal ablation in the
visual cortex [82,128,129], among others. In addition, this method has been used to confirm
afferent and efferent synaptic connections between human cortical organotypic cultures
and hiPSC-derived grafted neurons [130], the first human-to-human relevant ex vivo model
for cell therapy described in the literature.

4.2. Anterograde Tracing Using Herpes Virus

Herpes simplex virus (HSV) has been harnessed for anterograde monosynaptic tracing,
allowing the visualization of axonal projections from a given neuron. In particular, HSV1
strain H1129 has shown predominant anterograde transneuronal transmission [131]. By
engineering HSV to express fluorescent markers, axons of a specific neuron and their pro-
jections to downstream targets can be labeled. Recently, a novel monosynaptic anterograde
tracing system based on the deletion of the gene UL6 from the genome of a Cre-dependent
version of the anterograde Herpes Simplex Virus 1 strain H129 has been described [132],
providing a reliable method to label postsynaptic partners.

These anterograde tracing techniques have been particularly useful in elucidating
neural connectivity patterns in both the central and peripheral nervous systems [133]
and provide a unique tool for the study of functional integration of grafted cells in cell
therapy approaches.

4.3. Future Perspectives in Mapping Communication Pathways after Cell Transplantation

Monosynaptic tracing tools employing viruses have revolutionized our understanding
of neural circuitry. These techniques offer unparalleled specificity, enabling researchers to
uncover intricate connections and communication pathways within the nervous system [5].
The use of rabies virus for retrograde labeling and herpes virus for anterograde tracing
has provided invaluable insights into various brain regions and functions. As technology
continues to advance, viral monosynaptic tracing tools are poised to play an increasingly
pivotal role in unraveling the complex architecture of the brain.

The challenges of monosynaptic tracing technology include improvements in efficiency
and cell specificity that can arrive to a single starting neuron [122,124]; the combination of
tracing with electrophysiology in acute slices, optogenetics, and chemogenetics that allows
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the study and modulation of neuronal activity specifically in traced neurons [134,135]; and
the generation of detailed functional connectivity maps by combining it with spatial omics
technologies, not only in healthy brain but also in diseased environment [136], for a better
understanding of neurological and psychiatric disorders.

5. Conclusions

Currently, several relatively new technologies are used alone or in combination al-
lowing a deep exploration of functional integration and circuit reconstruction after cell
transplantation. Altogether, continuous optimization and broadening of both microscopical
techniques and indicators of neuronal activity as well as their increased affordability in
the neuroscience field would enable multiplexed implementations of such techniques for a
more exhaustive characterization of neuronal circuits to understand functional integration
of grafted neurons.

Better knowledge of the functional integration processes of transplanted cells and,
therefore, the mechanisms that direct network repair, will lead to the development of new
therapeutic strategies or the improvement of existing ones. So, despite certain limitations
and technical complexity, these techniques contribute to the refinement and validation of
cell therapy, bringing it closer to clinical application. Furthermore, some of them represent a
therapeutic strategy by themselves, such as the use of opto/chemogenetics as an alternative
to electrical brain stimulation [137–139].
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