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Abstract: There are still few portable methods for monitoring lower limb joint coordination during
the cutting movements (CM). This study aims to obtain the relevant motion biomechanical parameters
of the lower limb joints at 90◦, 135◦, and 180◦ CM by collecting IMU data of the human lower limbs,
and utilizing the Long Short-Term Memory (LSTM) deep neural-network framework to predict the
coordination variability of selected lower extremity couplings at the three CM directions. There was a
significant (p < 0.001) difference between the three couplings during the swing, especially at 90◦ vs the
other directions. At 135◦ and 180◦, t13-he coordination variability of couplings was significantly greater
than at 90◦ (p < 0.001). It is important to note that the coordination variability of Hip rotation/Knee
flexion-extension was significantly higher at 90◦ than at 180◦ (p < 0.001). By the LSTM, the CM coordi-
nation variability for 90◦ (CMC = 0.99063, RMSE = 0.02358), 135◦ (CMC = 0.99018, RMSE = 0.02465)
and 180◦ (CMC = 0.99485, RMSE = 0.01771) were accurately predicted. The predictive model could be
used as a reliable tool for predicting the coordination variability of different CM directions in patients
or athletes and real-world open scenarios using inertial sensors.

Keywords: cutting movement; vector coding technique; inertial sensor; deep neural network

1. Introduction

After the central motor nervous system receives a command to change direction, the
body completes the cutting movements (CM). This is a common movement process, par-
ticularly in team sports such as basketball and soccer [1–3]. Additionally, it is a common
technique and tactic for athletes to use CM to deceive their opponents during the competi-
tion [4]. Therefore, individuals or teams execute effective CM amongst themselves, which
is crucial for both training and competitions [4–6]. Moreover, the completion of a successful
CM is a means of promoting positive results in competitions and a criterion for selecting
athletic talent [7].

In order to perform high-quality CM, the body conducts deceleration and acceleration
movements over brief intervals, generating high physiological and mechanical loads [8].
In particular, the knee valgus moment was higher during 90◦, 135◦ and 180◦ CM in men [9].
This may result in non-contact ligament damage to the knee and ankle joints [2,10–12],
such as anterior cruciate ligament injury of the knee [13], strain of the medial collateral
ligament of the meniscus [14] and ankle sprains [15]. In addition to affecting the knee and
ankle joints, CM places high demands on hip-joint function [16], and requires athletes to be
able to strongly extend their hips and withstand higher ground reaction forces. Research
shows [17,18], the efficient use of the hip joint during CM is crucial for relieving knee
pain and enhancing the lower extremity function. Notably, to perform body deceleration
braking and trunk redirection acceleration, an effective transition mechanism is required
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to prevent sports injuries and achieve high-quality CM [19]. To accomplish this, such a
transition mechanism requires coordination between the joints of the lower limbs [20,21].
Additionally, monitoring and adjusting the range of motion between joints effectively
prevent sports injuries [22–25]. Collaboration between the hip, knee and ankle joints will
promote dynamic stabilization and force generation in the legs, thereby optimizing the
CM transition mechanism [26]. Unfortunately, previous researchers have overlooked the
variability in the strategies and changes in movement patterns associated with CM [12].

Inter-joint coordination is a comparison of the relationship between two joint move-
ments, requiring the collection and scientific quantification of data from the corresponding
joints during the motion. The three primary methods that evaluate the coordination and
coordination variability of coupling behaviors are [27]: (1) discrete relative phase; (2) con-
tinuous relative phase, and; (3) vector coding. The discrete relative phase is often used to
evaluate the timing of key events in each of the angular profiles [28]. The relative phase
diagram approach combines information on joint angular position and velocity, which
is used to gain insight into the behavior of non-linear, limit cycle oscillatory systems in
engineering [29]. As a well-established technique for quantifying joint-coordination pat-
terns [30], the vector coding technique utilizes angle-angle maps to estimate coordination
measures and thus evaluate coordination variability.

Researchers typically rely on 3D motion-analysis systems and force plates to collect
kinematic and kinetic data on participants for measuring individual lower extremity joint
coordination [8]. However, factors such as high laboratory costs and limited spatial imple-
mentation prevent researchers from assessing the motor behaviors of populations such as
patients and athletes in clinical and exercise settings [31,32]. The wearable device can more
directly depict the biomechanical traits of the athlete in an actual situation than a lab test,
which is helpful for biomechanical analysis of complex movements [33,34]. The inertial
Measurement Unit (IMU), a sensor that combines gyroscopes, accelerometers, and mag-
netometers, is the primary tool for quantifying motion behavior [35]. Its benefits include
portability and wearability (via wireless transmission of real-time data), ease of operation,
simplicity of analysis, a wide range of application scenarios (underwater use with sealed
settings), energy efficiency (for long-term measurement work, such as marathon monitor-
ing), and adequate measurement range and sampling frequency. Simultaneously, it has
some technical issues, such as the lack of fit between the body and the device during exer-
cise, resulting in soft tissue artefacts due to shock during the test, which may compromise
the data’s accuracy [36]. Second, ferromagnetic disturbances can also result in outdoor
measurement errors [37]. In order to overcome the technical issues of IMU and improve the
data’s reliability, numerous studies have applied machine learning techniques to reduce
the IMU data’s acquisition error [38–40]. This type of method utilizes IMU-collected data
(as input features) to train and validate an algorithm that generates accurate predictions for
new data input [41].

Zago et al. [42] used machine learning and wearable sensors to predict the energy and
motion of CM, while a neural network structure method gave accurate results. Previous
research [43,44] investigated the coordination variability of the CM using a vector-coding
technique. Using laboratory equipment, we were unable to make real-time measurements
and calculations while athletes performed CM in an open environment. Consequently,
our research aims to use wearable sensors and combine them with a deep-learning model,
which will attempt to predict the coordination variability under three CM directions. By
examining the data on inter-articular coordination variability, the control of the locomotor
system during CM can be better understood. This information will support the creation of
assessment protocols for the motor rehabilitation of patients with ACL tears, ankle sprains,
etc., [34].
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2. Materials and Methods
2.1. Participants

We recruited 25 healthy male college students (all participants were male, age: 23 ±
2 years, height: 1.76 ± 0.05 m, weight: 70.62 ± 4.74 kg) from Ningbo University [9] who
exercised at least three times per week for 45 min on average per session. Before data
collection, participants were familiar with the CM experimental procedure. According to
the physician’s assessment, all participants had no exercise restrictions and a normal body-
mass index. There was no lower extremity or back musculoskeletal discomfort or injury
lasting more than one week, six months before participation in the trial, no history of lower
extremity or back surgery, and no current usage of foot orthotics. Ningbo University’s
ethics review committee approved this work (RAGH202203012707). Before participating,
all participants completed a written informed consent form.

2.2. Instruments

The Vicon 3D analysis system (Vicon Metrics Ltd., Oxford, UK) with eight infrared
cameras was utilized to acquire kinematic data of the lower limbs at 200 Hz. Vertical ground
reaction forces were measured using AMTI force plates (AMTI, Watertown, MA, USA)
at 1000 Hz. The CM’s speed was monitored during the test using a speed measurement
device (Smart speed, Fusion Sport Inc., Burlingame, CA, United States). Three inertial
sensors (Delsys Inc., Natick, MA, USA) were attached to the anterior calf, anterior thigh,
and L6 Vertebra, locations often utilized in portable testing [35]. Each participant was fitted
with 39 (12.5 mm diameter) reflective markers following the Opensim (Stanford University,
Stanford, CA, USA) Gait 2392 model [45]. Optical reflection markers were connected to
each participant’s anatomical landmarks in accordance with the Gait 2392 model, and the
placement of the markers was always performed by the same operator. Figure 1 depicts the
location of each marker during 3D motion capture.
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2.3. Procedures

For the testing, each participant wore matching, form-fitting shorts and shoes. Under
the guidance of a professional physical trainer, a 10-min warm-up was conducted. Prior
to beginning the formal experiment, the participant was permitted three practice runs to
familiarize himself with the test procedures. The reflex markers and portable sensors were
set up precisely in the appropriate positions for each participant. The sensors are attached
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directly to the skin with double-sided surgical tape and held in place with nylon straps,
which reduce data errors by minimizing soft tissue movement [46].

Each participant was instructed to stand parallel to the Y-axis of the force platform
with their hands naturally spread, palms facing forward, and looking forward until the
complete static pose was captured. Participants were subjected to a 6 m CM test to collect
kinematic and kinetic data in the laboratory. Before each test, the subject was instructed
to remain stationary at the starting position for three seconds (to facilitate control of the
accelerometer and calibration of the gyroscope to capture the start/stop phase of the
direction of motion). Participants accelerated by running on a 6-m track, placing their
right foot (with a heel-first hitting the ground strategy) entirely on the force platform for
braking, and then completing 90◦, 135◦, and 180◦ CM turns at the angles indicated by
the landmarks (Figure 1). In order to avoid the effect of proficiency on coordination [47],
participants were instructed not to perform two consecutive CMs in the same direction.
In addition, the participant must maintain a speed between 3.5 m/s and 6.5 m/s for each
CM [48]. All participants were required to implement the CM test three times in different
directions (9 practical experiments per participant). In order to avoid the effects of fatigue
on the variability of lower-limb joint coordination, participants were given a 1-min break
following each CM test [49].

2.4. Data Processing
2.4.1. Initial Data Processing

The Vicon Nexus 1.8.6 software was used to capture kinematic biomechanical param-
eters and exporting error-free data to c3d format files. Kinematic and ground reaction
force data underwent coordinate system conversion, low-pass filtering, data extraction,
and format conversion using MATLAB R2018b (The MathWorks, Natick, MA, USA). It was
filtered using a 6-Hz and 30-Hz fourth-order, zero-phase lag Butterworth low-pass filter for
marker trajectories and ground reaction forces. The Gait 2392 musculoskeletal model in
Opensim (Stanford University, Stanford, CA, USA) was used to calculate kinematic and
inverse kinetic parameters. The angle data were linearly interpolated to 101 data points,
with each point representing 1% of the stance phase (0–100%).

As an input feature, the stance phase of the right foot during CM was extracted from the
inertial sensor (Delsys Inc., Natick, MA, USA), as shown in Figure 1. Due to interference from
the field environment, the magnetometer data could not be utilized during data selection
for this experiment. Therefore, a total of 18 input features were collected. Smoothing of
data was achieved with a 15 Hz low-pass filter. The dataset was normalized so that all the
values were within the range 0–1, which was the way the neural network architecture was
adapted [50,51].

2.4.2. A Quantitative Approach to Coordination

There are various techniques for quantifying coordination variability [52], but the
techniques chosen should be based on the research questions. When participants perform
CM, the joint movements of their lower extremities exhibit a non-sinusoidal pattern (except
for the sagittal plane movements of the hip joint) [53]. However, Vector coding permits
tests with non-sinusoidal motion patterns and is therefore deemed more suitable for clinical
testing [49,54]. This technique was used in this study to quantify coordination variability
of selected lower extremity couplings: Thigh abduction-adduction/ Leg flexion-extension
(Thigh A/A-Leg F/E); Hip rotation /Knee flexion-extension (Hip R-Knee F/E); Knee
flexion-extension/Ankle rotation (Knee F/E-Ankle R). These couplings are the focal points
of patellofemoral joint-pain syndrome examination [48].

Using the vector-coding technique developed by Tepavac and Field-Fote and refer-
encing the interpretation of vector coding by Samaan MA et al. (2015) and Tepavac, D et al.
(2001) [49,55], we determined the joint coordination variability in this study. The calcula-
tions were performed with a custom MATLAB program (see the Appendix A for details of
the calculation procedure).
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2.5. Long Short Term Memory (LSTM) Network Algorithm Model

In this study, the 18 extracted features from the three IMU data exhibit properties such
as high nonlinearity and continuity, which are consistent with the analysis characteristics
of the recurrent neural network (RNN) models [56]. The RNN is an algorithmic model
devoted to predicting highly nonlinear data on time series, which introduces the concept of
neuronal networks to imitate human memory [57]. As an extension of the RNN algorithm,
Long Short-Term Memory (LSTM) has been used. It solves the gradient vanishing problem
in RNN algorithms, which can be trained to ensure that the gradient of the objective
function to the state signal does not entirely vanish [58].

The fundamental LSTM architecture includes two internal cell states, namely the hidden
layer state (ht−1) and the cell state (Ct−1), as shown in the equation below. (Equations (1)–(6))

ft = σsigmoid (Wf [ht−1, xt] + bf) (1)

it = σsigmoid (Wi [ht−1, xt] + bi) (2)

C̃t = tan h(WC [ht−1, xt] + bC) (3)

Ct = ft ×Ct−1 + it × C̃t (4)

ot = σsigmoid (Wo [ht−1, xt] + bo) (5)

ht = ot × tan h(Ct) (6)

Time is represented by the symbol t in the equation. At time t, the LSTM architecture
generates inputs and outputs. There are three inputs: the cell state Ct−1, the hidden state
ht−1, and the vector value xt of the input at time t. The basic framework has two outputs:
the cell state Ct and the hidden state ht. The activation function σsigmoid is employed.
ft is used as the forgetting gate’s value. The update gate’s output value (Ct) consists of
two components: it and C̃t. tanh is an activation function that normalizes input values
to −1 to 1. Together, Equations (5) and (6) constitute the calculation for the output gates.
Wf, Wi, WC, Wo and bf, bi, bC, bo, respectively, represent the weights and bias variables
of the three gates and a storage cell. The cell state Ct−1 will always be in the transmitted
state, as shown in Figure 2, which is a schematic representation of the LSTM structure’s
computation procedure. At this time, the hidden state ht and the input value xt are modified
for Ct and transmitted to the next instant. The structure of the gate in the LSTM changes
the information in the hidden state ht−1 and helps figure out the output. In general, the
cell-state information will be transmitted over the first line, the hidden-state information
will be transmitted over the second line, and the two lines will interact via the gate to
complete the calculation.
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In our study, we employ a three-layer LSTM network in our method. The input to
the network is a data series, which is a time series formed after the extraction of 18 fea-
tures using the sliding window method [59]. For each CM direction, 225 samples of CM
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were collected. Thus, the three-sensor-collected data set for each CM direction includes
675 sequence characteristics in total. The dataset was separated into a training set (70%),
a validation set (20%), and a test set (10%). In addition, distinct prediction models were
trained for each direction of CM (90◦, 135◦, 180◦). The coefficient of multiple correlation
(CMC) values and root mean square error (RMSE) was used to evaluate the prediction
accuracy of the model [50,60], with CMC values interpreted as perfect similarity (0.95–1),
very similar (0.85–0.94), moderate similarity (0.5–0.74), and poor similarity (0–0.59) [61].
RMSE values were utilized to evaluate segmental coordination prediction data, and actual
data error means.

2.6. Statistical Analysis

Using the Shapiro-Wilk test (SPSSs Inc., Chicago, IL, USA), a normal distribution
of the coordination variability and the vertical ground reaction forces in different CM
directions was determined. If the normal distribution was satisfied, a one-way repeated
measures ANOVA with one-dimensional statistical parametric mapping (SPM1d) was
performed. If the distribution is not normal, a one-way repeated-measures ANOVA with
one-dimensional statistical nonparametric mapping (SnPM1d) is performed [62]. In the
case of significant main effects (directions), Bonferroni adjustment was used to post hoc
paired comparisons of significant main effects (directions). SPM1d and SnPM1d were
statistically analyzed using a MATLAB open-source script (The MathWorks, Natick, MA,
USA). The significance level for each test was set to 0.05.

3. Results
3.1. Shapiro-Wilk

Using Shapiro-Wilk tests, the normality of the vector coding and vertical ground
reaction forces under the three CM directions was determined. Initial hypotheses suggested
that the sample did not significantly deviate from the normal distribution, i.e., it conformed
to the normal distribution. At the significance level of 0.05, (p < 0.05), the original hypothesis
was rejected, and none of the samples conformed to the normal distribution (Table 1).
Consequently, we employed SnPM1d for statistical analysis.

Table 1. The Shapiro-Wilk test for normality of vector coding values and vertical ground reaction in
three CM directions.

CM Direction (◦) Significance (p)

90◦ 0.012748
Thigh A/A-Leg F/E 135◦ 0.000870

180◦ 0.000436

90◦ 0.000119
Hip R-Knee F/E 135◦ 0.000002

180◦ 0.000003

90◦ 0.007998
Knee F/E-Ankle R 135◦ 0.000006

180◦ 0.000227

90◦ 0.000960
Vertical ground reaction force 135◦ 0.000756

180◦ 0.000327

3.2. SnPM1d

As shown in Figure 3, the principal effect of CM direction on the vertical ground
reaction force was significant and varied between 37–65% stride (p = 0.010) and 87–93.3%
stride (p = 0.030), respectively. By the variation of the peak vertical ground reaction
force during the CM, the CM can be roughly divided into the periods of initial contact



Bioengineering 2022, 9, 411 7 of 16

(0–10% stride), foot flat (11–25% stride), swing (26–75% stride), and the end of the swing
(76–100% stride).
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Significant main effects were observed for Thigh A/A-Leg F/E, Hip R-Knee F/E, and
Knee F/E-Ankle R on the CM direction condition (Figure 4). A significant conditional
main effect (p = 0.010) of Thigh A/A-Leg F/E during foot swing (68–100% stride). A post
hoc paired test analysis revealed (Table 2) that the coordination variability was signifi-
cantly greater at 135◦ than it was at 90◦ during (68–100% stride) foot swing (p < 0.001).
The variability of foot coordination during (72–100% stride) swing was significantly greater
at 180◦ than at 90◦ (p < 0.001). There was no statistically significant difference between the
coordination variability at 135◦ and 180◦ (p > 0.05).
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Figure 4. (A) The coordination variability of Thigh A/A-Leg F/E; (B) The SnPM statistics comparison
of the coordination variability of Thigh A/A-Leg F/E; (C) The coordination variability of Hip R-Knee
F/E; (D) The SnPM statistics comparison of the coordination variability of Hip R-Knee F/E; (E) The
coordination variability of Knee F/E-Ankle R; (F) The SnPM statistics comparison of the coordination
variability of Knee F/E-Ankle R.
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Table 2. Vector-coding coefficients, mean (standard deviation), and Post hoc test.

The Couplings Direction
(◦) Mean (SD) Max (SD)

Post Hoc Test

135◦ 180◦

Thigh A/A-Leg
F/E

90◦ 0.564
(0.019)

0.690
(0.014)

p < 0.001
(68–100% stride)

p < 0.001
(72–100% stride)

135◦ 0.588
(0.012)

0.699
(0.007) — p > 0.05

180◦ 0.575
(0.012)

0.697
(0.007) — —

Hip R-Knee F/E

90◦ 0.554
(0.020)

0.688
(0.008)

p < 0.001
(69–91% stride)

p < 0.001
(56–63% stride;
75–100% stride)

135◦ 0.575
(0.012)

0.697
(0.010) — p > 0.05

180◦ 0.575
(0.014)

0.697
(0.020) — —

Knee F/E-Ankle R

90◦ 0.543
(0.020)

0.685
(0.008)

p < 0.001
(72–100% stride)

p < 0.001
(77–100% stride)

135◦ 0.566
(0.016)

0.698
(0.006) — p > 0.05

180◦ 0.555
(0.016)

0.695
(0.017) — —

There was a significant conditional main effect of Hip R-Knee F/E during the later
stance (55–62% stride, p = 0.020) and foot swing of the foot (69–100% stride, p = 0.010), as
shown in Figure 4. An analysis of post-paired tests revealed (Table 2) that the coordination
variability was significantly greater at 135◦ than 90◦ during (69–91% stride) foot swing
(p < 0.001). The coordination variability was significantly greater at 180◦ than at 90◦ during
the foot swing (56–63% and 75–100% stride, p < 0.001). There was no statistically significant
difference between the coordination variability at 135◦ and 180◦ (p > 0.05).

There was a significant conditional main effect (p = 0.010) for Knee F/E-Ankle R
during foot swing (71–100% stride), as shown in Figure 4. A post hoc paired test analysis
revealed (Table 2) that coordination variability was significantly higher at 135◦ than at 90◦

during (72–100% stride) foot swing (p < 0.001). During the (77–100% stride) foot swing, and
the coordination variability was significantly greater at 180◦ than at 90◦ (p < 0.001). There
was no statistically significant difference between coordination variability at 135◦ and 180◦

(p > 0.05).

3.3. Performance of LSTM Model

The LSTM model performed well on the test set, with accurate predictions of the
coordination variability of the coupling with three CM feature inputs (e.g., Figures 5–7).

In the 90◦ CM prediction model, each layer of the LSTM contained 100 neural units. All
training samples were propagated forward and backwards in the neural network 600 times
(Epoch = 600), with a batch size of 1024 samples and a learning rate greater than 0.001. The
model accurately predicted the direction of 90◦ (CMC equal to 0.99063 and RMSE equal to
0.02358).

In the 135◦ CM prediction model, each layer of the LSTM contained 120 neural units.
All training samples were propagated forward and backwards in the neural network
700 times (Epoch = 700), with a batch size of 1024 samples and a learning rate greater than
0.001. The model accurately predicted the direction of 135◦ (CMC equal to 0.99018 and
RMSE equal to 0.02465).

In the 180◦ CM prediction model, each layer of the LSTM contained 120 neural units.
All training samples were propagated forward and backwards in the neural network
750 times (Epoch = 750), with a batch size of 1024 samples and a learning rate greater than
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0.001. The model accurately predicted the direction of 180 ◦ (CMC equal to 0.99485 and
RMSE equal to 0.01771).
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4. Discussion

In this study, an improved vector-encoding technique was used to examine the vari-
ability of lower-limb coordination in various CM directions. In addition, a deep-learning
prediction model, based on the LSTM structure and employing 18 sequence features cap-
tured by the IMUs, was developed. For predicting the coordination variability of the three
CM directions, we constructed a deep-learning architecture with three layers of LSTM.
Following the recommendation of previous research [63,64], we utilized the accelerometers’
raw acceleration data as feature data, which considerably aided our research (Figures 5–7).
The model predicts the coordination variability of three couplings in three CM directions
with accuracy. The significance of this work is that researchers can monitor the coordina-
tion variability of patients or athletes in different CM directions using portable sensors in
real-world open environments.

Researchers have used portable sensors and deep neural networks to investigate the
biomechanics of lower-limb movement, which has become a popular tool for motion moni-
toring and functional assessment [65–67]. In addition, this will facilitate the efficient and
accurate collection of valid feature data by researchers. In previous research, the disadvan-
tage of simple machine-learning models was that they could only fit predictions to linear
data with apparent features and was susceptible to generalized predictive error [68]. How-
ever, deep neural networks effectively learn nonlinear relationships in high-dimensional
data. They can train and predict dense time-series data collected by IMU with efficiency
and precision [69]. This study incorporated sensor data from three IMU as model features.
In terms of data performance, it was demonstrated that the LSTM deep neural network
model could achieve outstanding performance with a relatively small data set [70].

In terms of observing the coordination variability between the lower limb couplings
during CM, our results are consistent with other studies (within expectation CM) [44] and
demonstrates a high degree of coordination variability in each of the three CM directions.
Using the SnPM1d, we compared the disparity between the coordination variability of the
three CM directions. In addition, by observing the peak variation of the vertical ground
reaction force during the CM, we approximated the period of initial contact (0–10% stride),
the period of the flat-footed foot flat (11–25% stride), the period of the swing (26–75% stride),
and the end of the swing (75–100% stride). The coordinated variability of all three couplings
varied significantly between 0% and 25% stride (Figure 4), indicating that the body must
deal with stress loads during braking, and conduct a high level of coordinated action
between the joints. The “U” pattern of “high-low-high” with its complex coordination



Bioengineering 2022, 9, 411 11 of 16

variability may result in the overuse of the lower extremity couplings, causing chronic
movement injuries in the lower extremity joints [48]. Notably, we did not find coordinated
deformable differences in the three different directions between 0% and 25% stride (e.g.,
Figure 4), so it can be assumed that whatever direction of CM may all have a high risk of
injury during this period [71,72]. In addition, during CM in heel-strike mode, the knee
joint plays a significant role, and the absorbed energy is redistributed and absorbed by the
knee extensors [73]. In light of this, the functionality of the knee joint is crucial at such high
mechanical intensities.

In this study, the variability of the three couplings during foot swing varied signifi-
cantly, particularly in the 90◦ direction compared to the other directions. Interestingly, there
was no significant difference between 135◦ and 180◦ in lower limb coupling coordination
variability. At the beginning of the swing phase, approximately 70% of the stride, a decreas-
ing trend in coordination variability was observed for the 90◦ CM in the Thigh A/A-Leg
F/E, Hip R-Knee F/E, and Knee F/E-Ankle R tests. Consequently, the coordination vari-
ability of all three couplings was significantly greater at 135◦ and 180◦ than it was at 90◦

(p < 0.001). This may be because the 135◦ and 180◦ CM require a more urgent completion of
the motor task per unit time, resulting in a coordination variability that persists at this stage.
In addition, since the 90◦ CM strategy is frequently employed in practical training, a certain
level of mechanical proficiency may facilitate the completion of the task via an economical
mode with low degrees of freedom [12]. Hip R-Knee F/E was discernible in the post hoc
comparison of CM at 90◦ and 180◦, with significantly greater coordination variability at 90◦

than at 180◦ (56–63% stride, p < 0.001). This contributes to our understanding that the high
coordination variability of the coupling during 180◦ CM may result in postural instability
and internal and external body harm [74,75]. During the initial swing phase of the 180◦ CM,
the couplings may demonstrate instability. Pathological manifestations include delayed
peak and the inability to maintain peak hip flexion during the swing phase to the stance
phase [76]. For the 180◦ CM, we must investigate further the biomechanical characteristics
of the initial phase of the lower-limb swing, comparing the expected and unintended cases
in particular.

Previous research on the coordinated variability of different motor strategies has
yielded inconsistent results [77,78]. A comparison test between professionals and amateurs
determined that the “finish line” of professionals was significantly less deformed than
amateurs [79]. In contrast, a study of knee injuries concluded that healthy individuals
exhibited more significant coordination variability in their lower extremities, whereas
individuals with knee pain exhibited lower coordination variability [22]. This appears to
support our research approach for this project. The variability of different motion patterns
must be incorporated into any functional motion analysis and linked to overuse injuries
from a dynamic systems perspective [22]. Consequently, we focused predominantly on the
various CM directions for this work’s predictive model.

These promising results must be interpreted in light of the limitations associated
with these studies. First, despite using three sensors to improve the correlation between
feature data and the predicted target, the validation effect may be compromised by subject-
specific bias in sensor placement. In addition, the laboratory acquisition of predicted
data involves multiple calculations, which imposes stringent requirements on both the
laboratory acquisition and calculation processes. Future research must reduce the model’s
sensitivity to sensor position bias for laboratory and pathological diagnosis. Notably, we
did not sample patients or sports injury populations in this study, and only healthy males
participated in this trial. Thus, acquiring features for patient or sports injury populations
and women is an effective method for enhancing the model’s applicability to the population.
In addition, a potential improvement direction for this work is the use of a combined
deep-learning model [80]: classification of different CM directions followed by accurate
predictions applicable to a wide variety of populations.
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5. Conclusions

Using an enhanced vector-coding technique, we investigated the coordination vari-
ability of lower extremity coupling in different CM directions in this study. The results
indicate that the variability of the three couplings during foot swing differs significantly
between the 90◦ direction and the other two directions. The coordination variability was
significantly greater in the 135◦ and 180◦ directions than in the 90◦ CM. There was no
significant difference between 135◦ and 180◦ in lower-limb coupling coordination variabil-
ity. In addition, we developed a deep learning prediction model using LSTM and three
inertial sensors to predict the coordination variability of three lower-limb couplings. The
prediction models of motion under three CM directions demonstrated excellent prediction
accuracy, making it possible to replace the conventional marker-obtained data derived from
3D motion capture systems.
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Appendix A

The variables x, y, and N in the following equation represent the joint-angle matrices
generated during the motion of the proximal (x) and distal (y) joints, and the vector of the
total number of data points (N).

First, it is necessary to calculate the anterior-posterior difference between the proximal
and distal joints in continuous motion (Equation (A1)).

Xi = xi − xi−1, Yi = yi − yi−1, where i = 1, 2, . . . N (A1)

Next, the vector (L) length between the corresponding points during the motion of the
distal and proximal joint segments is calculated (Equation (A2)).

Li =
√

X2
i + Y2

i , where i = 1, 2, . . . N (A2)

At each corresponding time point, the joint kinematic data (cosθ and sinθ) angle is
determined by the length of the vector between the corresponding points (Equation (A3)).

cos θi =
Xi
Li

, sin θi =
Yi
Li

, where i = 1, 2, . . . N (A3)
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The arithmetic mean is calculated for cosθi and sinθi in Equation (A3) (Equation (A4)).

cos θ_meani =
∑N

i=1 cos θi

N
, sin θ_meani =

∑N
i=1 sin θi

N
, where i = 1, 2, . . . N (A4)

Determine the average vector angle (α) by using the average cosine and sine angles
(Equation (A5)).

αi =
√

cos θ_mean2
i + sin θ_mean2

i , where i = 1, 2, . . . N (A5)

The arithmetic means of the average joint angle aι is then determined (Equation (A6)). aι

represents the overall variation in the relationship between the two joint angles throughout
all test cycles.

aι =
∑N

i=1 αi

N
, where i = 1, 2, . . . N (A6)

In order to address the magnitude differences. We introduce a second parameter, m,
which describes the frame-to-frame vector size variability to resolve the size disparity. We
normalize the length of the frame-to-frame vector across multiple cycles by dividing all
magnitudes within a given frame-to-frame interval by its greatest value (Equation (A7)).

lM =
li′

max(li′)
, where i′ = 1, 2, . . . M (A7)

M is the cycle number. This is performed to maintain the variance below the value “1.”
We will calculate the mean and standard deviation of each frame interval’s magnitude in the
subsequent step. Equation (A8) computes the maximum standard deviation (σmax) for the
entire data matrix, where M represents the total number of repetitions of the analyzed task.

σmax=
1
2

√√√√√2mod
(

M+1
2

)
− 1

2mod
(

M+1
2

) (A8)

Equation (A9) calculates the magnitude deviation (m), which varies between 0 and 1.

mi = 1−
(

σlM
σmax

)
= 1− 1

σmax

√√√√ 1
M− 1

M−1

∑
i=0

(lM − ai)2, where i = 1, 2, . . . N (A9)

The joint coordination variability V was calculated using Equation (A10), a method
proposed by Tepavac et al.

VTep = αi ×mi, where i = 1, 2, . . . N (A10)

Equation (A11) determines the magnitude of joint coordination variability, with “0”
representing no deformability and “1” representing high deformability.

V = 1−VTep (A11)
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