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Abstract: The required processes and steps for making bread include technological and innovative
concepts. The current trend is the use of less toxic compounds and green methods. Besides lactic
acid bacteria and yeast, other microorganisms with unique properties, such as enzymes, new aromas
and flavors, exopolysaccharides, and vitamins, among other compounds with beneficial properties,
could be added to bread manufacture, improving bread quality and health effects for the consumers.
The preservation of microbial cultures and starters is crucial in bread-making. New encapsulation
methods, cryoprotectants, spray-drying, fluidized bed drying, and vacuum drying are employed
for microorganism cultures that will be used as starters or biological additives in fermentation. A
development is observed in the antimicrobial methods used as bread preservatives, and studies
with plant extracts and essential oils have been proposed and introduced, replacing chemical agents,
such as propionate, within the clean-label bread formulations concept. Baking science is a growing
research line that incorporates innovative methods, biological additives, new methods, and processes
focusing on microbiological protection.
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1. Introduction

Bread is one of the oldest foods produced by humans, and its consumption dates back
to findings more than 14,400 years ago in Northeastern Jordan [1]. Since then, refining this
process has resulted in the industrial production of the initial specialized pressed yeasts for
baking in the Netherlands in 1780 [2]. This innovation completely transformed the bread
production process, particularly when compared to natural fermentation. Bread is a source
of essential nutrients, including carbohydrates, fiber, vitamins, and minerals. It has diverse
shapes and forms, and it is one of the most consumed food products worldwide, with an
average consumption of 70 kg (41–303 kg)/year/capita [3]. Europe consumes less bread,
with an average annual consumption of 59 kg [4,5].

Fermentation by yeast and lactic acid bacteria (LAB) in typical bread or sourdough
is the critical manufacturing process. In this context, microbiology has increased partic-
ipation in the baking industry, acting in several steps, from preparing the bread dough,
including inoculum and starters, to the preservation process and spoilage control. We
can tell that baking is currently one field of microbiology application, plus being a source
of innovation, improving all bread production processes and giving baking products a
better texture, flavor, and better health properties [6]. Microbial enzymes act as biological
catalysts in baking, helping break down complex molecules into simpler ones, transforming
raw ingredients into finished products more efficiently. The starter used in sourdough
and yeast cultures drives the quality of the bread. Besides yeast and LAB, adding other
microorganisms, probiotics, postbiotics, or microbial enzymes during the bread preparation
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makes it possible to introduce unique characteristics such as decreased gluten content or
increased mineral bio availability [7–9].

The preservation techniques of microorganisms for baking or fermenting inoculum
are critical and are in progressive development. In this context, freeze-drying, spray-
drying, fluidized bed drying, microencapsulation, and other technologies can preserve the
microorganisms [10–12].

During baking, the high temperatures effectively kill most bacteria in the dough,
rendering the bread free of microorganisms when it comes out of the oven. However, con-
tamination can occur at various production steps, including cooling, slicing, transportation,
and packaging. In addition, recent studies have shown that bakers may be a source of yeast
and bacteria in breads [13].

Nowadays, one approach to avoid bread spoilage is the application of biological
methods such as microbial fermentation using LAB strains and yeast because of their anti-
fungal activity and shelf life-extending capacity. Some examples include Lactiplantibacillus
plantarum LB1 (formerly Lactobacillus plantarum) and Furfurilactobacillus rossiae LB5 (for-
merly Lactobacillus rossiae), which have been shown to inhibit fungal development for up to
21 days with the lowest contamination score [5,14]. This antifungal property is used for
the biopreservation of quinoa and rice bread [15]. Innovative chemical approaches include
essential oils and plant extracts [5]; however, preservatives such as potassium sorbate,
benzoic acid, and sodium benzoate, among others, are commonly used [16]. Another way
to preserve is through physical methods, such as radio frequency heating [17].

This comprehensive review discusses the preservation and storage techniques used
for starters and microorganisms in baking. In addition, the major contamination points in
the baking process are analyzed, looking into the traditional and contemporary landscape
of emerging and alternative technologies for microbial contamination control.

2. Bread Fermentation Process

Two methods of bread dough fermentation can be employed: the first is straight dough
using the industrial baking yeast Saccharomyces cerevisiae, and the second is the natural
fermentation known as sourdough. It is important to note that natural fermentation can
also involve industrial baking yeast [18]. Currently, bread production is predominately
undertaken using the first method, which consists of adding all ingredients together in a
vessel using the following sequential process: mixing, resting, modeling, proofing, and
baking. Straight dough is efficient in leavening dough and reducing fermentation time [19],
in contrast to the natural fermentation process, which is slower and more sensitive to
environmental and process conditions [20]. Based on the production technology used,
there are four types of sourdoughs: type I (traditional sourdough), type II (starter culture-
initiated sourdough), type III (dried sourdough), and type IV (mixed dried sourdough) [21].
Sourdough is a source of LAB and wild yeasts and their enzymes, which are involved in
a complex interaction with the raw material and the baking process’s physical–chemical
conditions, determining the properties of the bread [18,20,22]. The genus Lactobacillus is the
most predominant in sourdough, especially L. plantarum, which has stood out as predomi-
nant in 142 out of 312 studies in a meta-analysis of the microbiota of sourdough bread in
15 worldwide sourdoughs [23]. Enzymatic activity from L. plantarum involving esterases,
decarboxylases, reductases, and glycosyl hydrolases is essential in the dough properties [20].
Fructilactobacillus sanfranciscensis has also been described as predominant [24]. Other genera
found in sourdough include Leuconostoc, Weissella, Pediococcus, Enterococcus, and Lactococ-
cus [25,26]. It is possible to obtain mature sourdough after 5–10 days of the back-slopping
process in type I and at least 24 h in sourdough type II when a starter is added in the first
step [24].

Among the yeasts, S. cerevisiae is the most predominant. However, other genera
are also observed, such as Kazachstania, Kluyveromyces, Pichia, and Torulaspora [24]. The
adaptability of S. cerevisiae to the fermentation environment in baking and years of use
have brought a performance challenge that surpasses others [8]. Other genera of bacteria
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less studied in sourdough are Acetobacter, Gluconobacter, Komagataeibacter, Bacillus, Pantoea,
Kosakonia, Pseudomonas, and Paraburkholderia [8,27–31].

There has been a growing trend in incorporating probiotics into baking processes.
This trend is driven by the desire to enhance baked goods with additional health benefits,
moving beyond traditional nutrition. Probiotics offer a unique opportunity to transform
baked products into functional foods with therapeutic potential. By adding probiotics to
bread fermentation, for example, bakers can create products with improved digestive health
support and potential immune system benefits. This approach aligns with the evolving
consumer demand for healthier food options [32]. Starting from the 1990s, driven mainly
by political-economic factors, particularly in France, a movement toward returning to the
tradition of producing bread through natural fermentation began [33]. In the new planet
scenario with pollution problems and climate change, a more natural production, without
or with fewer chemical additives, aligns with consumer preferences [34].

3. Bread Native Microbiology, Ingredients, and Additives

The ingredients used in baking can bring microorganisms. They consist primarily
of cereal flour with a focus on wheat flour. Wheat flour plays a crucial role by forming
the essential gluten network upon hydration, a critical factor in shaping the structure of
the bread. This ingredient also serves as a potential reservoir for various microorganisms,
including bacteria, fungi, and yeast, which can be present in bread, impacting fermentation
and bread quality. Table 1 summarizes the microorganisms found in wheat flour [35].

The type of flour used in bread-making can have a significant impact on the com-
position of native microorganisms that are involved in the fermentation process. Several
studies have investigated how different types of flour, such as wheat flour sourced from
different regions and whole wheat flour with varying extraction rates, can affect the mi-
crobial communities in sourdough. Enterobacteriaceae constitute the main component of
the refined soft and durum wheat flour microbiome, while wholemeal durum wheat flour,
mainly Xanthomonadaceae, can also be found [36]. Studies have shown higher levels of
microorganisms in whole rye than in whole wheat flour [37].

Water is another vital ingredient, ranking as the second-largest component in bread
dough alongside the microorganisms that drive the fermentation process. Water plays a
pivotal role in the microbiota of bread dough. A study conducted with ten samples of
potable water sourced from various regions in Italy revealed discernible differences in
chemical and microbial compositions [38]. Water activity (aw) is essential to microorganisms’
growth. It influences the bread’s quality and shelf life, and water activity control can help
prevent or minimize microbiological spoilage. Molds, for instance, can grow within an
intermediate range of water activity between 0.6 and 0.84 [39,40].

It is noteworthy that the presence of LAB and other microorganisms in sourdough can
be related to endophytic wheat flour [25,41], water quality [38], the local environment [42],
and insects [20].

Chemical leavening agents are widely used in baking applications and consist of
mixtures of acids and bases. They produce gas (CO2) by a chemical reaction instead of
yeast fermentation. They can be baking soda (sodium bicarbonate) or baking powder
(a mixture of baking soda and powdered acids, all creating carbon dioxide bubbles and
causing the bread to rise) [43]. Chemical leavening used in baking is not inherently prone to
carrying microorganisms.

Table 1. Wheat flour microbiota.

Microorganism Name Reference

Bacteria
Bacillus cereus

[37]Escherichia coli
Salmonella spp.
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Table 1. Cont.

Microorganism Name Reference

Actinobacteria phylum

[25,41,44]

Chryseobacterium
Delftia

Enterobacteriaceae and Oxalobacteriaceae families
Enterococcus durans
Enterococcus faecium

Erwinia
Lacticaseibacillus paracasei
Lactiplantibacillus pentosus

Lactobacillus brevis
Lysinobacillus
Paenibacillus
Pediococcus

Pseudomonas
Serratia

Sphingomonas
Stenotrophomonas

Enterococcus
Lactobacillus
Lactococcus

Streptococcus

Yeasts

Aureobasidium pullulans

[24,44]

Candida phangngaensis
Filobasidum magnum

Kazachstania
Naganishia albida

Papiliotrema rajasthanensis
Pichia

Rhodotorula graminis
Rhodotorula mucilaginosa

Saccharomyces
Sporidiobolus metaroseus
Vishniacozyma victoriae

Filamentous fungi

Alternaria sp.
[37]Aspergillus

Penincillus

Cladosporium sp.
[45]Talaromyces rugulosum

Wallemia sebi

4. Microorganisms’ Entry in Bread-Making

Bread ingredients promote the growth and proliferation of microbes during various
phases of bread preparation, processing, packing, and storage. It is highlighted that after
baking, the final microbial load of the bread is reduced, surviving only spore-forming
microorganisms, such as some bacteria and molds, which have endured the intense heat
treatment. Upon exiting the oven, the bread will be exposed to environmental microbial con-
tamination (air, packaging, baking tools, food manipulators, and insects, for instance) [45].
Figure 1 illustrates microorganisms’ major entry points in the baking process.

The bakery environment influences the microbiota of the bread before and after baking.
A study on four bakeries in Italy microbiologically analyzed the walls of the room where
the fermented doughs were handled, the storage boxes, and the clean mixer bucket. The
results demonstrated that the dominant sourdough LAB species and yeasts dominated the
house microbiota [42].
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The genus Lactobacillus, the most representative of LAB in fermented dough, can have
different origins. According to their metabolic flexibility, they could originate from a free
life or nomadic style or be present in insects or different human niches, including the oral
cavity and intestinal tract [20,46,47].

On the other hand, the air in bakery rooms can be a reservoir of undesirable mi-
croorganisms that can populate surfaces, the dough, and the final bread. A multigrain
wholemeal bread processing factory study revealed filamentous fungi in the air, mainly in
areas after oven-baking, such as cooling, slicing, and packaging. These same fungi (Penicil-
lium paneum and Penicillium polonicum) were observed in the flour and bread, indicating
cross-contamination in the production environment [48]. Some pathogenic microorganisms
such as Salmonella spp. (ecologically present in eggs), Vibrio spp. (aquatic habitat), Klebsiella
spp., Pseudomonas spp., and Staphylococcus spp. were present at high levels in bread from
bakeries in Dhaka, Bangladesh, indicating the poor hygienic control of workers, facilities,
and processes [49]. A study was conducted in Aliero, Kebbi State, to assess the hygienic
conditions of local bakeries. The study collected data on socio-demographics and sanitary
conditions. It was found that there were problems with water supply, garbage storage,
and other hygienic issues in the bakeries. Bread samples from the bakeries were found to
be contaminated with both pathogenic and non-pathogenic microorganisms. Specifically,
E. coli, Pseudomonas spp., Proteus spp., Bacillus spp., Penicillium spp., Aspergillus spp., Rhizo-
pus spp., and Fusarium spp. were identified as contaminants [50].

A study carried out in Brazil demonstrated that cross-contamination of bread produc-
tion areas caused contamination after baking since the mold present in the raw material
(wheat flour) was present in the air sampling in the cooling, slicing, and packaging areas,
leading to contamination of the bread [45].

The results obtained with research done in Alexandria, Egypt, showed that handling
bread without gloves, lack of coverage, and packaging are associated with a higher number
of microorganisms. Specifically, these practices are linked to higher total plate count, yeasts
and molds, and coliform counts. Additionally, not wearing gloves and displaying bread
outside the shop are significantly associated with Staphylococcus aureus. To ensure proper
handling of bakery products to avoid contamination, it is recommended that health educa-
tion be provided to workers, guidelines for microbiological quality should be established,
and standards and rules on bread safety should be defined and clarified [51].
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It is essential to implement good manufacturing practices to reduce the possibility of
undesirable microorganisms entering the baking process.

5. Preserving and Storing Microbial Cultures for Baking

In bread-making, the choice of using baker’s yeast in either wet tablet or dry form
has evolved. The transition to a dried format has greatly facilitated storage, eliminating
the need for refrigeration and extending shelf life. In contrast, wet baker’s yeast typically
requires refrigeration, has a reduced shelf life, and is prone to spoilage by mold. The
bread industry has demonstrated that commercial preparations of yeasts (compressed,
dry, or liquid) can contain microorganism contaminants. In a study conducted in Italy,
vegetative forms of Bacillus sp. were found in compressed yeast. Bacillus spp. spores (in dry
yeast), Enterobacteriaceae, total and fecal coliforms (in compressed yeast), and Enterococci (in
compressed and dry yeast) were also isolated. Additionally, fungi and lactic acid bacteria
were detected, including L. plantarum, Leuconostoc mesenteroides, Pediococcus pentosaceus, and
Pediococcus acidilactici [52].

In terms of microorganisms, S. cerevisiae, globally used in bakeries, can be preserved
on a large scale in two different forms from the production batch: yeast cells in the wort
are centrifuged and filtered to obtain wet yeast with 60–75% moisture, or further dried to
obtain dry yeast with humidity as low as 4–6%. The yeast can be further dried to obtain dry
yeast with moisture as low as 4–6%. Maintaining yeast cell viability (preference up to 76%)
and high CO2 production is essential. [53,54]. In the past, baker’s yeast concentrates were
the first starters to be commercialized. Since then, there has been a technological evolution
in producing active dry yeast and other microorganisms. The dryer’s temperature must
be adequate for cell preservation, and the loading rate of the dryer is a critical parameter
related to the quality of the baker’s yeast [55].

Both wet and dry yeast are available on the market with different advantages and
shelf lives. The activity of wet yeast is usually higher than that of dry yeast. However, the
simplicity in transportation, storage, and the long shelf life of dry yeast makes it incredibly
popular worldwide [55]. Similarly, to obtain sourdough on an industrial scale, the method
chosen needs to be efficient to the point of achieving a reduction in moisture (<7%) and,
mainly, in water activity (below 0.3) sufficient to prevent reactions from occurring in the
biochemical and microbiological processes in the dried powder, thus ensuring stability and
extended shelf life [56].

Significant advancements have enhanced the quality of commercial baking products,
notably with S. cerevisiae [7]. However, drying new microorganisms, including LAB and
generally recognized as safe (GRAS) microorganism strains, for their utilization as starters
in bread fermentation processes, poses a continuing challenge that necessitates further
progress [57]. Researchers have evaluated drying techniques, such as spray-drying, freeze-
drying, or vacuum drying, to preserve the high fermentation capacity and cell viability
of microorganisms [57]. Other methods can be used to produce large amounts of dried
bacteria and yeast. Some of the most commonly known are fluidized bed drying and
microencapsulation [58]. Gelinas studied dry methods for yeast, including patent docs,
and applied scientific publications about methods for drying brewer’s yeast. The author
concluded that the long-term survival of dehydrated yeast cells progressively improved
with specific strains, growth conditions, and, to a lesser extent, drying conditions [59]. De
Marco’s study found that preserving nutrients and sourdough type III microorganisms’
viability is best achieved through low temperatures and vacuuming during freeze-drying
and a short residency time during spray-drying [10]. The dry process can be used for
sourdough starters, yeasts, Lactobacillus, and other bacteria with unique properties.

These drying and protective techniques are commonly utilized currently. The differ-
ences in use depend on the target microorganisms. For example, vacuum and freeze-drying
are appropriate for heat-sensitive microorganisms, but spray-drying is a viable alternative
for operational costs and continuous production [10]. It is crucial to rehydrate the starter
culture powder before using it and after drying it. Various methods have been suggested



Fermentation 2024, 10, 231 7 of 28

in the literature for rehydration. Some of these methods include mixing the dried starter
with wheat flour and sucrose in a physiological solution [56], while others suggest using
unbleached wheat flour and water [60]. Some authors also recommend activating microor-
ganisms such as bacteria and yeast before drying by adding, for instance, sugar, corn starch,
baker’s wheat flour, and water into fresh sourdough and incubating it for 2 h at 30 ◦C and
60% relative humidity in a climate chamber [61].

This section discusses the differences in cost and drying time of these methods.

5.1. Microencapsulation

Microorganisms face challenges maintaining viability during baking due to extreme
conditions, such as temperatures around 180 ◦C for 40 min [62]. Microencapsulation can
enhance viability, minimize losses during baking, extend shelf life, and safeguard against
gastrointestinal conditions [63]. The survival of probiotics and sensitive microorganisms
in extreme conditions, like altered temperature, pH, and salinity, can be a problem, and
several micro- and nanoencapsulation techniques can improve viability [64].

Microencapsulation involves entrapping active compounds within inert materials
through physicochemical processes. Various techniques exist for this procedure, with
different protective agents available on the market, differing in application, feasibility, and
cost [65].

In one study, the probiotic Bifidobacterium animalis subsp. lactis was added to bread
inside a three-layered microcapsule structure containing lactose, stearic acid, Na alginate,
and polyethylene. This study showed that the microencapsulation effectively stabilizes
the bacteria against elevated temperatures to allow their incorporation into bread. The
high viability rate of B. animalis subsp. lactis found after bread baking at 180 ◦C for
40 min and after 60 min exposure to a simulated gastric fluid with a pH of 1.2 is evidence
of the method’s feasibility. Several microencapsulation methods are under study, including
chitosan-coated alginate/gellan gum [62] and milk protein [66], among others.

5.2. Freeze-Drying

Freeze-drying, or lyophilization, can encapsulate microorganisms, keeping them pro-
tected and stabilized. This technique involves three major steps: (i) freezing, (ii) primary
drying, and (iii) secondary drying. During freezing, the solvent crystallizes under atmo-
spheric conditions and initiates the separation of water molecules from the solution by ice
crystals; this stage is usually conducted outside the dryer. In the primary drying process,
the frozen crystals are removed by sublimation under vacuum conditions at a controlled
temperature below the triple point (p = 6.104 mbar; T = 0.0099 ◦C). At the triple point, the
aggregate coexists in three forms (solid, liquid, and gaseous). Thus, below the triple point,
the water goes directly from the solid to the gaseous state. Finally, at the secondary drying
stage, a considerable amount of unfrozen water is retained with the product (15–20%)
and removed by desorption. This process is mainly governed by diffusion. Compared to
sublimation, desorption is slow, depending on the desired residual water content [58,67,68].

A cryoprotectant may enhance the survivability of bacteria during the freeze-drying
process. Glucose, lactose, sorbitol, sucrose, glycerol, sugar, mannose, and trehalose can
be used in proportions of 5–15%. The mechanism of action of the cryoprotectant can
be described as an improvement of cold tolerance by increasing the unfrozen fraction,
thus providing more space to cells and preventing cellular damage, mechanical damage,
and osmotic cells [58,69,70]. The sourdough powder has several advantages over fresh
sourdoughs, such as longer shelf life, constant product quality, ease of formulation and
mixing, and lower transportation costs [61]. In one study, highland barley sourdough
powder with inulin was prepared using the freeze-dried method. The bread quality and
dough gluten network were investigated. The FT-IR spectra of gluten proteins in bread
dough with inulin were analyzed, and the proportion of α-helix and β-sheet from gluten in
the dough was higher than that in the dough without inulin, indicating that sourdough
powder containing inulin possessed a denser gluten network structure. The results show
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that inulin was essential in preserving lactic acid bacteria and acid-producing ability
compared to sourdough powder without inulin [71]. It has also been demonstrated that
the pure freeze-dried strain retained the aroma characteristics of sourdough and could
give bread proper acidity, improving viscoelasticity and the gluten network structure,
enhancing the bread quality. S. cerevisiae XZFM15F1, L. plantarum (L.P) 2979, L.P3355, and
Lactococcus lactis were tested [72]. Several authors have reported the influence of different
cryoprotectants in the freeze-drying process and the survival rate of some microbial starters
used in sourdough. The sourdough type I starter has a survival rate of 66.20% after freeze-
drying [56], while Lactobacillus brevis ED25 and sourdough type II have survival rates of
94.07% and 83%, respectively [61,73]. Table 2 presents an overview of the survival rate for
bread-making starters after the freeze-drying technique.

Table 2. Overview of freeze-drying technique. Mo = microorganisms.

Starter Mo
Before

Freeze-Drying
(log CFU/g)

After
Freeze-Drying

(log CFU/g)
Survival Rate (%) Reference

Sourdough type I LAB 9.50 8.93 94.00 [73]

Sourdough type I LAB 9.17 ± 0.17 6.07 66.19
[56]Yeast 7.53 ± 0.12 5.03 66.80

Yeast starter S. cerevisiae 88-4 7.00 6.65 95 [74]

Sourdough type I LAB 8.7 ± 0.0 8.0 ± 0.6 91.95
[61]Yeast 8.6 ± 0.0 8.0 ± 0.0 93.02

The freeze-drying process has several advantages. It causes minimum damage to
the product and is excellent for sensitive materials. Additionally, it provides a large
surface area for encapsulation, resulting in a porous structured powder. On the other hand,
cryoprotectants are necessary, and drying takes a long time (24–35 h). The equipment is
complex, and the investment and maintenance costs are considered disadvantages [58].

5.3. Spray-Drying

Spray-drying has been one technique for encapsulating biocomponents since 1920.
It is widely used in the industry due to its robustness, rapid drying, flowable powders,
and ability to manipulate particle size [75]. It is based on a two-phase system: liquid and
air. In this technique, the active material is dissolved, prepared, and homogenized. The
process occurs continuously, and the product to be atomized is sprinkled in a chamber
in which there is a circulation of heated air, thus forming droplets and making them
solid. The procedure enables the evaporation of the bonded solvent and the transfer of
the solid encapsulated material to the cyclone for recovery [67,76]. The whole process
consists of three main stages: (i) atomization, (ii) mixing, and (iii) separation. Atomization
is the first and most important process during spray-drying. In this phase, the liquid is
disintegrated into micro-sized droplets, which leads to a vast surface area that enables the
rapid evaporation of the solvent. The residence time of the droplets is determined by their
size distribution and velocity, depending on the nozzle type [77]. There are few studies on
drying this specific type III sourdough, with freeze-drying being the preferred method due
to its better cell preservation. However, this process is expensive and time-consuming. In
contrast, spray-drying is a cheaper method, with continuous production, and operates on a
large scale.

Among the systematic review of drying methods (based on 23 studies) presented by
Marco et al. [10], 65% (n = 15) evaluated cell viability before and after the drying process, of
which 33% (n = 5) were type I sourdough. When comparing cell viability between drying
techniques, freeze-drying was the most efficient, with small reductions in LAB and yeast
counts. However, the authors reported exceptions where the freeze-drying process did not
guarantee the expected viability. For example, in type I sourdough with initial viability of
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9.17 and 7.53 log CFU/g for LAB and yeast, respectively, after the freeze-drying process, a
drastic reduction of 3 log CFU/g occurred for both groups of microorganisms.

The benefits of spray-drying are a rapid drying process, direct conversion of the
dried powder from the liquid feed, easy-to-change parameter values to improve quality
indicators, high production efficiency, and less operator requirement [67].

Table 3 briefly presents an overview of the survival rate of bread-making starters after
spray-drying.

Table 3. Overview of the spray-drying techniques. Mo = microorganisms.

Starter Mo
Before

Spray-Drying
(Log CFU/g)

After
Spray-Drying
(Log CFU/g)

Survival Rate (%) Reference

Kombucha
sourdough type I

LAB 11.00 ± 0.05 9.93 ± 0.10 90.27
[60]Yeast 10.50 ± 0.46 9.40 ± 0.15 89.52

Sourdough type I LAB 8.7 ± 0.0 5.0 ± 0.0 57.47
[61]Yeast 8.6 ± 0.0 4.9 ± 0.1 56.97

Sourdough type I LAB 9.17 ± 0.17 7.9 ± 0.1 86.15
[56]Yeast 7.53 ± 0.12 5.7 75.69

5.4. Fluidized Bed Drying

Fluidization occurs when a gas flows through solid particles with a velocity more
significant than the settling velocity. The particles tend to suspend with the gas; after
reaching the top of the equipment, the gravitational pull causes them to fall, and the
process starts continuously. This technique provides excellent gas–solid contact, high
thermal efficiency, and a low cost of operation [78].

This technology is a commercially effective method to produce instant active dry
baker’s yeast. Akbari et al. [55] showed the optimum operating parameters of an industrial
continuous fluidized bed dryer for making instant active dry baker’s yeast. Working
conditions, such as temperature, the loading rate of compressed yeast granules, and hot air
humidity, directly affect yeast viability. As a result, the most critical factors that affected the
quality of the product in the study were the loading rate and the operational temperature in
each zone on the bed. The data analysis resulted in an optimal operating point at a loading
rate of 350 kg/h and temperatures between 29 and 33 ◦C as well as high yeast cell viability
of up to 76%, which was 27% higher than the viability of the yeast in the normal operating
conditions of the plant. According to Vorländer et al. [79], fluidized bed application enables
faster drying than lyophilization, on the one hand, and lower temperatures than spray-
drying, on the other hand, the two predominantly used techniques for life-sustaining
drying of microorganisms. In this study, the authors showed different protectants for
S. cerevisiae, such as mono-, di-, oligo- and polysaccharides, but also skimmed milk powder
and one alditol, as they, or chemically similar molecules, are known from other drying
technologies to stabilize biological structures such as cell membranes, and thus, improve
survival during dehydration. As a result, with the combined use of trehalose and skimmed
milk powder, survival rates were 300 times higher than without protective additives.

Concerning the microorganisms in the fluidized bed, dried pre-encapsulated cells are
suspended in the hot air. Subsequently, they are encapsulated with the desired biopoly-
mer. Due to the high airflow rate and the rapid drying, the biopolymer coating over the
microorganisms forms a homogenous layer, which may be completed in multi-layers [80].

Fluidized bed drying requires relatively low temperatures without causing thermal
stress. In addition, the microbial biomass is dried not on its own but with other materials
that act like a protective matrix. Hence, it can preserve heat-sensitive probiotics. The
protectant matrixes may be wheat flour, skimmed milk powder, casein, maltodextrin,
starch, microcrystalline cellulose, inulin, and NaCl [81,82].
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Coating baker’s yeast with a fluidized bed system was successfully tested to prevent
dried yeast’s moisture absorption from the flour mixture (moisture content of 13% wb)
by Altay et al. [83]. This problem could lead to the loss of yeast activity. Amounts of
50 g of yeast, 0.25 MPa of nozzle pressure, 13.09% of coating material to yeast ratio, and the
palm–Na caseinate–maltodextrin coating material were in the best condition. The coated
yeasts demonstrated protective properties against moisture transfer until the end of the
second month. Due to the exceptional use of fluidized beds for baker’s yeast, studies have
evaluated its usefulness for other microorganisms that are interesting for application as
starters in bread fermentation, such as probiotics.

According to Wirunpan et al. [84], the survival rate of L. lactis 1464 in shrimp feed
pellets ranges from 89.54% to 96.87% at 80 and 50 ◦C, respectively. The survival rate in the
fluidized bed drying process is intrinsically related to process temperature, drying time, and
cell concentration [79]. Wu et al. [85] evaluated the optimization of the process parameters
using a fluidized bed to dry and encapsulate L. brevis RK03; the authors achieved a survival
rate of 95% using casein and whey protein as carriers.

5.5. Vacuum Drying

Vacuum drying resembles freeze-drying; however, the samples are dried by evap-
oration, not sublimation. Removing water from heat-sensitive microorganisms such as
probiotics without damaging or keeping them viable is challenging.

Therefore, vacuum drying is an alternative for more sensitive microorganisms. It
works at a higher temperature, around 25–30 ◦C, and a higher pressure (10 mbar), compared
to generally below 10 mbar for freeze-drying. Low-temperature vacuum drying is gentler,
limiting the loss of viable heat-sensitive microorganisms even though the cell wall and cell
membrane can be damaged when this technique is used. The drying parameters can be
altered to diminish the damage by adding protecting agents or by pre-treatment of the cells.
Table 4 presents some examples of vacuum drying of probiotics [86,87].

The operation parameters of a vacuum dryer allow it to have an energy consumption
that is about 40% lower than freeze-drying [88,89]. However, there are disadvantages, such
as the long processing time, the dried product shrinkage, and the formation of a denser
structure. The reduced drying temperatures, higher drying rate, and reduced oxygen
concentration are considered advantages [87,89,90].

Table 4. Vacuum drying of probiotics. Parameters and survival rates.

Strain Protectant Temperature Pressure Time Survival Rate Reference

Lc. paracasei F19 Trehalose 25% (w/w) 15 ◦C 15 mbar 22 h 70% [91]
Lactobacillus helveticus Sorbitol (1% w/w) 43 ◦C 100 mbar 12 h 18% [92]

L. acidophilus Trehalose (20% w/w) Room temperature 0.11 mbar 96 h 37.9% [93]

6. Microbial Contamination of Baking: Bread Spoilage

Bread spoilage can be caused by chemical and microbiological factors. Chemical
spoilage, such as rancidity, is the most common type after baking high-fat bread products.
It is known as lipid degradation, resulting in off-odors and flavors. There are two types
of rancidity: oxidative and hydrolytic. The former induces the degradation of unsatu-
rated fatty acids by oxygen, forming aldehydes, ketones, and short-chain fatty acids. The
hydrolytic form is due to triglyceride hydrolysis producing malodorous fatty acids and
glycerol. Moisture and endogenous enzymes such as lipases and lipoxygenases enhance
the problem. Our focus is microbiological spoilage caused by molds, yeasts, and bacteria
and influenced by several factors, including bread ingredients and external contamination
due to lack of hygiene, insects, and other factors discussed in Section 4 [5,94]. The major
types of microbiological contamination are discussed below.
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6.1. Molds and Toxins

It is important to note that microbial spoilage of bread after baking is responsible
for huge waste generation and public health concerns [95]. Moreover, filamentous fungi
during bread-making can produce mycotoxins that can be stable at high temperatures, such
as aflatoxin and ochratoxin, which are highly toxic and associated with cancer [96]. There is
no intake limit reference, although some countries have limited their concentration in grain,
and there is evidence that 1 ng/Kg body weight per day contributes to the risk of liver can-
cer [97]. In Brazil, the cereal concentration limit of aflatoxin is 5 µg/kg. A study performed
in Brazil showed that in 180 samples of wheat grain, wheat bran, whole wheat flour, and
wheat flour, only one wheat grain had aflatoxin above the permitted level, according to
legislation [98]. The principal genera associated with bread mold are Penicillium (Penicillium
roqueforti, Penicillium brevicompactum, and Penicillium chrysogenum), Wallemia, Aspergillus
(formerly Eurotium), and other common molds, including Chrysonilia sitophila, Rhizopus,
and Mucor [45]. The P. roqueforti is associated with spoilage by a mycotoxin hazard in bread,
contrasting with species widely used in the dairy industry. However, studies have proved
that P. roqueforti is a case of species domestication, identifying five populations with traits
specific for cheese, non-cheese, wood colonizers, silage, and food spoilers [99–101].

In a study with Portuguese wheat flour regarding mycotoxin, no wheat flour exceeded
the legislation limit, which in cereal is 4 µg/kg for total aflatoxin and 3 µg/kg for ochra-
toxin, in the European Union [37]. However, a study showed that the thermal stability of
aflatoxin and ochratoxin depended on the food matrix involved. Aflatoxin was degraded
in temperatures up to 160 ◦C, and ochratoxin was stable in temperatures up to 180 ◦C [96].
A recent study demonstrated that bread contaminated with mycotoxins, aflatoxin B1, and
ochratoxin A decreased the contamination percentage with a combination of LAB starter
and yeast in the fermentation dough for 24 h [102]. It is noteworthy that mold can affect the
sensory characteristics of bread and bring safety insecurity with mycotoxin production [95].

6.2. Yeasts: Chalk Molds

Chalk molds are a type of bread spoilage having the appearance of white powder,
caused by yeasts, especially Saccharomycopsis fibuligera, Hyphopichia burtonii, Zygosaccha-
romyces bailli, S. cerevisiae, and Wickerhamomyces anomalus (formerly known as Pichia anomala).
They are common in sliced and rye bread, and some of them, such as H. burtonii, present
biocontrol properties against Aspergillus niger and P. paneum [103].

A recent study demonstrated the effectiveness of highly sensitive, quantitative poly-
merase chain reaction (qPCR) and digital droplet polymerase chain reaction (ddPCR) for the
early detection and quantification of S. fibuligera and W. anomalus cells directly in bread for
the first time. These analyses represent a promising strategy for applying high-throughput
approaches to monitor bread quality [104].

6.3. Bacillus sp.: Ropiness

The microbial bread spoilage caused mainly by the Bacillus genus is called ropiness.
Ropiness is characterized by an unpleasant odor due to volatile compounds like diacetyl,
acetoin, acetaldehyde, and isovaleraldehyde. Moreover, the slimy crumb is due to bacte-
rial polysaccharides and protein extracellular production, as well as degradation of the
breadcrumb because of extracellular hydrolase production (peptidase and amylase). The
breadcrumb can be almost liquefied in advanced stages, forming long, silky strands when
pulled apart. However, the mechanism of rope spoilage is not entirely elucidated [105–108].
The Bacillus mesentericus group is one of the first Bacillus which was attributed to rope
formation [107,109].

Currently, B. subtilis, B. clausii, B. cereus, B. licheniformis, and Bacillus species that are not
identified have been associated with ropiness [110,111]. In Portuguese sourdough bread,
besides the best-known species identified, B. brevis, B. circulans, B. laterosporus, B. macerans,
B. mycoides, Bacillus pumilus, and Bacillus stearothermophilus have been found [112]—other
Bacillus such as Cytobacillus firmus (formerly Bacillus firmus), Niallia circulans (ordem Bacil-
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lales), Paenibacillus polymyxa (formerly Bacillus polymyxa), and Priestia megaterium (formerly
Bacillus megaterium) and L. plantarum subsp. plantarum (formerly L. plantarum) have been
reported to cause ropiness in bread [107,113]. Bacillus mesentericus was isolated as a bread
contaminant related to rope formation [111], but they are currently included in the B. subtilis
group [107,109].

The primary reservoir of Bacillus endospores comes from naturally contaminated soil
and crops, which will contaminate the flour. Baking eliminates the vegetative forms, but
after, the endospores will germinate, causing rope spoilage [107,114].

Rumeus [111] demonstrated that visible contamination by Bacillus was observed only
40 h after bread baking, indicating the possibility of the consumer not perceiving the risk of
consuming toxin-contaminated bread, which could lead to poisoning or infection. Several
other fermented foods can present lipopeptides with antimicrobial activity produced by
Bacillus or other favorable properties, and some strains can be probiotics [115].

7. Control of Microbial Contamination in the Bread Chain

The control of microbial spoilage in bread is initiated by the effective quality control of
wheat grain and wheat flour. New methods are being studied to improve the quality of con-
taminated cereal grain, including thermal processes, cold plasma, and organic acids, among
others, since actual methods could damage the grain and have some concerns regarding
consumers, such as pesticides, dying grain, debranding, chlorine, and hypochlorite [116].
Maintaining appropriate moisture levels, especially in milling equipment, is essential to
thwart mold proliferation and subsequent wheat flour contamination. During storage,
temperature management and suitable packaging selection are crucial in mitigating oxygen
and humidity exposure [117,118]. In the process of bread-making, maintaining a hygienic
environment is essential to minimize the presence of microbial cells and spores in the air, on
surfaces, and in the hands of those handling the dough. Such contaminants risk affecting
the bread after baking, as evidenced by a study conducted in a bakery factory, which
observed potential cross-contamination by the air and packaging gloves [45]. Moreover,
after baking, bread must be preserved far from humidity and high temperatures [107].
Some other strategies have been studied to contribute to or make up for the deficiency at the
beginning of the bread chain, such as modified atmosphere packaging, active packaging,
chemical preservatives, essential oils, and plant extracts (Figure 2).
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Bread spoilage control is essential for consumers’ health and food quality. So, to
avoid these effects on product properties and to extend their shelf life, preservatives can
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act in different ways, preventing spoiling and economic losses for both the industry and
consumers. Preservation refers to techniques and methods used to extend the shelf life of
baking products, maintaining quality, freshness, and safety for extended periods. Moreover,
different preservation categories, including chemical, biological, and physical methods,
are used for this purpose [5]. Traditional and innovative technologies used for preserv-
ing bread, as well as their perspectives for application in future years, are described in
what follows.

7.1. Chemical Methods: Organic Acids

Using weak organic acids in bread or even other food is considered a conventional
strategy to extend the shelf life of products. However, the baking industry must fol-
low local legislation that regulates the maximum concentration of these acids in baked
products [119,120].The mechanism of action of these chemicals consists of destabilizing
plasmatic membrane components (H+-ATPase) and inhibiting intracellular vital enzymes
(phosphofructokinase in glycolysis) of microorganisms. Thus, certain organic acids, such as
acetic, citric, propionic, and sorbate, can be used as preservatives to inhibit mold and bacte-
rial growth in bread baking. Natural preservatives, like honey, sugar, and salts (potassium,
sodium, calcium), can also help extend shelf life.

Propionic acid and its salts (calcium propionate and sodium propionate) are commonly
used preservatives in the baking industry, usually employed at concentrations up to 0.2%,
being directly added to the dough or applied to the surface of the bread. Molds can
be inhibited at these levels for a few hours or two days, preventing early spoilage [120].
However, some fungi can be insensitive to these acids. For example, a study using bread
and cake found resistance to propionic and sorbic acids at maximum legal limits for
usage in P. brevicompactum and P. roqueforti [121]. In another study, management of pH
and temperature was insufficient to control yeast spoilage in bread, and the efficiency of
propionic acid was yeast-dependent [103].

A Brazilian study with sliced bread produced in Brazil used calcium propionate or
potassium sorbate preservatives and isolated P. roqueforti, H. burtonii (HB17), and Pae-
cilomyces variotii (PV11). This fact indicated a difference in sensibility between mold and
yeast for these preservatives [122].

Although sorbic acid controls mold growth in bakery products at 0.001 to 0.3%,
incorporating sorbic acid and sorbates into bakery products requires careful consideration
of dosage levels to ensure they effectively inhibit microbial growth without affecting the
bread taste, texture, or overall quality. Sorbates can be sprayed on the surface of the bread
after it is baked, or sorbic acid anhydrates can be combined with fatty acids to diminish
adverse effects [16,120].

A combination of different acids or strategies can also be performed for preservation.
Quattrini et al. [123] observed that combining acetic acid with propionate and sorbate
caused an additive effect against P. roqueforti and A. niger. Moreover, in the same work,
they studied using both chemical and biological strategies for preserving bread products.
They observed that after adding sugar (4%) to sourdough fermentation with L. brevis for
six days, the bread was free of A. niger growth. Ricinoleic acid (up to 0.15%) and Lactobacillus
hammesii presented the same preserving effect.

Organic acids have been studied and used as preservative agents in food and beverages
for a long time, proving their efficiency. The baking industry uses these compounds
individually or combined, or even as products of natural bacteria fermentation in the
dough matrix [124]. Thus, the application of these compounds as preservatives in bread
will still be in high demand due to their antimicrobial properties and flavoring aspect [125].

7.2. Biological Preservatives
7.2.1. Essential Oils

Chemicals are primarily used to sanitize food product rooms. However, nowadays,
there are concerns regarding the residues of these chemicals on the surfaces in contact with
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food. Because of this, green technologies have been studied to promote a better hygienic
environment for bread-making that diminishes microbial spoilage.

Essential oils are complex mixtures of volatile chemical compounds extracted from
different plant parts (such as leaves, bark, seeds, and flowers) by distillation and pressing.
These compounds are a variety of secondary metabolites synthesized by aromatic plants
in small quantities with a hydrophobic liquid nature, being poorly soluble in water and
primarily dissolved in organic solvents [126–128]. They are known for their bioactive prop-
erties, including inhibition of the growth of bacteria, yeasts and molds, viruses, protozoa,
and insects, and their antioxidant properties [127,129–131].

These molecules are promising for application in the food industry as natural preser-
vatives. They can be used for product preservation in the bakery industry. Essential oils
can be added to the headspace of packaged bakery products, directly in bread, or in com-
bination with other strategies to increase shelf life. Essential oils are also an alternative
for controlling toxigenic fungi in cereal grains. Fungi contamination affects grain devel-
opment and seed germination, reducing grain quality and nutritional value. In addition,
some fungi can produce mycotoxins, toxic secondary metabolites. The antifungal and anti-
mycotoxigenic properties and the action mechanisms of various essential oils have been
studied. Vapor and nanoencapsulation can apply essential oils directly in the grains [132].
However, there are limitations in the process, and studies are in progress to answer several
questions relating to toxicity, the concentration of use, and the cost of production, among
other points [133]. The literature shows promising results. Black cumin seed (Bunium per-
sicum) essential oil was evaluated for acute and subacute toxicity in male Wistar rats. After
14 days, the results showed that black cumin essential oil did not affect the immune system,
tested enzymes, or organs. No mortality was observed at the doses tested [134].

It is important to note that applying essential oils to baking products may alter the
sensory properties of bread, such as taste, texture, and color, being considered a negative
aspect of a biopreservative [5,128,135].

The antimicrobial mechanism disrupts membrane cells and ergosterol reduction,
inhibits enzymes, inhibits mycelial growth, inhibits spore germination, and alters proteins
due to the cleavage of disulfide bonds, among other effects [133,135–138].

Table 5 overviews the most relevant essential oils, their targets, and their effects on
baking. The antifungal activity has already been tested for use in the baking industry.

Table 5. Preservation of bread by plant essential oils.

Essential Oils Major Compounds Targeted Molds Action Reference

Clove (Syzygium
aromaticum L.)

Eugenol, acetyleugenol,
caryophyllene, gallic

acid, kaempferol,
quercetin, tannins

Aspergillus flavus,
A. niger,

Aspergillus parasiticus,
Eurotium amstelodami,

Eurotium herbariorum, Eurotium
repens, Eurotium rubrum,
Penicillium corylophilum,

Penicillium commune, P. roqueforti,
Penicillium citrinum, Endomyces

fibuliger, Rhizopus nigricans,
Penicillium sp.

Reduced yeast and
mold growth [139–142]

Thyme (Thymus
vugaris L.)

Thymol, carvacrol,
linalool, p-Cymene,
camphene, myrcene,

caryophyllene,
rosmarinic acid

A. flavus, A. niger, Aspergillus
terreus, Alternaria alternata,

E. amstelodami, E. herbariorum,
E. repens, E. rubrum, Fusarium

oxysporum, P. corylophilum,
Penicillium italicum, P. paneum

Bread shelf life [121,133,139,
143–145]
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Table 5. Cont.

Essential Oils Major Compounds Targeted Molds Action Reference

Lemongrass
(Cymbopogan citratus)

Citral, geraniol,
limonen, neral, nerol,
myrcene, citronellal

A. flavus, A. niger, E. amstelodami,
E. Herbariorum, E. repens,
E. rubrum, P. corylophilum,

Penicillium expansum

Mold growth inhibited [139,146]

Rosemary
(Rosemary officinalis)

Carnosic acid, carnosol,
rosmarinic acid,

hesperidin

Penicillium sp.
Aspergillus sp.

Fungal
generation reduced [133,147]

Oregano (Origanum
vulgare L.)

Carvacrol, thymol,
rosmarinic acid,

p-Cymene, terpinene,
linalool, naringin,
β-caryophyllene

A. flavus, A. niger, Aspergillus
fumigatus, Aspergillus ochraceus,

A. parasiticus, A. terreus, Eurotium
fibuliger, P. commune, P. roqueforti

Mold growth inhibited [140]

Cinnamon
(Cinnamomum

jersenianum
Hand.-Mazz)

Cinnamaldehyde,
eugenol, cinnamyl
acetate, coumarin,
proanthocyanidins

A. flavus, A. niger, A. ochraceus,
A. terreus, E. fibuliger,

E. amstelodami, E. Herbariorum,
E. repens, E. rubrum,

P. corylophilum, P. citrinum;
P. commune, Penicillium
viridicatum, P. roqueforti

Reduction of the
targeted mold growth [139,140]

Due to the potential application of new essential oils as preservative agents in the
food industry, a consistent search for new compounds is expected to continue with these
promising findings. A study developed a nanofiber by fish gelatin, with dual encapsulation
of essential oils in β-cyclodextrins, which presented efficient activity against microbial
spoilage in wheat bread at ambient temperature for ten days. The nanofiber encapsulated
with eugenol, a major component of clove essential oil, showed the best result [148]. Thus,
even if potentially considered for usage in bread conservation, more studies must be
conducted to meet both preservation and quality standards in baking products.

7.2.2. Plant Extracts

Plant extracts derived from different parts of the plant have also been investigated for
various applications due to the knowledge of the bioactive properties they can have. They
have been described as having exciting properties, such as antimicrobial activity [149,150]
and medical application [151,152]. Plant extracts, herbs, and phytochemicals are highly
sought for application in the treatment of cancer, diabetes, and cardiovascular diseases, as
well as components in functional foods, nutraceuticals, and health care, being thus in the
food industry one of the receptors of these bioproducts [153]. Recent works investigating
the benefits of plant-based extracts in breads have also been observed [154,155]. Studies
also concern the interaction of plant extracts with other components present in the food
matrix and the regulations about food safety [156].

Regarding food application, plant-derived extracts can efficiently inhibit microbial
pathogens and molds. Negi [157] has described an extensive review regarding phyto-
chemicals with antimicrobial activity, such as Cinnamomun and Garcinia species, as well as
Punica granatum L., and their potential in food application. Cedarwood, sweet tobacco, and
frankincense exhibited marked antimicrobial activity and inhibited mold growth, extending
the shelf life of bread until the end of the trial period. The results of this study suggest
that packing bread with certain sachets of tree and leaf essential oils can inhibit and delay
food spoilage, presenting an effective alternative to conventional synthetic preservation
practices [158].

Focusing on baking industry applications, star anise (Illicium verum) is known for
its natural compounds, including essential oils, which may possess antifungal properties.
Bao et al. [159] observed that star anise may cause lipid peroxidation in the cell membrane
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and interaction with membrane proteins, altering their conformation, thus resulting in
cell membrane dysfunction. Because of these mechanisms of action, they observed that
the extract extended the shelf life of bread by up to 6 days. Torgbo et al. [160], using an
electrothermal technique to extract bioactive compounds from rambutan peel fruit, showed
the promising potential of this strategy and the benefits of these compounds for the bread.
In the mentioned work, gallic acid, corilagin, geraniin, and ellagic acid were identified after
ohmic heating extraction and incorporated into the bread ingredients. No adverse effects
were observed for its texture, and the extended shelf life of the bread was achieved due to
fungistatic activity.

To conclude, Figure 3 summarizes how plant extracts and essential oils interact with
target microorganisms and thus act as preserving agents in baking products. Similar
to essential oils, perspectives on using plant extracts in bread and other products for
conservation purposes may depend on their ability to avoid early spoilage without altering
the sensory aspects of the product.
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7.2.3. Lactic Acid Bacteria (LAB)

Besides their role in fermentation, lactic acid bacteria also act as a preservative agent,
enhancing the shelf life, flavor, and quality of baking goods. Spontaneous acidification
due to the fermentation of local microbiota occurs in sourdough. They secrete different
organic acids, such as acetic, propionic, and lactic acid, into the sourdough matrix, creating
a low-pH environment that inhibits the growth of some spoilage microorganisms due
to the synergism activity between the acids. LAB presents considerable importance for
preservative purposes in the baking industry [9,161]. Table 6 describes LABs with potential
use to increase the shelf life of bread.

Table 6. Lactic acid bacteria in bakery products can potentially increase bread’s shelf life.

Antifungal Lactic Acid Bacteria Microorganisms Reference

L. plantarum FST 1.7 Fusarium culmorum and Fusarium graminearum [162]

L. plantarum CRL 778, Lactobacillus reuteri CRL 1100,
L. brevis CRL 772 and CRL 796 Aspergillus, Fusarium, and Penicillium species [163]

Lactobacillus amylovorus DSM 19280 A. niger FST4.21, P. expansum FST 4.22, P. roqueforti
FST 4.11, F. culmorum FST 4.05 [164]
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Table 6. Cont.

Antifungal Lactic Acid Bacteria Microorganisms Reference

L. plantarum A. niger FST4.21, F. culmorum TMW 4.0754,
P. expansum LTH S46 [165]

L. plantarum LB1, F. rossiae LB5 P. roqueforti DPPMAF1 [166]

F. rossiae LD108, Companilactobacillus paralimentarius
PB12 (formerly Lactobacillus paralimentarius)

Aspergillus japonicus, E. repens and
Penicillium roseopurpureum [167]

Latilactobacillus sakei (formerly Lactobacillus sakei)
KTU05-6, P. acidilactici KTU05-7, P. pentosaceus
KTU05-8, P. pentosaceus KTU05-9, P. pentosaceus

KTU05-10

Molds [168]

L. amylovorus DSM19280 Molds [119]

L. plantarum L244 with Schleiferilactobacillus
harbinensis L172 (formerly Lactobacillus harbinensis) P. commune, Mucor racemosus, and R. mucilaginosa [169]

L. plantarum CH1, L. paracasei B20, L. mesenteroides L1

M. racemosus UBOCC-A-109155, P. commune
UBOCC-A-116003, Yarrowia lipolytica

UBOCC-A-216006, Aspergillus tubingensis AN, A.
flavus T5, Paecilomyces formosus AT

[170]

L. plantarum UMCC 2996, F. rossiae UMCC 3002, P.
pentosaceus UMCC 3010

A. flavus ITEM 7828, P. paneum ITEM 1381, A. niger
ITEM 7090 [171]

Furthermore, microbial growth inhibition can result from antimicrobials secreted by
LAB, preserving these baked goods. Rizzello et al. [172] observed that in a sourdough
prepared with pea flour hydrolysate, L. plantarum 1A7 released antifungal peptides during
fermentation and extended the shelf life of the bread until 21 days. Another work describ-
ing antifungal compounds secreted by LAB showed that L. reuteri R29 could extend the
shelf life of a bread system against F. culmorum, producing euterin molecules and other
metabolites [173]. Preserving baked goods with LAB can also occur due to unsaturated
or saturated fatty acids such as caproic acid. These compounds have antifungal activ-
ity and work synergistically with organic acids, acting as detergents while disrupting
cell membranes. They also can inhibit enzyme activity and protein synthesis in target
microorganisms [174,175].

In an experiment by Illueca et al. [176], commercial yeast bread and sourdough bread
were prepared as controls. The system of study was sourdough bread supplemented with
L. plantarum 5L1 lyophilized. The results showed significant differences. A higher total
phenolic, lactic acid, alcohol, and ester content in bread with higher amounts of L. plantarum
5L1 was observed. L. plantarum 5L1 additionally delayed fungal growth and reduced the
content of the aflatoxins (AFB1 and AFB2) compared to the control.

7.3. Physical Methods
7.3.1. Pasteurization and Radio Frequency Heating

Major bread components such as wheat flour and cereals display low water activity
at 25 ◦C (aw,25◦C ≤ 0.85). Besides being less susceptible to microbial spoilage in bread,
this property disappears due to the water content of bread. Bread is an intermediate-
moisture food with 35–42% moisture and water activity (aw) above 0.95. This fact makes
bread susceptible to microbial spoilage, with the main effect coming from the growth
of various molds [177]. An approach to control contamination and spoilage is to re-
duce the microorganisms, mainly molds, by treating the flour with thermal methods
such as radio frequency and pasteurization. Pasteurization influences physical and tech-
nological properties precisely due to changes in gluten structure and starch configura-
tion. Heat treatment of flour decreases gluten extensibility, and partial gelatinization of
the starch granules occurs [178,179]. Studies with radio frequency (RF) in bread flour
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(10 kW—27.12 MHz) have indicated that the RF process did not cause a significant change
in the physicochemical and rheological properties of the flours treated. In contrast, the RF
process applied in the 75–85 ◦C temperature range decreased bread volume and specific
volume. Also, the disrupted gluten matrix reduces the dough’s gas-holding capacity [180].

7.3.2. Cold Atmospheric Plasma Treatment

Cold atmospheric plasma (CAP) is an emerging green and safe technology resulting
from non-thermal gas ionization into free electrons, ions, reactive atomic and molecular
forms, and ultraviolet (UV) radiation. CAP treatment of bread inhibits yeasts, molds, and
mesophilic bacteria. However, the texture becomes damaged, indicating that more studies
must be implemented [181].

7.3.3. Electrolyzed Water

Electrolyzed water decreases the growth of spoiled bread by P. roqueforti and
H. burtonii [182]. A study in the literature showed using four different types of electrolyzed
water (Anolyte NaCl, Catholyte NaCl, Anolyte Na2CO3, and Catholyte Na2CO3) improves
the bread quality. It was observed that each one brings different properties, such as in-
creased antioxidant activity and the water-holding capacity of the dough, as well as a
higher loaf volume [183].

7.4. Packaging Strategies
7.4.1. Modified Atmosphere Packaging (MAP), Active Packaging, and
Intelligent Packaging

A promising strategy focused on different packaging for baking products has con-
tributed to bread preservation methods.

Atmospheric air is recognized as a leading cause of contamination in bread products,
particularly post-baking. This is attributed to fungal spores present during slicing and
packaging, significantly elevating the risk of contamination. Modified atmosphere packag-
ing (MAP) is an inexpensive and easy method to replace atmospheric air with a mixture of
carbon dioxide (CO2) and inert gas nitrogen in packaging, extending bread’s shelf life. The
objective is to decrease the oxygen (O2) content to less than 1%. Oxygen, besides microbial
respiration, produces lipid oxidation reactions. The antimicrobial properties of CO2 inhibit
mold and bacteria growth [12,184]. A combination of techniques has also been studied
to improve preservation effects. One work observed that combining high temperature
(200 ◦C) and time with a modified packaging atmosphere technique could improve the
quality and shelf life of par-baked bread [124]. The modified atmosphere packaging tech-
nique has shown promising results for preservation in bakery products and other types
of food, illustrating that it is a well-established technique that can be widely used in the
baking and food market [185–187].

As discussed previously, spoilage bread intensifies after baking because of cross-
contamination. Therefore, controlling the hygienic conditions of bread-making is crucial.
Chalk yeast reduced the incidence to values of 0.3–0.98% in sliced bread in modified
atmosphere packaging (MAP). Previously, with the use of conventional sanitizer, the
incidence of deterioration ranged from 6.03% to 11.59%. This intervention allowed bread
to be free of chemical preservatives in the MAP [188]. Fik and colleagues [189] observed
that a packed atmosphere composed of 60% CO2 and 40% N2 showed good protection
against microbial degradation for wholemeal bread for up to 27 days. In another study,
a modified atmosphere packaging of 50% CO2–50% N2 or 20% CO2–80% N2 presented
satisfying results for extending soy bread shelf life without using calcium propionate as a
chemical preservative [190].

However, studies have shown that MAP in bread packaging only delays mold growth
but cannot prevent growth [191], and the use of MAP must be evaluated before use. To
attend to this demand, the European Food Safety Authority (EFSA) developed innovative
concepts for packing foods, such as active packaging (AP) and intelligent packaging (IP).
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These methods allow effective interaction between the packaging material and the packing
components, forming a protective layer around the food, increasing hygiene, safety, and
shelf life and decreasing sensory losses. Active packaging uses components with scaveng-
ing and releasing agents such as oxygen scavengers, moisture absorbers, antimicrobial
agents, essential oils, sachets/films containing ethanol emitters, and antioxidants, among
others, to improve the package system quality and enhance the shelf life. With these
properties, active packaging preserves the food from extrinsic factors such as heat, UV rays,
oxygen, water vapor, and pressure through effective packing techniques. There are several
types and combinations. AP uses essential oils such as thyme, cinnamon, oregano, and
lemongrass as antimicrobials, which have been used for hot dogs and sliced bread [192].
Moisture absorbers with essential oils are another example, and this method has been
tested for sliced and gluten-free bread [193]. Ethanol emitters are effective in slowing
down mold growth in rye bread. Sachets are prepared with antifungal, antioxidant, and
antimicrobial effects. Active packaging is considered an effective and cheap method for
industrial use [194].

In recent years, innovations such as nanomaterial packaging have emerged, incor-
porating metallic nanoparticles, biodegradable packaging, and edible coatings or films
containing essential oils [195]. Intelligent packaging is a smart packaging system and is the
most innovative technology. The method monitors changes in the interior and exterior of
packed food and transmits the status of the packaging system to support decision-making.
Biosensors, temperature regulators, ripeness monitors, and time-temperature monitors are
responsible for monitoring the quality and safety of the product [196].

7.4.2. Coating and Biodegradable Packaging

Another strategy involving packaging techniques is described as implementing prop-
erties to the coating layer where food will be stored [197]. Viscusi and colleagues [198]
observed that a polypropylene package with sorbate as an active molecule efficiently con-
trolled molds and inhibited the growth of several pathogenic bacteria for 12 days. In a
similar work, a packaging film of polyhydroxybutyrate and clove essential oil as an antimi-
crobial agent was developed and presented antibacterial and antifungal activity, improving
the shelf life of brown bread for up to 10 days [199].

In a different context, sustainability and the environment have created a high demand
for biodegradable packing materials. They are being studied for usage in the food market.
Biodegradable packaging can provide a shelf life extension to bread and other products
due to efficient protection against spoilage once it acts as an antimicrobial, antioxidant,
and UV-blocking agent, besides barrier function [200–202]. A study focused on bread
products observed that a biopackage composed of lignin nanoparticles, cinnamaldehyde,
and polybutylene succinate presented antifungal activity against A. niger and Penicillium
sp. and created an efficient barrier against moisture and oxygen deterioration for up to
14 days at 25 ◦C [200].

Natural waxes and other lipids have been used to produce films and coatings for
food due to their capability to interact with biopolymer matrices, altering crystallinity
and plasticity. They can be recycled with little change in properties and are abundant
environmental sources [203]. For instance, it is a current practice to cover horticulture with
a waxy coat, which maintains the exchange respiration and prevents wet loss. Moreover,
the edible coating can be produced from sugarcane wax, carnauba wax, honey beeswax,
and others like palm oil, which preserve the freshness of mangoes for 16 days [204].

A study has shown that using an edible beeswax and diacetyl tartaric ester monoglyc-
erides film as a coating for hamburger bread is a viable option. The study found that this
coating type can extend the bread’s shelf life and improve consumer acceptability [205].

Whole wheat bread packed in beeswax–chitosan-coated paper had good consumer
acceptance. It was microbiologically stable for eight days and 12 days for wheat bread
stored at ambient temperature and refrigerated, respectively [206]. Therefore, considering
the diversity in crust textures, continued evaluation of the effectiveness of these wax wraps
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for various types of bread is crucial. Despite the preliminary nature of these studies, they
present a promising avenue to address the current reliance on plastic foil in food packaging.

8. Conclusions

Baking processes are constantly developing to obtain the best sensory and health
properties at each step of production. From the inoculum choice and preparation to the
final product and preservation, all steps receive special attention and research. As reflected
in the literature, the recent advancements demonstrate a dynamic field where research
continually propels the baking industry forward. The age-old art of bread-making has
integrated global scientific research results. Current results with treatments of flour and
bread concerning production and commercialization demonstrate the advances in this
theme. Several factors influence the selection of methods. These include the processing
facility’s unique characteristics (bread chain), the production stages, and the complexity
inherent in bread manufacturing, even in artisanal settings. This complexity underscores
the knowledge required in this field. It is strongly advised against using just one method,
highlighting the importance of appropriate legislation for producing bread, where the
methods and essential control points must be clearly outlined. The hygiene of the handlers,
the cleaning conditions of the production premises, the origin of the water, the quality of
the raw materials used, and other factors of the process can all potentially be sources of
contamination. This highlights the role each individual plays in preventing contamination.
The manipulators must have basic knowledge of the microbiology of the process. Vigilance
and care of these possible entry points for microorganisms are crucial when considering
physical, chemical, and biological control methods.

Incorporating sustainable, biodegradable, ecologically friendly additives and new
packages in baking aligns with environmental concerns and highlights a conscious effort to
enhance human health. In particular, the emphasis on natural preservatives, innovative dry
procedures, and unique strains with inhibitory properties introduces a new dimension to
bread production. Preserving microbial cultures and starters constitutes a crucial point in
bread production, more relevant when new biological technologies are being incorporated
into baking, such as adding microorganisms with special properties concerning metabolites
and enzymes.

Controlling and mitigating contamination is crucial in bread production. Regulatory
initiatives play an essential role in setting guidelines and requirements and ensuring proto-
col compliance. It is also recommended that relevant stakeholders receive comprehensive
training and specialized education.

These approaches contribute to extending shelf life and preventing spoilage and play
a crucial role in elevating the overall quality of bread. The intersection of science and
baking is a testament to the ongoing quest for better, healthier, and more sustainable food
production. It is remarkable how the age-old art of bread-making has integrated global
scientific research results. Tradition and innovation reflect a promising future for the baking
industry: sustainable and health-conscious.
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