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Simple Summary: In order to gain insight into the molecular mechanism of porcine fat deposition,
this study reported, for the first time, miRNA editing in the adipose tissue of Ningxiang pigs.
We performed bioinformatics analyses, such as developmental stage-specific site screening, target
gene prediction, and functional enrichment analysis, to obtain the functional miRNA editing sites
associated with fat deposition; we found that miR-497 editing might inhibit fat deposition in pigs
through retargeting genes. These findings not only enhance our understanding of the functional roles
and mechanisms of miRNA editing in adipose development but also hold significant importance for
improving the lean meat percentage of Ningxiang pigs and promoting their industrial development.

Abstract: This study aimed to identify active miRNA editing sites during adipose development
in Ningxiang pigs and analyze their characteristics and functions. Based on small RNA-seq data
from the subcutaneous adipose tissues of Ningxiang pigs at four stages—30 days (piglet), 90 days
(nursery), 150 days (early fattening), and 210 days (late fattening)—we constructed a developmental
map of miRNA editing in the adipose tissues of Ningxiang pigs. A total of 505 miRNA editing
sites were identified using the revised pipeline, with C-to-U editing types being the most prevalent,
followed by U-to-C, A-to-G, and G-to-U. Importantly, these four types of miRNA editing exhibited
base preferences. The number of editing sites showed obvious differences among age groups, with
the highest occurrence of miRNA editing events observed at 90 days of age and the lowest at 150 days
of age. A total of nine miRNA editing sites were identified in the miRNA seed region, with significant
differences in editing levels (p < 0.05) located in ssc-miR-23a, ssc-miR-27a, ssc-miR-30b-5p, ssc-miR-
15a, ssc-miR-497, ssc-miR-15b, and ssc-miR-425-5p, respectively. Target gene prediction and KEGG
enrichment analyses indicated that the editing of miR-497 might potentially regulate fat deposition
by inhibiting adipose synthesis via influencing target binding. These results provide new insights
into the regulatory mechanism of pig fat deposition.

Keywords: Ningxiang pigs; miRNA editing; high-throughput sequencing; fat deposition

1. Introduction

Ningxiang pigs are one of the excellent local pig breeds in China and have the char-
acteristics of early maturity and easy fattening, wide adaptability, and tasty meat, and
thus, are popular among consumers [1]. However, it has characteristics such as high fat
percentage and low lean meat percentage [2], low feed utilization efficiency, slow growth,
and low meat yield, which seriously affect the efficiency and benefits of Ningxiang pig
farming, representing a key bottleneck for the development of the Ningxiang pig industry.

An in-depth analysis of the molecular mechanism of fat deposition is a prerequi-
site for regulating the rational deposition of fat in a targeted manner. In 1986, Benne
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et al. [3] reported, for the first time, RNA editing, an important and specific way of post-
transcriptional modification in eukaryotic genes, which alters the genetic information
conveyed by RNAs. RNA editing that occurs in miRNAs is usually referred to as miRNA
editing. miRNAs [4] are endogenous non-coding RNAs consisting of about 22 nucleotides.
They post-transcriptionally regulate messenger RNAs (mRNA) by binding to the 3′ UTR of
the mRNA by partial sequence complementarity, mainly in the seed sequence (nucleotide
positions 2–8 from the 5′ end of the miRNA) [5,6]. miRNAs are widely present in pig
adipose tissue and participate in regulating multiple biological processes related to pig fat
deposition. It has been shown that miRNAs regulate adipocyte differentiation and function
by targeting specific mRNAs, thereby affecting fat deposition in pigs [7]. During adipocyte
differentiation, ssc-miR-7134-3p inhibits the expression of MARK4 protein, thereby affecting
adipocyte differentiation and fat deposition [8]. miR-34a affects fat deposition by targeting
LEF1 [9], and miR-503 inhibits adipocyte differentiation by targeting MafK, leading to a
reduction in back fat thickness [10].

Research on miRNA editing has never stopped since it was first reported in 2004 [11].
A large number of miRNA editing studies have focused on cancer, such as the downreg-
ulation of miR-17 [12] in melanoma stem cells, which inhibits the activity of melanoma
stem cells and promotes cell differentiation. There is limited research on miRNA editing
in fat deposition. Meadows et al. found that highly edited miRNAs are closely asso-
ciated with adipogenic differentiation by analyzing different stages of mouse adipose
tissue development [13]. However, whether miRNA editing affects fat deposition in pigs
remains unclear.

Given the influence of miRNA editing on the targeting activity of host miRNAs and
the significant role of miRNAs in pig fat deposition, this study utilized small RNA-seq
technology to identify and analyze miRNA editing sites in the subcutaneous fat tissue
of Ningxiang pigs at four different stages (N30D, N90D, N150D, and N210D). We aimed
to construct a miRNA editing developmental atlas for the adipose tissue of Ningxiang
pigs and screen the functional miRNA editing sites that impact pig fat deposition, which
provide novel insights into unraveling the regulatory mechanisms of pig fat deposition.

2. Materials and Methods
2.1. Experimental Animals

The small RNA sequencing data used in this study were obtained from our previous
study [14]. Briefly, subcutaneous adipose tissue samples from 12 Ningxiang boars at four
different developmental stages—N30D (piglets), N90D (nursery), N150D (early fattening),
and N210D (late fattening)—were analyzed using small RNA-seq. Each age group included
three replicates labeled F1, F2, and F3 (all pigs were half-sibs). The pigs were provided by
Dalong Animal Husbandry Technology Co. Ltd. in Hunan Province, China. These data are
available at NCBI BioProject: PRJNA721288 (https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA721288/ (accessed on 5 March 2024)).

2.2. Filtration and Comparison of Sequencing Data

Sequencing data were filtered based on the following conditions: (1) removal of low-
quality reads (where bases with a quality score Q ≥ 30 accounted for less than 95% of the
entire read); (2) trimming of adapter sequences; (3) exclusion of reads that were longer
than 28 bp or shorter than 15 bp. Subsequently, we aligned the filtered reads to the pig
reference genome (Sus scrofa 11.1) using Bowtie [15] to obtain uniquely mapped reads
with no more than one mismatch (parameters: -n 1 -e 50 -a -m 1 --best --strata --trim3
2). Given the common adenylation and uridylation modifications at the 3′ end of mature
miRNAs [16,17], the 2 nt at the 3′ end were trimmed during alignment.

2.3. Identification and Characterization of miRNA Editing Sites

The method for identifying miRNA editing sites was based on the approach reported
by Alon et al. [18], involving the following: (1) aligning filtered data to the pig reference
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genome and then to the known precursor miRNA (Pre-miRNA) sequences in the miRBase
database (version 21) [19] to obtain the quantity of each of the four nucleotides at every
position within all Pre-miRNA sequences; (2) performing mismatch detection based on
the binomial test with Bonferroni-corrected p values ≤ 0.05 and a mismatch base quality
phred score of ≥30 to identify miRNA editing candidates; (3) excluding known single
nucleotide polymorphisms (SNPs) from the dbSNP database (release 150). Further selection
of candidate miRNA editing sites included the following: (1) selecting sites present in at
least three individuals; (2) excluding sites with multiple editing types; (3) considering only
miRNA editing sites with a coverage of ≥10 reads.

The most abundant four types of miRNA editing sites (A-to-G, C-to-U, G-to-U, and U-
to-C) and their flanking sequences (5 bp upstream and downstream) were analyzed for nu-
cleotide preferences using the Two Sample Logos online tool (http://www.twosamplelogo.
org/ (accessed on 5 March 2024)). RNA editing level was defined as the ratio of editing-type
reads to the total reads detected at that site. Time series analysis of average editing levels
across stages was conducted using the Mfuzz package [20]. Due to the comprehensive na-
ture of current research on human miRNA editing, with A-to-G editing types accounting for
the majority of identified editing sites in humans, we downloaded human A-to-G miRNA
editing sites from the MiREDiBase database (https://ncrnaome.osumc.edu/miredibase
(accessed on 5 March 2024)) [21]. Subsequently, we used the bedtools [22] software to
extract 25 bp flanking sequences upstream and downstream of the editing sites. Following
this, we utilized the makeblastdb command to construct a BLAST database for human
miRNA editing sites. The flanking sequences of A-to-G miRNA editing sites extracted by
bedtools were used as query sequences. We then employed BLASTN to search the human
RNA editing site BLAST database, and miRNA editing sites for query sequences with an
e-value of <0.001 and >85% consistency were regarded as conserved sites between humans
and pigs.

2.4. Screening of Differential miRNA Editing Sites

REDITs [23] is a tool that uses a β-binomial model to identify differential editing
sites. The tool takes into account both the variance in editing resulting from biological
variability and the intrinsic inaccuracy arising from calculating editing from counting data
such as RNA-seq. As a result, it exhibits greater power and lower false positives at and
below the 5% false positive threshold compared to commonly used alternatives, such as
the t-test, Wilcoxon’s rank-sum test, or pooled Fisher’s exact test. In this study, 6 pairwise
comparisons (N30D vs. N90D, N30D vs. N150D, N30D vs. N210D, N90D vs. N150D,
N90D vs. N210D, and N150D vs. N210D) were conducted to investigate the differences in
editing levels between developmental stages.

2.5. Prediction of Target Genes and KEGG Functional Enrichment Analysis

In order to evaluate the impact of differentially edited sites within miRNA seed
sequences on miRNA function, target genes were predicted for wild-type (WT) and edited-
type (ET) miRNAs using the miRanda software [24] with the following parameters: -sc
140 -en -10 -scale 4. Subsequently, the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis of these target genes was conducted using the OmicShare
online platform (https://www.omicshare.com/tools (accessed on 5 March 2024)).

3. Results
3.1. Identification of miRNA Editing Sites

A total of 505 miRNA editing sites were identified, encompassing 10 nucleotide editing
types: A-to-G, G-to-A, C-to-U, U-to-C, G-to-U, C-to-G, G-to-C, A-to-C, U-to-G, and A-to-U.
C-to-U editing sites accounted for the majority, with 146 editing sites (Figure 1A). The
distribution of non-redundant miRNA editing sites in the subcutaneous adipose tissue
of Ningxiang pigs at different stages is shown in Figure 1B. Among them, the 90-day-old
had the most miRNA editing events, while the 150-day-old had the least. There was

http://www.twosamplelogo.org/
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a significant difference between N30D and N90D (p < 0.05), between N90D and N150D
(p < 0.01), between N150D and N210D (p < 0.05), and between N30D and N150. The
number of miRNA editing sites was also varied among different individuals at the same
stage (Figure 1C). These results suggest that the distribution of miRNA editing sites is not
only specific to different developmental stages but also varies among individuals within
the same stage, indicating a spatiotemporal pattern of miRNA editing.
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3.2. miRNA Editing Characteristic Analysis

In order to explore whether there was a base preference in the flank sequence of the
miRNA editing sites, we analyzed the sequence patterns of the four most abundant miRNA
editing sites (A-to-G, C-to-U, G-to-U, and U-to-C) obtained from Figure 1A. As shown in
Figure 2A, there was no preference at 1 bp upstream of the A-to-G editing site, where G and
C were preferred, but A and T were excluded at 1 bp downstream. As shown in Figure 2B,
1 bp upstream of the C-to-U editing site favored C, and T was rejected at 1 bp downstream.
As shown in Figure 2C, there is no preference within 1 bp upstream and downstream
of the G-to-U editing site, with the upstream 2 bp rejecting A, and the downstream 2 bp
favoring A and rejecting C. As shown in Figure 2D, 1 bp upstream of the U-to-C editing
site preferred G and rejected T, while there was no preference within 4 bp downstream, and
G was preferred at 5 bp downstream.
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For Cluster 1, the average editing levels exhibited a gradual increase from N30D to N90D
and a rapid decrease followed by an increase from N90D to N210D. In Cluster 2, the
average editing levels showed a rapid increase, decrease, and then increase again. Cluster 3
displayed a rapid decrease and increase in the average editing levels from N30D to N90D
and from N90D to N210D. Meanwhile, for Cluster 4, the average editing levels rapidly
increased from N30D to N90D, followed by a progressively slower decrease from N90D
to N150D and N150D to N210D. These findings indicated that the miRNA editing levels
during fat development might not change smoothly but rather undergo distinct transitions.
This suggests a close association between fat development and miRNA editing.
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Figure 3. Time series analysis of average editing level among different stages.

In order to investigate the conservation of the identified miRNA editing sites, a cross-
species analysis was performed between the A-to-G miRNA editing sites identified in
Ningxiang pigs and those reported in humans. A total of 67 conserved sites were identified
between the two species (Table S1).
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3.3. Identification of Differential Editing Sites

In order to select the miRNA editing sites with significantly different editing levels
in the seed region, pairwise comparisons of the editing levels at each site were conducted
across the 4 stages. The results showed that 37 sites differed in editing levels in only one
comparison group, 17 sites differed in editing levels in three comparison groups, and eight
sites differed in editing levels in all comparison groups; there were no shared differential
editing level sites in 2, 4, and 5 comparison groups. (Figure 4A). Among the different
comparison groups, there are 62 miRNA editing sites with significant differences in editing
levels. After excluding the sites (located on sex chromosomes), 20 of these were located
in the seed region (Table 1). In the analysis of the editing level of the 20 editing sites, it
was found that there are 14 sites with differences in only one comparison group, four
sites with differences in three comparison groups, and two sites with differences across all
comparison groups (Figure 4B).
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Table 1. Differential editing sites in the miRNA seed region.

Chromosome Position Mature miRNA Name Position in miRNA Editing Type

2 65308161 ssc-miR-23a 4 A-to-G
2 65308350 ssc-miR-27a 4 A-to-G
4 6952809 ssc-miR-30b-5p 5 A-to-G
4 6952808 ssc-miR-30b-5p 5 A-to-G
11 17757478 ssc-miR-15a 5 A-to-G
12 52422400 ssc-miR-497 2 A-to-G
12 52422397 ssc-miR-497 5 A-to-G
13 100083195 ssc-miR-15b 5 A-to-G
13 31655056 ssc-miR-425-5p 7 A-to-G
2 65308351 ssc-miR-27a 5 C-to-U
12 46211541 ssc-miR-423-5p 8 C-to-U
14 6520933 ssc-miR-320 6 C-to-U
1 224065570 ssc-miR-204 2 U-to-C
2 150580147 ssc-miR-145-5p 7 U-to-C
2 65308354 ssc-miR-27a 8 U-to-C
6 58332107 ssc-let-7e 6 U-to-C
12 45088852 ssc-miR-451 8 U-to-C
12 43337029 ssc-miR-193a-5p 5 U-to-C
13 189138833 ssc-miR-155-5p 2 U-to-C
15 120453426 ssc-miR-26b-5p 7 U-to-C
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3.4. Target Gene Prediction and Functional Enrichment Analysis for A-to-G Editing Site Host

Among the 20 differential editing sites located in the seed region, there are nine editing
sites that have the A-to-G type: 2_65308161_A-to-G, 2_65308350_A-to-G, 4_6952809_A-
to-G, 4_6952808_A-to-G, 11_17757478_A-to-G, 12_52422400_A-to-G, 12_52422397_A-to-G,
13_100083195_A-to-G, and 13_31655056_A-to-G, which are respectively located in ssc-miR-
23a, ssc-miR-27a, ssc-miR-30b-5p, ssc-miR-15a, ssc-miR-497, ssc-miR-15b, and ssc-miR-425-
5p. Notably, ssc-miR-497_2 and ssc-miR-497_5 indicate that editing occurs in bases 2 and 5
of ssc-miR-497, and ssc-miR-30b-5p_5 and ssc-miR-30b-5p_6 indicate that editing occurs in
bases 5 and 6 of ssc-miR-30b-5p. These miRNA editing sites led to significant changes in
the target gene profiles of their host miRNAs. Specifically, the editing at these sites resulted
in a loss of 2310 to 3591 target genes and, concurrently, a gain of 187 to 2078 new target
genes (Figure 5). The comparative KEGG enrichment analysis of all wild-type (WT) and
edited-type (ET) miRNA target genes revealed changes in the enriched pathways related
to lipid metabolism, including a loss in the PI3K-Akt signaling pathway and two new
pathways: the AMPK signaling pathway and insulin signaling pathway (Figure 6). The list
of target genes for the 9 A-to-G miRNA editing sites by WT and ET miRNAs is shown in
Table S2. The KEGG enrichment analysis results of the WT and ET miRNA target genes of
the 9 A-to-G miRNA editing sites are shown in Figure S1.
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Figure 5. Target genes of wild-type (WT) and edited-type (ET) miRNAs. ssc-miR-23a (A), ssc-miR-27a
(B), ssc-miR-30b-5p_5 (C), ssc-miR-30b-5p_6 (D), ssc-miR-15a (E), ssc-miR-497_2, (F) ssc-miR-497_5
(G), ssc-miR-15b (H), and ssc-miR-425-5p (I).
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Figure 6. KEGG enrichment analysis results for miRNAs with A-to-G differential editing sites in
the seed region. (A) KEGG enrichment analysis results for wild-type (WT) miRNAs; (B) KEGG
enrichment analysis results for edited-type (ET) miRNAs.
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4. Discussion

Previous studies on miRNA editing have primarily focused on cancer. This study is the
first to link pig fat deposition with miRNA editing, analyzing its impact on fat development.
In this study, adipose tissue from pigs at 30 days (piglet stage), 90 days (nursery stage),
150 days (early fattening stage), and 210 days (late fattening stage) were selected for in-
depth analysis. These periods are critical stages of growth and development in pigs, and
their physiological and metabolic activities undergo significant transformations. Given
that it has been demonstrated that miRNAs play a crucial role in the regulation of porcine
adipose development, we hypothesized that miRNA editing may have an important impact
on the regulation of fat deposition in Ningxiang pigs. There are fewer miRNA editing
sites in the adipose tissue of Ningxiang pigs compared to humans [18]. Unexpectedly,
C-to-U is the most common type in pigs, while A-to-G is the most common type in humans.
However, the result of this study is highly consistent with the study of Wang et al. [25],
which analyzed miRNA editing sites during pig sperm development.

The number of editing sites of miRNAs showed specificity across different develop-
mental stages and varied among individuals at the same stage, indicating that the editing
distribution of miRNAs is spatiotemporal-specific. This is similar to the developmental
stage specificity of RNA editing events [26]. During adipose development, from 30 to
90 days of age, coinciding with rapid adipose tissue growth, miRNA editing might play
a crucial role in target gene regulation, and the number of editing sites increases accord-
ingly. As pigs transition to the early fattening stage (150 days), subcutaneous adipose
development may stabilize, resulting in a decreased need for miRNA editing. The increase
in miRNA editing events in the late fattening stage (210 days) may be related to metabolic
demands as pigs enter this stage. These findings suggest that changes in miRNA editing
may be linked to the needs of organismal tissues, aligning with previous comments about
the importance of RNA editing increasing with organismal complexity [27]. miRNA edit-
ing might affect the life activities of animals by regulating target genes via changing the
targeting and function of miRNAs [28,29].

Additionally, it may be too arbitrary to speculate on the relationship between adipose
development and miRNA editing just by analyzing the distribution of miRNA editing sites,
so we further analyzed the changes in editing levels at each stage. The dynamic changes
in miRNA editing levels during adipose development showed a significant cyclic pattern,
a finding that suggests a possible close association between fat deposition and miRNA
editing in Ningxiang pigs. This cyclic change contrasts with the continuous rise in editing
levels observed in brain development [30]. We hypothesize that this discrepancy may
arise from tissue-specific regulatory requirements; while RNA editing may be involved
in the differentiation and maturation of neural precursor cells during the early stages of
brain development, miRNA editing during adipose development may be regulated by the
demands of complex life activities that do not fully rely on sustained editing activity for
fine regulation.

Although our research provides valuable insights based on sequencing data, direct
tissue analysis has not yet been conducted to validate these findings. Future research
will focus on validating these changes to gain a deeper understanding of the molecular
mechanisms underlying fat deposition in Ningxiang pigs.

Furthermore, miRNA editing in the seed region can lead to changes in seed sequences,
which, in turn, affect the targeting effect of host miRNAs. Therefore, this study screened
miRNA editing sites in the seed region with significantly different editing levels. It has
been found that there are numerous RNA editing events in pig fat tissue, with the majority
of editing events being A-to-G edits, which might play an important role in pig fat deposi-
tion [31]. Furthermore, the miRNA editing sites that have been functionally characterized
are almost exclusively of the A-to-G editing type [32,33]. Therefore, this study focuses on
A-to-G editing sites to analyze the regulatory role of miRNA editing more accurately and
specifically on fat deposition in Ningxiang pigs.
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In the miRNA seed region, nine differentially edited A-to-G miRNA sites (2_65308161_
A-to-G, 2_65308350_A-to-G, 4_6952809_A-to-G, 4_6952808_A-to-G, 11_17757478_A-to-G,
12_52422400_A-to-G, 12_52422397_A-to-G, 13_100083195_A-to-G, and 13_31655056_A-to-G)
were ultimately selected, which were located in ssc-miR-23a, ssc-miR-27a, ssc-miR-30b-
5p, ssc-miR-15a, ssc-miR-497, ssc-miR-15b, and ssc-miR-425-5p, respectively. These host
miRNAs are all related to fat deposition. For instance, miR-23a promotes lipid accumula-
tion [34]; several studies have reported that miR-27a affects apoptosis and insulin resistance
in adipocytes [35–37]; miR-30b-5p regulates intracellular lipid metabolism by targeting
PPARGC1 [38]; miR-15a regulates the differentiation of preadipocytes in Yanbian cattle
by inhibiting the expression of ABAT [39]; miR-497 is involved in regulating fatty acid
synthesis and affecting insulin resistance [40]; miR-15b participates in lipid synthesis [41];
and miR-425-5p inhibits the differentiation and proliferation of preadipocytes [42].

Additionally, a comparative KEGG enrichment analysis of all wild-type (WT) and
edited-type (ET) miRNA target genes revealed the changes in the enriched pathways
related to lipid metabolism, where the PI3K-Akt signaling pathway was lost, whereas the
AMPK signaling pathway and insulin signaling pathway were newly enriched. The AMPK
signaling pathway is typically considered a metabolic regulatory hub under conditions of
energy expenditure, with its activation inhibiting fatty acid synthesis and promoting fatty
acid oxidation, thereby reducing fat deposition [43–46]. Conversely, the PI3K-Akt signaling
pathway promotes the growth, differentiation, and fatty acid synthesis of adipocytes,
leading to increased fat deposition [47–49]. Therefore, miRNA editing may play a significant
role in regulating fat deposition.

Of note, the edited ssc-miR-497_2 gained the most new target genes, and they were
significantly enriched in a new pathway, the Wnt signaling pathway, which is associated
with the regulation of fat deposition [50] (Supplementary Figure S1). These findings suggest
that miR-497 editing may introduce a novel regulatory role and function in fat deposition.
Furthermore, studies have shown that the A-to-G editing site located within miR-497
(12_52422400_A-to-G) is conserved among humans, mice, kangaroos, rhesus monkeys, and
pigs [51], which is of the highest editing level in our study. Therefore, this site was chosen
as a key candidate.

A comparative analysis of the target genes significantly enriched in the lipid
metabolism pathways revealed that the edited ssc-miR-497 loses target genes such as
SCD [52], PLAAT3 [53], PNPLA6 [54], ACSL6 [55], ASAH2 [56], CHPT1 [57], FADS2 [58] and
ACSL4 [59], all of which promote fat synthesis and differentiation. Conversely, the newly
acquired target genes are primarily involved in fat metabolism, including PLA2G12A [60],
LPGAT1 [56], GGT1 [61], HADH [62], MGLL [63], CPT1B [64], etc. Therefore, we specu-
lated that ssc-miR-497 editing may play an inhibitary role in regulating fat deposition in
Ningxiang pigs. Based on this speculation, corresponding validation experiments will be
conducted in animals or cells in the future.

Through the careful investigation of the physiological changes and fat development
activities of pigs at different growth stages, the pig industry can obtain valuable information,
which is very important for optimizing feeding management, improving feed formulas,
strengthening disease control measures, and improving all aspects of pig production.
Especially at the molecular level of fat development, it is of great significance to understand
the characteristics of fat in pigs, such as Ningxiang pigs, for variety improvement and
meat quality improvement. In this process, miRNA editing, as a new molecular regulation
mechanism, shows its key role in regulating fat deposition and influencing many biological
processes, and it may play a decisive role in improving pig production performance and
genetic improvement. When compared with human beings, although the research on pig
miRNA editing is still insufficient, further exploration in this field will undoubtedly bring
new perspectives and profound understanding to pig genetics research, which deserves
the common attention of academia and industry and more comparative research.
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5. Conclusions

This study is the first to report on miRNA editing in pig adipose tissue, identifying
and analyzing miRNA editing sites during fat development. We further selected function-
ally relevant miRNA editing sites and their target genes. According to our target gene
annotation and functional enrichment analysis results, ssc-miR-497 editing may play an
important role in regulating fat deposition in Ningxiang pigs. These results provide new
insights into the regulatory mechanism of pig fat deposition.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/vetsci11040183/s1, Table S1: Conservative analysis; Table S2: The
list of target genes for the nine A-to-G miRNA editing sites by WT and ET miRNAs. Figure S1: KEGG
enrichment analysis results of WT and ET miRNAs target genes. Ssc-miR-23a (A), ssc-miR-27a (B),
ssc-miR-30b-5p_5 (C), ssc-miR-30b-5p_6 (D), ssc-miR-15a I, ssc-miR-497_2 (F); ssc-miR-497_5 (G),
ssc-miR-15b (H), ssc-miR-425-5p (I).
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