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Abstract: Retinal vessel segmentation plays a crucial role in medical image analysis, aiding ophthal-
mologists in disease diagnosis, monitoring, and treatment guidance. However, due to the complex
boundary structure and rich texture features in retinal blood vessel images, existing methods have
challenges in the accurate segmentation of blood vessel boundaries. In this study, we propose the
texture-driven Swin-UNet with enhanced boundary-wise perception. Firstly, we designed a Cross-
level Texture Complementary Module (CTCM) to fuse feature maps at different scales during the
encoding stage, thereby recovering detailed features lost in the downsampling process. Additionally,
we introduced a Pixel-wise Texture Swin Block (PT Swin Block) to improve the model’s ability to
localize vessel boundary and contour information. Finally, we introduced an improved Hausdorff
distance loss function to further enhance the accuracy of vessel boundary segmentation. The pro-
posed method was evaluated on the DRIVE and CHASEDB1 datasets, and the experimental results
demonstrate that our model obtained superior performance in terms of Accuracy (ACC), Sensitivity
(SE), Specificity (SP), and F1 score (F1), and the accuracy of vessel boundary segmentation was
significantly improved.

Keywords: retinal vessel segmentation; transformer; cross-level texture complementary module;
pixel-wise texture highlighting module; Hausdorff loss

1. Introduction

Medical image segmentation plays a pivotal role in medical image processing and
analysis, encompassing tasks such as brain segmentation, cell segmentation, lung segmen-
tation, retinal blood vessel segmentation, and so on. Precise segmentation can facilitate
accurate lesion localization, thus aiding doctors in formulating optimal treatment plans.
With the continuous advancements in computer vision and artificial intelligence, medical
image segmentation finds extensive application in ophthalmology, among which the retinal
vascular segmentation field has attracted much attention. Retinal vessel segmentation
technology enables the analysis of vascular structures in fundus images, providing an
important reference for early diagnosis and treatment of ophthalmic diseases.

Retinal vascular segmentation is of great importance to the diagnosis of ocular diseases.
The observation of abnormal structures in retinal vascular segmentation images can help
physicians detect signs of common eye diseases such as diabetic retinopathy, glaucoma,
and macular degeneration in a timely manner [1], leading to more timely interventions and
therapeutic measures. Nonetheless, retinal vessel segmentation and visualization present
challenges due to vessel size variability, intertwined branches, and complex structures [2].
Consequently, there is a pressing need for automated and efficient retinal vessel segmen-
tation methods to enhance ocular disease diagnosis and treatment while enabling the
automated analysis of medical images.

Traditional retinal vessel segmentation methods typically include threshold segmenta-
tion algorithms, matched filtering algorithms, and machine learning-based approaches. The
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threshold segmentation method [3] is straightforward but sensitive to factors like image
noise and illumination changes, requiring the re-selection of thresholds for different images
and applications. Matched filtering algorithms [4] leverage 2D convolution operations
with filters constructed based on 2D Gaussian templates to capture blood vessel features.
Matched filtering algorithms are robust to image noise and illumination variations, but
they require manually designed filters and parameters and struggle to handle complex
situations such as blood vessel crossings and overlaps. Machine learning-based methods
utilize manually crafted features (edges, texture, color, etc.) to discern vascular from non-
vascular regions, which are subsequently segmented by a classifier. Despite their potential,
this approach heavily relies on feature selection and extraction, demanding considerable
human intervention and empirical knowledge, thus limiting adaptability across various
retinal image types.

Deep learning has witnessed a surge in popularity owing to enhanced computational
capabilities, the availability of large-scale datasets, and algorithmic advancements. Convo-
lutional neural networks (CNNs) have achieved remarkable achievements across various
fields, including image classification [5], target detection [6], and image segmentation [7]. In
image segmentation, CNNs have significant advantages over traditional methods by auto-
matically extracting features and learning complex representations with robust adaptability
and generalization. Several image segmentation networks have been proposed, including
SegNet [8], UNet [9], PSPNet [10], and UNet++ [11]. UNet introduces an encoder–decoder
structure along with a skip-connection mechanism. UNet++ enhances UNet by incorpo-
rating a dense connection mechanism and constructing a multi-layered skip connection.
The UNet or improved UNet network integrates low-resolution information such as object
categories and high-resolution information such as edges and details, making it suitable
for medical image segmentation tasks. U-Net and its variants have been widely used in
retinal blood vessel segmentation tasks [12–14].

The above CNN models have achieved remarkable results, but the convolution op-
eration can only capture local spatial information, while lacking robustness in capturing
global contextual information. In fundus vessel segmentation tasks, distant pixels may
exhibit correlations with local image structures. CNNs struggle to model global information
and long-distance interaction information, thus ignoring the continuity and wholeness
between blood vessels, and hence still represent a major limitation in retinal vessel seg-
mentation. In order to realize global contextual information capture, the transformer [15]
framework was then proposed. Utilizing a self-attentive mechanism [16], transformers
can capture the correlation among all positions in a sequence at each time step and use
it to compute the output, which can effectively deal with long-distance dependencies in
a sequence. Initially applied in natural language processing, transformers found success
in image classification with the proposal of the Vision Transformer (ViT) [17]. However,
due to extensive computational costs, the substantial parameter count and high computa-
tional demands of the ViT present great challenges. Swin Transformer [18] introduced the
windowed self-attention mechanism, partitioning the input image into fixed-size blocks
for self-attention computation, thereby reducing computational complexity. Inspired by
the U-shaped encoder–decoder structure of U-Net, Swin-UNet [19] was developed and
achieved notable success in medical image segmentation.

Swin-UNet, as a semantic segmentation network based on the Swin Transformer,
performs well in processing large-scale images and regular data. However, it encounters
challenges when segmenting retinal blood vessel images, characterized by numerous small
regions and dense boundaries. We summarize the problems of the Swin-UNet retinal
blood vessel segmentation method as follows: (1) During gradual downsampling and
upsampling, as the size of the feature map decreases, the network forfeits the shallow
details containing richer semantic features of small regions, particularly texture features at
the boundaries of the target region. These details are crucial for segmentation tasks, aiding
in distinguishing between the intersections of multiple region categories and enhancing
segmentation quality. Once this information is lost, the network may not be able to
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fully recover the lost details of boundaries and contours in the upsampling stage despite
integrating shallow features with the deeper ones through skip connections, leading to
the decrease in the segmentation ability. (2) The Swin-UNet loss function employs cross-
entropy and Dice losses. While Dice loss suits unbalanced category segmentation tasks,
it proves highly unstable for regions with small areas, notably the minuscule regions in
retinal blood vessel images, thereby diminishing model segmentation performance to a
certain extent. Dice loss solely quantifies discrepancies between predictions and ground
truth in terms of pixel count, disregarding specific boundary shapes and distributions.
There are only foreground and background parts in the retinal blood vessel image, and the
latter are very small. Inaccuracies in predicting some pixels in these regions may trigger
significant changes in Dice loss, resulting in drastic gradient shifts and ultimately affecting
model performance.

To address the above problems, we improve Swin-UNet and introduce TD Swin-UNet.
Specifically, to tackle the limited capability in localizing and segmenting the boundaries
of Swin-UNet, we propose the texture-driven retinal vessel segmentation method by
improving boundary-wise perception. Previous studies have demonstrated that shallow
semantic features contain richer textures, such as boundaries and contours, due to their
higher resolution, which substantially aids in model performance. Consequently, we
concatenate the outputs of multiple Swin Blocks in the network encoder and feed them
into a Cross-level Texture Complementary Module (CTCM). This module amalgamates
these feature maps to further augment the model’s ability to extract and represent semantic
features such as boundaries and contours. Moreover, we enhance the Swin Block in
the decoder and introduce the Pixel-wise Texture Swin Block. This module heightens
the model’s focus on the vicinity of the region boundary, thereby improving boundary
localization and segmentation performance. To address the insensitivity of the Dice loss
function to the specific shape and distribution of boundaries, we introduce the Hausdorff
distance loss and refine the Hausdorff loss by incorporating a clip truncation operation to
avoid the imbalance due to the size of the area, ultimately enhancing the model accuracy
in segmenting blood vessel boundaries. Our proposed model demonstrates outstanding
segmentation results on two datasets: DRIVE and CHASEDB1. The primary contributions
of this paper are summarized as follows:

(1) We propose a texture-driven retinal vessel segmentation method by improving
boundary-wise perception, which contains two key enhancements. Firstly, we introduce
the Cross-level Texture Complementary Module (CTCM) to fuse feature maps during the
encoding process, facilitating the focus of our model on essential feature information in
vessel images and recovering the shallow details lost during the downsampling stages.
Additionally, we introduce the Pixel-wise Texture Swin Block (PT Swin Block) via the
Pixel-wise Texture Highlighting Module (PTHM), which enhances the model’s capacity to
perceive and recognize vessel boundary and contour information;

(2) We improve the loss function by introducing a proposed Hausdorff distance loss
function tailored for small target regions of blood vessels. Furthermore, we refine the
Hausdorff loss by introducing hyperparameters to weight different components of the loss
function. This enhancement enables the model to better discern subtle features of blood
vessel structure and boundary information;

(3) We conducted experiments on two datasets: DRIVE and CHASEDB1. The experi-
mental results show that our proposed network outperforms the existing methods on the
retinal blood vessel segmentation task.

2. Related Works

Medical imaging is an important and indispensable tool in medical diagnosis and
treatment. In the past, medical images were primarily analyzed manually by physicians
or using simple feature extraction algorithms, which were time-consuming and prone to
low accuracy rates. However, in the 21st century, the intelligent analysis of medical image
has emerged as a prominent research field. Deep learning technology offers numerous
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applications in this field, including image classification (X-rays, CT scans, MRIs, and
so on), lesion detection (tumors, nodules, blood vessels, and so on), and precise tissue
structure or lesion segmentation from the background. The integration of deep learning
into medical imaging holds significant promise, as it can provide more accurate, efficient,
and intelligent solutions for medical image analysis, ultimately enhancing the accuracy of
medical diagnoses and the effectiveness of treatment.

2.1. Retinal Vessel Segmentation Networks Based on CNN

In recent years, numerous CNN-based approaches have emerged for retinal blood
vessel segmentation, primarily relying on U-Net and its variants as the foundational
architecture. U-Net has gained popularity due to its efficacy in capturing spatial information
and adept handling of semantic segmentation tasks. Lv et al. [20] proposed AA-UNet,
incorporating an attention mechanism to automatically prioritize regions pertinent to blood
vessels. Atrous convolution was employed to expand the model’s receptive field, enhancing
the capture of vessel details and contextual information. Yang et al. [21] proposed MR-
UNet, featuring a multi-scale convolution (Multiconv) block formed by different-sized
convolution kernels. They replaced the 3 × 3 convolution block with a Multiconv block
to facilitate feature extraction across varying vessel thicknesses and finenesses, and also
added residual convolution to the skip connection, reducing the information difference
between the encoder and decoder. Radha et al. [22] augmented the encoding process with
a deepwise convolution block to mitigate information decay during downsampling and
introduced a parallel attention network in the upsampling process to optimize the model
structure. Cao et al. [23] optimized the skip connection mechanism of U-Net, incorporating
a Multi-scale Fusion Self-Attention Module to leverage diverse image scales. They also
replaced the original output layer with a Multi-branch Decoding Module (MBDM) to
construct MFA-UNet, enabling more detailed vessel segmentation.The above models have
achieved remarkable results, but CNNs can only capture local spatial information and
are unable to comprehend global information. To address this limitation, we leverage
transformer as the framework for segmentation networks.

2.2. Retinal Vessel Segmentation Networks Based on Transformer

Compared to CNN models, transformers exhibit a stronger ability to capture global
positional information, which enables better attention to the entirety and continuity of
blood vessels, resulting in improved segmentation effectiveness. Jiang et al. [24] enhanced
the Multi-head Self-Attention (MSA) mechanism in a transformer and introduced the Trans-
former Positional Attention (TPA) module to precisely acquire the position information
of blood vessel pixels. They integrated TPA with UNet during the encoding process and
proposed the MTPA-UNet model. Jiang et al. [25] fused a CNN with the ViT and built CoVi-
Net. They designed the LGFA architecture to capture long-range feature dependencies and
proposed bidirectional weighted feature fusion (BWF) with adaptive lateral feature fusion
(ALFF) for features of varying scales. Jia et al. [26] proposed DT-Net, which merges de-
formable convolution with the transformer and incorporates MSA in the decoder to capture
long-range dependencies and important features within blood vessels. In addition to fusing
the transformer with the CNN, some scholars have also focused on enhancing transformer
structures or attention mechanisms to improve segmentation accuracy. Tan et al. [27] en-
hanced the MSA module in the ViT and proposed Multi-Head Dynamic Token Aggregation
Attention (MDTAA) to capture the global information of the retina. They also added an
auxiliary convolution branch to accelerate the model convergence, ultimately constructing
the OCT2Former network for OCTA retinal vessel segmentation. Wang et al. [28] devised
an unsupervised blood vessel segmentation method, which resolves optimal mappings
using two extreme mapping functions to delineate vascular structures. They employed
Swin-UNet to solve the optimal mappings and designed an outlier-aware game filter to
mitigate prediction mask errors. Lin et al. [29] proposed SGAT-Net for retinal vascu-
lar segmentation, which introduced a Stimulus-Guided Adaptive Module (SGA-Module)
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to acquire global features. They designed a Stimulus-Guided Adaptive Feature Fusion
(SGAFF) module to adaptively emphasize local details and global information, achieving
high segmentation accuracy. Transformer-based models are able to capture long-distance
dependencies in sequence data and have achieved superior segmentation results. However,
when dealing with local pixel-level edges and texture features, these models may overlook
the spatial relationships between pixels and fail to accurately capture and segment fine
structures near the boundaries, resulting in a decrease in the segmentation and localization
accuracy of the blood vessel boundaries, which, in turn, affects the segmentation effect.

3. Methods
3.1. Overall Framework of the Proposed Network

To address the challenges of key information loss and inaccurate vessel boundary
segmentation in Swin-UNet’s downsampling process, we propose TD Swin-UNet. The
architecture of TD Swin-UNet is illustrated in Figure 1. TD Swin-UNet is comprised of
three key components: the encoder module, the decoder module, and the CTCM module.

Figure 1. Overall architecture of TD Swin-UNet network.

In the encoder module, the input image is initially divided into equal-sized image
blocks using the Patch Partition module. This operation transforms the W × H × 3 feature
map into W

4 × H
4 × 48 vectors. Subsequently, these 48-dimension vectors are projected to

C-dimension using Linear Embedding and then inputted into the Swin Block. The Swin
Block, as the core component of the Swin Transformer, incorporates the shifted window
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mechanism and allows each position to focus on local neighborhood information, thereby
enhancing the capture of spatial local relationships in the image. The output feature
map of the Swin Block is connected to the decoder via a skip connection mechanism.
Simultaneously, it undergoes downsampling through the Patch Merging module, halving
the image height and width while doubling the number of channels. The CTCM module
fuses feature maps of different scales in the encoder, enhancing lost boundary contour
information and improving the model’s accuracy in boundary segmentation. In the decoder
module, we introduce a new PT Swin Block. Based upon the original Swin Block and patch
expanding module, the feature maps are enriched with boundary and contour information
through the PTHM module, thereby enhancing the model’s ability to learn semantic
information on both sides of the boundary. Finally, the segmentation result is obtained
through a linear layer.

3.2. Swin Transformer Block

The Swin Block serves as the basic component in the Swin Transformer, which im-
proves the Multi-Head Self-Attention (MSA) mechanism used in the ViT. It achieves this
improvement by employing a windowed attention mechanism and cross-layer local connec-
tions to reduce the number of parameters and computational complexity. Specifically, it in-
troduces two variants of attention mechanisms: Window-based Multi-Head Self-Attention
(W-MSA) and Shifted Window-based Multi-Head Self-Attention (SW-MSA). The basic struc-
ture of the Swin Block is depicted in Figure 2. Each Swin Block comprises two Transformer
blocks, with each Transformer block consisting of two LayerNorm (LN) layers and an MLP
layer. The W-MSA and SW-MSA modules are applied to the front and back Transformer
blocks, respectively. The expressions for these modules are shown below:

ŵl = W_MSA
(

LN
(

zl−1
))

+ zl−1 (1)

wl = MLP
(

LN
(

ŵl
))

+ ŵl (2)

ˆswl = SW_MSA
(

LN
(

wl
))

+ wl (3)

swl = MLP
(

LN
(

ˆswl
))

+ ˆswl (4)

where zl−1 denotes the output of the previous layer, ŵl , ˆswl denote the output of the
(S)W-MSA module, and wl , swl represent the output of the two MLP modules of layer l.

Figure 2. Pipeline of Swin Transformer block.

3.3. Cross-Level Texture Complementary Module

The encoder part of Swin-UNet contains multiple downsampling sessions, yielding
feature maps F1(F1 ∈ R

W
4 × H

4 ×C), F2(F2 ∈ R
W
8 × H

8 ×2C), and F3(F3 ∈ R
W
16×

H
16×4C) at different

scales through forward propagation. To augment the boundary localization and segmenta-
tion capabilities of our model, we pass these three feature maps to the Cross-level Texture
Complementary Module (CTCM), which sequentially upsamples the lost vessel boundary
contour information and weights each channel of the feature maps to prioritize critical
feature information, thereby enhancing segmentation accuracy.
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The structure of CTCM is shown in Figure 3. Firstly, we upsample F2 and F3 by two
and four times, respectively, to match the height and width of F1, and then align the number
of channels to 4C via a 1 × 1 convolution. However, upsampling alone fails to recover
the intricate texture gradually lost during downsampling. Therefore, we introduce two
difference values here to recover the detail texture lost in the downsampling process, as
shown in Equations (5) and (6).

Fδ1 = F1 − F4×
3 (5)

Fδ2 = F2×
2 − F4×

3 (6)

where the superscripts 4×, 2× denote fourfold and twofold upsampling.
To further focus on the importance of Fδ1 and Fδ2 , we introduce two hyperparameters,

α and β, to weight the feature maps, respectively, and concatenate two weighted feature
maps. Then, the dimensions are reduced to W

16 × H
16 × 4C by the Conv Blocks, which

consist of convolution, the ReLU activation function, and average Pooling. During the
process, to avoid the recovery of the texture details from being discarded, we chose Average
Pooling instead of Max Pooling. Finally, we combine the output with F3 to obtain Fc(Fc ∈
R

W
16×

H
16×4C). The output of the CTCM module is illustrated in Equation (7).

Fc = F3 + ConvBlocks
([

αFδ1 ; βFδ2

])
(7)

Figure 3. Structure of Cross-level Texture Complementary Module.

3.4. Pixel-Wise Texture Swin Block

We enhanced the decoder structure of Swin-UNet, incorporating three newly designed
Pixel-wise Texture Swin Blocks (PT Swin Blocks) as depicted in Figure 4. The Pixel-wise
Texture Highlighting Module (PTHM) was developed specifically for retinal vessel segmen-
tation tasks in this study, which aimed to enhance the model’s ability to perceive boundary
and contour information of blood vessels, thereby improving the model’s semantic learning
on both sides of the boundary and guiding fine-grade segmentation tasks at a higher level.
The module takes the feature map Fin(Fin ∈ RW×H×C) as input, where W and H denote the
width and height of the feature map, respectively, and C represents the number of channels.
We first perform Pixel Normalization on Fin, and then use the Sobel operator to perform
convolution in both vertical and horizontal directions to extract the gradient around each
pixel location, where larger gradients correspond to boundary regions with richer semantic
information. The formulas are shown as below:

Z = Fin + Sobel(PN(Fin)) (8)

Sobel(F) =
√

Sobelx(F)2 + Sobely(F)2 (9)
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where Sobelx(F) and Sobely(F) denote the convolution results using the horizontal and
vertical Sobel operators, respectively. PN denotes pixel normalization, as represented by
the following formula:

PN
(

Fx,y
)
=

Fx,y√
1
C′ ∑C′

j=1

(
F(j)

x,y

)2
+ ϵ

(10)

where C′ denotes the number of channels of the feature map F; Fx,y denotes the value of

the feature map at position x, y; and F(j)
x,y denotes the value of the jth channel at position x,

y. ϵ is a constant that prevents the denominator from being 0, and has the value of 1 × 10−8.
The purpose of using PN here is twofold. On the one hand, it mitigates the bias introduced
by absolute scale differences, ensuring that features from each channel at the same pixel
position are thoroughly considered. On the other hand, PN preserves the original semantic
relationships between each pixel, maintaining the semantic and textural diversity among
different localized regions.

For the feature map Z, we aimed for the model to concentrate on the texture of a
small localized region near the boundary, because this region is positioned on the contour
between categories, assisting the model in accurate localization. At the same time, we also
sought to prevent the model from overly focusing on this localized area. Therefore, we
applied the Gaussian blur of size 3 × 3 to Z and then multiplied it by Fin as a weight G, as
demonstrated in the following formula:

V = G ⊙ Fin (11)

G = GaussianBlur(Z, k = 3) (12)

Finally, the final output Fout is obtained by concatenating V and Fin, followed by a
1 × 1 convolution to blend the textures across each channel. The formula is shown below:

Fout = Conv1×1([V; Fin]) (13)

Figure 4. Structure of Cross-level Texture Complementary Module.

3.5. Loss Function Improvement

Apart from the issue of losing boundary texture during the downsampling process
in Swin-UNet, its loss function simply uses the summation of cross-entropy loss and Dice
loss. The total loss is defined as follows:

Ltotal = LCE + LDice (14)

where LCE denotes the cross-entropy loss and LDice denotes the Dice loss.
To address the insensitivity to the specific shape and boundary distribution of Dice

loss, and to further enhance the accuracy of the model predictions for class boundaries
in retinal vessel segmentation tasks, it is imperative to introduce a loss term in the loss
function that is sensitive to the specific shape of the boundary.
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From this perspective, cross-entropy (CE) loss appears to be compliant, as it penalizes
the model misclassification of boundary pixels, thereby prompting the model to focus
more on the accuracy of segmentation boundaries. Although CE loss can partially consider
boundary information, it indirectly influences boundary accuracy through overall pixel
classification rather than directly optimizing boundary characteristics. Therefore, its contri-
bution to improving the model’s ability to localize boundary categories is quite limited.

As a result, we introduce the loss term of the Hausdorff distance, denoted as LHaus.
Suppose that P represents the model output and G denotes the actual labels. LHaus is
defined as below:

LHaus = max (Haus(P, G), Haus(G, P)) (15)

where Haus(X, Y) represents the Hausdorff distance between two feature maps X and Y.
Compared to CE loss, the Hausdorff distance directly measures the disparity between

the predicted boundary and the true boundary, offering a more direct metric. The Hausdorff
distance aids in capturing subtle differences in boundaries, particularly when pixel-level
classification results are ambiguous or when dealing with fuzzy boundaries. It provides
a more precise reflection of the distance between the predicted boundary and the true
boundary. This is particularly critical in retinal vessel segmentation, where any subtle
boundary changes can influence doctors’ assessment of ocular lesions. Therefore, the
introduction of the Hausdorff distance enhances the model’s understanding of the specific
shape and distribution characteristics of blood vessel boundaries, thereby further improving
segmentation accuracy.

However, Haus(X, Y) is significantly influenced by the areas of X and Y. In the
retinal vessel segmentation task, the vessel region and background region areas are often
unbalanced. This drawback of Haus(X, Y) tends to result in the loss term of large area
targets being too large and the loss term of small area targets being too small, thereby
leading to performance degradation. To address this issue, we introduced a clip truncation
operation to mitigate the imbalance caused by differences in area size. The expression is
shown as below:

ClipHaus(X, Y) = min
(

max
x∈X

(
min
y∈Y

|x − y|2
)

, ϵ

)
(16)

Considering that the Hausdorff distance essentially measures the Euclidean distance
between pixels, it is crucial to design the constant ϵ related to the Euclidean distance
between pixels to maintain the consistency of the distance metric. Additionally, since
images of different sizes may result in varying ranges of target boundaries, we need to
ensure that the value of ϵ can be adjusted with changes in the input image size to fully
accommodate the characteristics of different sized images. Thus, ϵ should be designed as a
variable proportional to the image size. Moreover, given that medical image segmentation
tasks typically involve several different types of targets, and an increase in the number of
categories NC may lead to more complex boundary cases, the value of ϵ should also be
inversely proportional to the number of categories NC. In this way, we adjust the value of
ϵ according to the size of the input image and the number of categories, allowing for the
effective evaluation and optimization of segmentation results in various scenarios.

Based on the above considerations, we define ϵ as follows:

ϵ =

√
H2 + W2

NC
(17)

where H, W, and NC denote the height, width, and total number of all categories of the
input image, respectively.

In summary, our total loss is defined as follows:

Ltotal =
1

ω1 + ω2 + ω3

(
ω1LCE + ω2LDice + ω3LClipHaus

)
(18)
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LClipHaus = max (ClipHaus(P, G), ClipHaus(G, P)) (19)

where ω1, ω2, and ω3 serve as hyperparameter weights and are set to 10, 10, and 1, respectively.

4. Experiments
4.1. Experimental Setup

The experiments were conducted on an Intel Core i9-12900H CPU and NVIDIA
GeForce RTX3060 with 6 GB of video memory. The compilation environment for the experi-
ments was pytorch1.13 as well as python3.9, and CUDA11.6 was used for GPU acceleration.
A Stochastic Gradient Descent (SGD) optimizer was used in the experiments with momen-
tum parameter set to 0.9, the weight decay rate set to 1 × 10−4, and the batchsize taken as 2.
Learning rate decay was applied during training, following the formula:

lr = initial_lr
(

1 − epoch
max_epoch

)α

(20)

where initial_lr represents the initial learning rate set to 0.01, lr denotes the current learn-
ing rate, epoch indicates the current number of training rounds, max_epoch denotes the
maximum number of training rounds set to 200, and the decay coefficient α is 0.9. We tried
multiple combinations of hyperparameters, including the optimizer, initial learning rate,
weight decay, and the depth and width of the network and selected the optimal ones. The
model we trained represents the best performance we could achieve.

4.2. Dataset

Our proposed method was trained and tested on the DRIVE [30] and CHASEDB1 [31]
datasets. Example images of both datasets are shown in Figure 5, including the original
images, ground truth segmentation masks, and field-of-view (FOV) masks from left to
right. The DRIVE dataset comprises 40 real fundus color images, each with the size of
565 × 584 pixels, containing 33 normal images and 7 with pathology. We used 20 images
for training and another 20 for testing. Each image includes a blood vessel mask manually
labeled by two medical experts, with the first expert’s annotation utilized uniformly as
ground truth masks for the segmentation algorithm. The CHASEDB1 dataset consists
of 28 high-resolution fundus color images, each sized at 999 × 960 pixels. The dataset
encompasses images from 14 healthy individuals and 14 patients with diabetic retinopathy.
Similar to DRIVE, each image has two versions with independent manual annotations
from different physicians. For our experiments, we divided the dataset by using the first
20 images for training and the last 8 for testing, all based on the first annotation. The
division of the training set and testing set follows CoVi-Net [25].

Figure 5. Samples of DRIVE and CHASEDB1 dataset.

4.3. Image Preprocessing

In this paper, we employed several image preprocessing methods to further enhance
the clarity of the retinal vascular structure. Firstly, to ensure consistency in the input image
size of network and considering computational resource limitations, we resized the training
and testing set images to 448 × 448. Given the wide range of luminance dynamics and local
contrast variations inherent in retinal images, particularly around vessel bifurcations and
seams, we employed Contrast Limited Adaptive Histogram Equalization (CLAHE) [32]
and Gamma correction to enhance the overall brightness and contrast, thereby making the
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vascular structures clearer. Subsequently, we normalized the images to adjust the pixel
values within the range of −1 to 1. Since the retinal blood vessel segmentation dataset is
relatively small, to further reduce overfitting and bolster model robustness, we applied
random horizontal flipping and random vertical flipping to the training images. The testing
dataset was only preprocessed and not flipped. Figure 6 illustrates an example of image
preprocessing methods.

Figure 6. Examples of image preprocessing methods.

4.4. Evaluation Metrics

To evaluate the segmentation effect of retinal blood vessel images, we calculated the
confusion matrix and recorded the four specific metrics: true positive (TP), true nega-
tive (TN), false positive (FP), and false negative (FN). Based on these metrics, we calcu-
lated the Accuracy (ACC), Sensitivity (SE), Specificity (SP), and F1 score (F1) using the
following formulas:

ACC =
TN + TP

TN + TP + FN + FP
(21)

SE =
TP

TP + FN
(22)

SP =
TN

TN + FP
(23)

F1 =
2TP

2TP + FN + FP
(24)

5. Results
5.1. Ablation Experiments

To further assess the contributions of individual modules in TD Swin-UNet, we con-
ducted ablation experiments using the DRIVE dataset. Swin-UNet served as the baseline,
and four evaluation metrics including ACC, SE, SP, and F1 were recorded during the
experiments. Table 1 presents the results of seven sets of ablation experiments: baseline +
CTCM, baseline + PTHM, baseline + Hausdorff_loss, baseline + CTCM + PTHM, baseline +
PTHM+Hausdorff_loss, baseline + CTCM + Hausdorff_loss, and overall improvement.

1. Efficacy of the Cross-level Texture Complementary Module
To further validate the efficacy of CTCM, we compared baseline + CTCM with the

baseline alone. In comparison to the baseline, CTCM demonstrated improvements of 0.92%,
4.19%, 0.45%, and 3.77% in ACC, SE, SP, and F1, respectively. As the size of the feature
maps decreased during downsampling, the baseline tended to lose shallow details, which
contained richer semantic features of small regions and subtle blood vessel branching
information. This led to challenges in effectively segmenting blood vessel edges and
fine branches, resulting in relatively lower metrics. Incorporating CTCM enhanced the
segmentation accuracy in both the blood vessel region (SE) and the background region (SP),
leading to more precise recognition of blood vessels.



Bioengineering 2024, 11, 488 12 of 18

Table 1. Ablation studies of the proposed method on DRIVE.

CTCM PTHM Hausdorff ACC SE SP F1

baseline 0.9466 0.7817 0.9706 0.7883
✓ 0.9558 0.8236 0.9751 0.8260

Combination ✓ 0.9577 0.8206 0.9777 0.8315
of each ✓ 0.9545 0.8182 0.9744 0.8207

improvement ✓ ✓ 0.9641 0.8443 0.9816 0.8569
✓ ✓ 0.9613 0.8553 0.9767 0.8490

✓ ✓ 0.9655 0.8274 0.9857 0.8593
Ours ✓ ✓ ✓ 0.9664 0.8479 0.9837 0.8653

Bolded data indicate the optimal values for the current indicators.

2. Efficacy of the Pixel-wise Texture Highlighting Module
To further confirm the effectiveness of PTHM, we integrated PTHM into the baseline.

In comparison to the baseline alone, PTHM yielded improvements of 1.11%, 3.89%, 0.71%,
and 4.32% in ACC, SE, SP, and F1, respectively. The incorporation of the improved PT
Swin Block in the upsampling process enhanced the model’s ability to perceive the vessel
boundary and contour information. The concurrent enhancement of SE and SP indicated
that the enhancement module effectively learned semantic information on both sides of
the boundary, leading to a significant improvement in the connectivity and wholeness of
vessel segmentation.

3. Efficacy of Improved Hausdorff Loss
To address the insensitivity of the original loss function to specific boundary shapes

and distributions, we further introduced improved Hausdorff loss into the baseline. The
integration of Hausdorff loss resulted in improvements of 0.79%, 3.65%, 0.38%, and 3.24%
in ACC, SE, SP, and F1, respectively. Hausdorff_loss more accurately reflected the distance
between the predicted boundary and the real boundary, and strengthened the model’s
ability to learn the specific boundary shape and distribution characteristics of the blood ves-
sels. Consequently, the segmentation accuracy of the blood vessel region was significantly
improved, leading to an overall enhancement in blood vessel segmentation effectiveness.

4. Efficacy of Overall Improvements
By integrating the above improvement modules, the final configuration of baseline +

CTCM + PTHM + Hausdorff_loss achieved 96.64%, 84.49%, 98.37%, and 86.53% on ACC,
SE, SP, and F1, respectively. Compared to baseline + PTHM + Hausdorff_loss, baseline +
CTCM + PTHM + Hausdorff_loss exhibited a slight decrease of 0.74% in SE, but witnessed
increases in SP and F1 from 97.67% and 84.90%, to 98.37% and 86.53%, resulting in
an overall enhancement in vessel segmentation performance. In addition, compared
to baseline + CTCM + Hausdorff_loss, baseline + CTCM + PTHM + Hausdorff_loss
resulted in a marginal decrease of 0.2% in SP, yet SE and F1 improved by 2.04% and
0.6%, leading to an improved overall blood vessel segmentation performance. Despite a
slight reduction in the background region segmentation accuracy, the accuracy of blood
vessel segmentation and the overall performance was greatly improved. In conclusion,
TD Swin-UNet effectively achieved accurate segmentation of complex structured blood
vessel images, and finally exhibited high segmentation accuracy.

5.2. Visualization Results

Figures 7 and 8 depict the visualized segmentation results of the baseline and our
proposed method on the DRIVE and CHASEDB1 datasets, respectively. These figures
showcase the overall segmentation results of retinal vessel structures alongside localized
zoomed-in images for a detailed examination of vessel segmentation. Both approaches ef-
fectively capture the main branches of thicker blood vessels in the retinal images. However,
the retinal blood vessel images also have complex and intertwined fine branch structures.
Due to the lack of a unique feature fusion mechanism and edge enhancement module, the
baseline method had challenges in the localization and segmentation of fine blood vessels,
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leading to imprecise vessel boundary delineation. In comparison, our proposed model ex-
hibited enhanced boundary detection capabilities, enabling more accurate vessel boundary
delineation. Notably, as highlighted by the green box, the baseline method fared poorly
in segmenting fine blood vessels characterized by discontinuous vessel structures. In con-
trast, the proposed method effectively captured the detailed texture information at vessel
boundaries, resulting in accurate and continuous segmentation outcomes. The visualization
results demonstrate the superiority of the model in localizing and segmenting vessel bound-
aries, particularly in accurately segmenting fine blood vessels with complex structures.

Figure 7. Samples of visualization results on DRIVE. (a) Original image; (b) ground truth; (c) baseline;
(d) proposed.

Figure 8. Samples of visualization results on CHASEDB1. (a) Original image; (b) ground truth;
(c) baseline; (d) proposed.
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5.3. Comparisons with Existing Methods

To further validate the superiority of TD Swin-UNet, we compared it with 13 reti-
nal vessel segmentation methods proposed over the past ten years on the DRIVE and
CHASEDB1 datasets. These methods include SegNet [8], UNet [9], Att-Unet [33],
UNet++ [11], CE-Net [34], AA-UNet [20], Efficient BFCN [35], PSP-UNet [36], AMF-NET [37],
IterNet++ [38], TiM-Net [39], CAS-UNet [40], and LMSA-Net [41]. We conducted com-
parative experiments on the first five methods, employing identical training strategies
and environments across all experiments. For the latter eight methods, due to the lack of
open-source code, all data are cited directly from the original texts. Tables 2 and 3 present
the comparison results on the DRIVE and CHASEDB1 datasets, with the experimental
metrics including ACC, SE, SP, and F1, where “-” indicates that the experimental data for
the item were not available in the original literature.

On the DRIVE dataset, TD Swin-UNet achieved the highest SE, Specificity SP, and
F1, reaching 0.8479, 0.9837, and 0.8653, respectively. Despite LMSA-Net [41] having a
slightly higher ACC than our model (by 0.22%), TD Swin-UNet outperformed it with SE,
SP, and F1 values that were higher by 1.71%, 0.16%, and 4.39%, respectively. The increase
in SE and SP signifies the enhanced accuracy in retinal vessel identification. Although the
improvement in SP was relatively small, our model had a significantly higher accuracy
for SE in vessel region segmentation. The introduction of CTCM and PTHM restored lost
boundary information during downsampling and effectively improved the model’s ability
to perceive the boundary and contour information of the blood vessels, leading to more
accurate segmentation and increased vascular connectivity and wholeness.

On the CHASEDB1 dataset, TD Swin-UNet achieved the highest ACC, SE, and F1,
which were improved by 0.05%, 0.9%, and 1.25% respectively, compared with the maximum
values of the other models. Although the SP of TD Swin-UNet (0.9867) was slightly lower
than that of AMF-Net [37] (0.9881), TiM-Net [39] (0.9880), and CAS-UNet [40] (0.9896), TD
Swin-UNet achieved a significant improvement in the SE of the vessel region segmentation
accuracy due to the attention and enhancement of the detailed texture features near the
vessel boundary, resulting in the highest ACC (0.9756) and F1 (0.8515). Considering the
substantial improvement in SE, the slight deficiency in SP became negligible. TD Swin-
UNet demonstrated more accurate segmentation of blood vessels and background regions
compared with the other methods, making it more suitable for clinical applications in
medical imaging and showing promising prospects in various fields.

Table 2. Comparison of the proposed method with other methods on DRIVE .

Method Year ACC SE SP F1

SegNet [8] 2015 0.9349 0.6850 0.9714 0.7284
UNet [9] 2015 0.9531 0.7923 0.9765 0.8113
Att-UNet [33] 2018 0.9512 0.7829 0.9757 0.8032
UNet++ [11] 2019 0.9552 0.8046 0.9771 0.8205
CE-Net [34] 2019 0.9408 0.7931 0.9623 0.7733
AA-UNet [20] 2020 0.9558 0.7941 0.9798 -
Efficient BFCN [35] 2020 0.9627 0.8124 0.9822 0.8294
PSP-UNet [36] 2021 0.9556 0.7814 0.9810 0.8176
AMF-NET [37] 2021 0.9581 0.8139 0.9826 -
IterNet++ [38] 2022 0.9569 0.8399 0.9742 -
TiM-Net [39] 2022 0.9638 0.7805 0.9816 -
CAS-UNet [40] 2023 0.9586 0.8375 0.9828 0.8207
LMSA-Net [41] 2023 0.9686 0.8308 0.9821 0.8214
ours 2024 0.9664 0.8479 0.9837 0.8653

Bolded data indicate the optimal values for the current indicators.
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We also compared the visualization results of the proposed model with five other meth-
ods: SegNet [8], UNet [9], Att-Unet [33], UNet++ [11], and CE-Net [34]. Figures 9 and 10
depict the visual comparisons on the DRIVE and CHASEDB1 datasets. While SegNet
exhibited poor segmentation performance with notable background noise, UNet and Att-
UNet achieved accurate segmentation of major arteries and veins, but struggled with finer
blood vessel branches. UNet++ introduced a dense connection mechanism and depth
supervision, which had a better segmentation effect on the local blood vessels. However, it
fell short in capturing global information, and holistic blood vessel segmentation needs
to be improved. CE-Net introduces a contextual feature extraction module consisting of
DAC and RMP on the basis of UNet to fuse multi-scale contextual information, but it
struggled to effectively capture the semantic information of the vessel structure, resulting
in discontinuous vessel segmentation. In contrast, the proposed TD Swin-UNet effectively
captured the long-range dependencies of blood vessels, leading to more connected vessel
segmentation results. In addition, due to the introduction of CTCM and PTHM, the pro-
posed model was able to accurately segment the details at the vessel boundary, yielding
superior segmentation outcomes.

Table 3. Comparison of the proposed method with other methods on CHASEDB1 .

Method Year ACC SE SP F1

SegNet [8] 2015 0.9560 0.7521 0.9763 0.7559
UNet [9] 2015 0.9591 0.8064 0.9744 0.7822
Att-UNet [33] 2018 0.9581 0.7660 0.9772 0.7679
UNet++ [11] 2018 0.9603 0.8123 0.9750 0.7873
CE-Net [34] 2019 0.9559 0.8131 0.9701 0.7696
AA-UNet [20] 2020 0.9608 0.8176 0.9704 -
Efficient BFCN [35] 2020 0.9688 0.8323 0.9851 0.8102
PSP-UNet [36] 2021 0.9590 0.8195 0.9727 0.7813
AMF-NET [37] 2021 0.9729 0.8344 0.9881 -
IterNet++ [38] 2022 0.9659 0.8247 0.9820 -
TiM-Net [39] 2022 0.9711 0.7867 0.9880 -
CAS-UNet [40] 2023 0.9668 0.8321 0.9896 0.8390
LMSA-Net [41] 2023 0.9751 0.8428 0.9840 0.8097
ours 2024 0.9756 0.8518 0.9867 0.8515

Bolded data indicate the optimal values for the current indicators.

Figure 9. Visual comparisons with other methods on DRIVE. (a) Original image; (b) ground truth;
(c) SegNet; (d) UNet; (e) Att-UNet; (f) UNet++; (g) CE-Net; (h) proposed.
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Figure 10. Visual comparisons with other methods on CHASEDB1. (a) Original image; (b) ground
truth; (c) SegNet; (d) UNet; (e) Att-UNet; (f) UNet++; (g) CE-Net; (h) proposed.

6. Discussions

The proposed model addresses the challenge of vascular detail loss during down-
sampling in the baseline model, yielding notable advancements in the segmentation of
retinal vascular detail branches and boundaries. However, several limitations still per-
sist. Primarily, concerning model complexity, the proposed method requires an average
inference time of 2.87 s for processing a single image from the DRIVE dataset and 2.54 s
for the CHASEDB1 dataset. This poses a challenge in achieving the real-time segmenta-
tion of retinal vascular images, potentially impacting the efficiency of disease diagnosis
and treatment decision-making by clinicians in practical scenarios. Additionally, due to
constraints in imaging technology during data acquisition, there exists a significant reso-
lution gap between retinal vessel images in the DRIVE and STARE datasets and that of
contemporary fundus vascular imaging systems. The increase in the input image resolution
would substantially escalate the demands on model memory and computational resources,
thereby imposing a considerable computational burden and potentially compromising the
responsiveness and stability of the segmentation system.

7. Conclusions

For the accurate segmentation of retinal vessel images, we propose a texture-driven
retinal vessel segmentation method by improving boundary-wise perception. Built upon
Swin-UNet, our method integrates three pivotal improvement modules: the CTCM, PTHM,
and improved Hausdorff loss. In the encoder stage, the CTCM consolidates feature maps
across different scales to reinstate lost detailed features during downsampling and prioritize
key features within the image. In the decoder stage, the PTHM is combined with the Swin
Block to form the PT Swin Block, which helps the model to perceive the detailed texture
information of the boundary region and further refines the boundary localization accuracy.
The incorporation of improved Hausdorff loss addresses the insensitivity of the original
model to specific boundary shapes and distributions, enabling the model to capture subtle
boundary differences and improve segmentation accuracy. Experimental results show
that TD Swin-UNet exhibits a superior segmentation accuracy and boundary localization
capability compared to other retinal vessel segmentation algorithms. However, real-time
performance is a major drawback of TD Swin-UNet. In the future, we will optimize
the model architecture to achieve a more lightweight network, reducing both the model
parameter count and computational costs. Additionally, our model was only applied in
the domain of retinal vessel segmentation and was not tested on other types of medical
images. Moving forward, we aim to apply this model to various medical image datasets
and optimize it into a unified, highly generalizable medical segmentation network, better
facilitating the advancement of automated medical analysis.
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