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Abstract: The recently intensified research in atomically thick two-dimensional (2D) materials has
been motivated by their unique properties and the possibility of updating the future electronic and
optoelectronic technologies. Doping can change the band structure of a semiconductor and regulate
its physical and chemical properties. Doping has a significant effect on the electronic structure of 2D
materials due to their atomic thickness. Here, we present a tutorial review of 2D doped materials
(except graphene), including various doping types and theoretical calculations, the preparation and
characterization methods, and its multifunctional application. Finally, we will summarize by stating
the current challenges and future opportunities in the development of 2D doped materials.

Keywords: two-dimensional materials; doping; synthesis; optoelectronics; magnetism

1. Introduction

In 2004, A. K. Geim and K. S. Novoselov discovered graphene from bulk graphite,
opening the door to the study of two-dimensional materials (2DMs) [1]. Two-dimensional
materials possess an atomic thickness and their intralayer atoms are combined by cova-
lent bonds in nature, whereas the interlayers are coupled by weak van der Waals forces,
thus allowing the crystal to readily cleave along the layer’s surface [2–5]. A variety of
2DMs have been found experimentally, including hexagonal boron nitride (hBN), transi-
tion metal dichalcogenides (TMDs), and layered metal oxides [6–11]. It is reported that
there should be more than 1000 kinds of 2DMs in the world by high-throughput calcula-
tions [12]. The diverse families of 2DMs display versatile properties with potential appli-
cations in field effect transistors, optoelectronic devices, energy storage, and conversion,
catalysis, and biomedicine [13–15]. In order to maximize the application of 2DMs, it is nec-
essary to develop several approaches to modulate their properties, including constructing
a heterostructure, fabricating a novel device, and doping [16–19].

In classical semiconductor theory, doping is the intentional introduction of impurities
into a material, which is fundamental to controlling the properties of bulk semiconduc-
tors [20]. A doping semiconductor can change its band structure, including the size of the
band gap, the type of the carrier, and the location of the Fermi level, and thus regulate its
electrical, optical, electrochemical, and magnetic properties [21–23]. The development of
modern semiconductor technology is based on the theoretical research and technological
innovation of semiconductor doping. Compared with bulk materials, 2DMs are very sensi-
tive to the external factors for the unique structure where almost all the atoms are exposed
to the surface. Thus, the band structures of 2DMs can be more validly tuned by various
doping approaches [24–28].

Herein, we present a forward-looking review article that discusses the state-of-the-
art in 2D doped materials. Initially, we will outline the different types and theoretical
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calculations of 2D doped materials. Additionally, we will discuss the various strategies
to doping 2DMs and how to characterize them. Finally, we will highlight the optical,
electronic, magnetic, and electrochemical properties of 2D doped materials and address
future directions which have yet to be explored for novel 2D doped materials intended for
various practical applications.

2. Classic Semiconductor Doping Type

Doping can tune the electrical property of a semiconductor, which greatly promotes
the progress of semiconductor integration technology [29]. There are two main doping
technologies for a semiconductor: thermal diffusion and ion implantation. The former is
to heat the semiconductor, which intensifies the thermal motion of the atom, so that the
intrinsic atom can obtain enough energy to leave a vacancy away from the lattice or make
the impurity atoms diffuse in the intrinsic semiconductor. The latter is to ionize impurity
atoms into ions and accelerate them with a strong electric field to obtain high kinetic energy,
then directly bombard the intrinsic semiconductor to achieve an impurity injection. Here,
we will give a brief analysis of the three doping types, including substitutional doping,
vacancy, and interstitial doping [30].

2.1. Substitutional Doping

Substitutional doping, which is where one atom replaces another one to form a new
semiconductor, is a common type of doping in semiconductor integrated process (Figure 1a).
Substitutional doping often occurs in the location where there are vacancies in the material,
rather than exchanging positions with the host material. At the same time, the size of the
impurity atom and host atom is similar.
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Figure 1. Classical type of semiconductor doping. (a) Substitutional doping formed in semicon-
ductors. The blue and red balls in the schematic stand for the intrinsic and substitutional atoms in
the semiconductor. (b) Vacancy defects formed in semiconductors. (c) Interstitial doping formed
in semiconductors. The blue and green balls in the schematic stand for the intrinsic and interstitial
atoms in the semiconductor. (d,e) The ionization process of the donor and acceptor impurity can be
represented by a band diagram, respectively. EC is conduction band minimum level, EV is Valence
band maximum level, ED is donor level, and EA is acceptor level. Red and black balls represent
electrons and holes, respectively.
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2.2. Vacancy

Many semiconductor materials are grown at relatively high temperatures, and there
will be more vacancies in the body at high temperatures (Figure 1b). At a certain tem-
perature, there is a certain equilibrium value. When the crystal cools down at a fast rate,
some vacancies are frozen to form nonequilibrium vacancies, which affects the physical
properties of the semiconductor.

2.3. Interstitial Doping

In the process of a thermal diffusion and ion implantation, a part of the atoms get
enough energy to overcome the binding of the surrounding atoms and squeeze into the gap
between the atoms to form interstitial atoms (Figure 1c), which will have a great impact on
the electrical, optical, and electrochemical properties of semiconductors.

The doping mechanism of n-type and p-type semiconductors are shown in Figure 1d,e,
respectively. When the majority carriers of a semiconductor are electrons, they are called
n-type semiconductors. When the majority carriers are holes, they are called p-type semi-
conductors. An n-type semiconductor can be obtained by doping phosphorus in monocrys-
talline silicon, while a p-type semiconductor can be formed by a doping boron. N-type and
p-type semiconductors are the cornerstones of integrated circuits.

After doping in intrinsic semiconductors, the donor and acceptor impurity levels will
be introduced. Since ED is very close to EC, the electron at the donor level can transit
from the donor-bound state to the conduction band to become a conducting electron, thus
increasing the electron concentration and forming an n-type semiconductor (Figure 1d).
Similar to this, since EA is very close to EV, the hole at the acceptor level can transit from
the acceptor bound state to the valence band to become a conducting hole, thus increasing
the hole concentration and forming a p-type semiconductor (Figure 1e).

3. Doping Types in 2D Doped Materials

Due to the unique structure of 2DMs, almost all atoms are exposed on the surface.
Compared with the bulk materials, we conclude six doping types in 2DMs (Figure 2).
Because 2D doped TMDs have been widely reported, we will take TMDs as an example to
show the various doping types, which includes the transition elements and chalcogenide
elements substitution, vacancy, intercalation, and the physical and chemical adsorption.
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Figure 2. Schematic diagram of different doping types. The yellow and blue balls in the schematic
stand for the intrinsic atoms in 2DMs. (a,b) M and X substitutional doping formed in 2DMs. The
red and navy-blue balls in the schematic stand for the M substitutional atoms and X substitutional
atoms, respectively. (c) Vacancy doping formed in 2DMs. (d) Atom or molecular intercalation formed
in the van der Waals gaps of 2DMs. The red balls stand for the intercalated atoms or molecules.
(e,f) Physical and chemical adsorption formed on the surface of 2DMs.
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3.1. Substitutional Doping

Two-dimensional alloys have been reported early in MX2 (M = Mo, W, Re, Hf, Sn;
X = S, Se, Te) [31–48]. It is a substitutional doping type and can be classified into a
transition elements substitution (MxM’1-xX2, x represents the content of M) (Figure 2a)
and chalcogenide elements substitution (MX2xX’2(1-x), x is the content of X) (Figure 2b).
The doping concentration can be controlled by tuning the growth parameters, and the
distribution of the doped atoms are random [33,49,50].

3.2. Vacancy

It is well known that vacancy defects either naturally formed or artificially made
have a great influence on the electronic structure of 2DMs (Figure 2c). A theoretical
calculation has shown that S vacancies in monolayer MoS2 will form donor-like levels and
lead to n-type conductivities, while Mo vacancies bring acceptor-like levels and p-type
conductivities [51]. Thus, vacancy is a common doping form and can determine the carrier
type of 2D semiconductors.

3.3. Intercalation

The layers of 2DMs are combined by a van der Waals force. Therefore, the atoms
and molecules can be inserted into the van der Waals layers by chemical methods [52].
These intercalated ones can change the electronic properties of the 2DMs, including the
transformation of 2DMs from n-type to p-type [53], tuning the magnetic property [54,55],
or bringing them into a phase transformation [56]. In our opinion, this intercalation should
belong to the one of doping, and some of the doping will lead to a change in the space
distance between the van der Waals layers (Figure 2d).

3.4. Adsorption

In addition to the atomic intercalation, the adsorption can also be an important dop-
ing type. When 2DMs exist in air or are specially treated, molecules and particles can
adsorb on the surface of 2DMs. These molecules and particles will transfer the electron
with 2DMs [57–61]. As the specific surface area of the 2DMs is large, the adsorption will
seriously affect their electronic structure, thus we also classify this situation as a type of
doping. Generally speaking, adsorption can be divided into two types: physical adsorption
(Figure 2e) and chemical adsorption (Figure 2f). Physical adsorption refers to the formation
of a van der Waals force between the adsorption and 2DMs, while the chemical adsorption
means the formation of a covalent bond between the adsorption and 2DMs. In the experi-
ment, we can choose different adsorbents to enhance their influence on 2DMs, which will
affect the electrical transport and photoelectric properties of 2DMs [61].

4. Theoretical Investigation of 2D Doped Materials

Up to now, researchers have studied the effects of various kinds of doping in 2DMs
by a theoretical calculation, including substitutional doping, intercalation, and adsorp-
tion. A theoretical calculation can analyze the formation energy of the doping to deter-
mine the possibility of doping. At the same time, it can study the influence of doping
on the band structure of 2D materials to predict the influence of doping on the electri-
cal, optical, and magnetic properties of 2D materials. Compared with the experiment,
the theoretical calculation is relatively simple, and the results obtained may not be com-
pletely consistent with the experimental results, but it will have a certain guiding signifi-
cance for the experiment. Kang et al. investigated the stability of 2D alloys MX2(1-x)X’2x
(M = Mo, W, and X, X’ = S, Se, Te) by employing the cluster expansion method and the spe-
cial quasi-random structure approach (Figure 3a) [62]. The stability of the alloys at 0 K can
be evaluated from their formation enthalpies (∆H) which depends on the specific atomic
arrangement in the alloys. The results show that for many configurations of this alloy,
∆H is negative, which means that the ordered alloy can form spontaneously (Figure 3b).
There are three stable ground states, with concentration x equal to 1/3, 1/2, and 2/3
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(Figure 3a). In these ground states, the clustering of the S or Se atoms is not stable, and the
S (Se) atoms prefer to occupy the neighbor sites of the Se (S) atoms. These results show
that the 2D alloy is thermally stable in theory [62]. Because of the high temperature in the
synthesis of 2D alloys, it is difficult to observe the ordered situation in the experiment.
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at 0 K. (b) First-principles calculated formation enthalpies for MoS2(1-x)Se2x,, along with the charge
exchange fitted results. Reproduced with permission from [62]. (c) The isosurface plot shows the spin
density when the MnMo-MnMo defects in MoSe2 are separated by ~6.5Å. Reproduced with permission
from [63]. (d) First-principles calculated binding energies of monolayer MoS2 with transition metal
dopants from the periods four, five, and six. Reproduced with permission from [64]. (e) Four possible
pathways for phase transition of MoS2 monolayer structure by experimental and theoretical calculations.
Reproduced with permission from [65]. (f) The adsorption energies of various gas molecules on MoS2

monolayer determined from five methods. (g) Isosurface plot of the electron charge density difference
for NO on MoS2 monolayer. Reproduced with permission from [66].

W atoms can be doped arbitrarily in MoS2 to form an alloy, while other metal atoms,
such as Mn and Co, cannot be doped in a high concentration due to a lattice mismatch,
thus only a small amount can be done. Cheng et al. investigated various atoms doped on
the MoS2 monolayer by density functional theory [64]. To check the stability of different
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dopants, they have calculated the binding energies as summarized in Figure 3d. The
binding energy is defined by the equation:

Eb = Ev + µ − Ed (1)

where Ev is the energy of a relaxed MoS2 monolayer with one Mo vacancy, µ is the energy
of the doped transition metal atom, and Ed is the energy of a relaxed MoS2 monolayer
with one Mo atom replaced by the transition metal. The result demonstrated that Eb of
different dopants varies from 0.2 to 16.0 eV. The binding energy at IIIB to VIII10 is relatively
high (Figure 3d). It is concluded that the substitution doping of the transition metal atoms
from the IIIB to VIII 10 groups is stable [64]. Doping transition metal atoms from the IB
and IIB groups is difficult because of their low binding energy (especially for Hg). For
magnetic atoms, such as Mn, Fe, and Co, the doping of MoS2 can be a promising approach
to achieve 2D diluted magnetic semiconductors [63,64,67,68]. Figure 3c shows the long-
range interaction of MnMo defects through the Se 4p state in the spin-polar isosurface
diagram [63]. Two MnMo defects were obtained, separated by a distance of ~6.5Å in MoSe2.
The result shows that the coupling between the Mn spins and Se spins in the AFM resulted
from the hybridization between the localized Mn 3d and the delocalized Se 4p states.
More importantly, every time the Se spins come across a MnMo defect, the AFM alignment
between the Se and Mn leads to an effective FM alignment of all the MnMo spins. Because
the Se 4p states are delocalized, the FM alignment between the MnMo spins can also be
expected to act over a long range. The ferromagnetism will be more stable and the Curie
temperature will be higher with the increase in the Mn doping concentration [63].

It has been reported that the electronic and phase structure of 2DMs can be tuned
by inserting atoms and ions into the van der Waals gap [69]. The mechanical exfoliation
method always leads to a 2D trigonal prismatic phase (labeled as H-MoS2), which is
found to be a semiconductor with a direct band gap between the occupied dz2 and the
empty dx2−y2, xy orbitals [70]. The space group of the H-MoS2 phase is P6/mmc, which is
considered to be a stable configuration under normal conditions [71]. However, the solvent-
based exfoliation method results in different octahedral coordinated phases with each Mo
atom bonded with six S atoms, which is referred to as T-MoS2 [72,73]. The structure of MoS2,
which is similar to WTe2 with zigzag Mo−Mo chains rather than that of TiS2, is labeled as
ZT-MoS2. Lithium-inserted MoS2 possesses a distorted octahedral coordinated structure
with a rhombus shape connected Mo–Mo chains, which is referred to as DT-MoS2 [74].
O-MoS2 is used to describe all three octahedral coordinated MoS2 regardless of the detail
of the molybdenum clusterization. M. Kan et al. discussed the possible transition paths of
different phases of MoS2. As the concentration of the lithium atoms is increased, H-MoS2
becomes O-MoS2 and then becomes DT-MoS2. When all the Li atoms are extracted from
the system, the structure is ZT-MoS2. By heating or aging, ZT-MoS2 will transform into the
most stable phase H-MoS2 (Figure 3e) [65].

Up to now, MoS2 transistors have shown ultrahigh gas sensing capabilities for NO
and NH3. This is mainly because the adsorbed gas changes the electronic structure of MoS2
by a charge transfer mechanism. The adsorption energy of various gas molecules on the
MoS2 monolayer was determined by five methods (Figure 3f) [66]. For the same molecule,
a different calculate method results in a different adsorption energy, while the trend of the
adsorption energy is consistent with that of the gas molecules. The adsorption energy of
NO2 and NO are high, which means that they can be easy to adsorb on MoS2 (Figure 3f).
For all the molecules, no chemical bonding is found between the adsorbate and MoS2. To
further elucidate the charge transfer between the gas adsorbate and the MoS2 monolayer,
Figure 3g provides an isosurface map of the difference in the electron charge density of
these gas molecules. There is a charge accumulation on the surface between the MoS2 and
NO adsorbate, demonstrating the charge-donor characteristics of the molecules, which is
also reflected by a high adsorption energy between them (Figure 3f) [66].
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5. Synthesis of 2D Doped Materials

Compared with pure 2DMs, the synthesis of 2D doped materials is more challenging.
Here, we summarized the methods to synthesize 2D doped materials, including a me-
chanical exfoliation, surface functionalization, vapor phase deposition, plasma technology,
absorption, the electrochemical method, and thermal evaporation.

5.1. Mechanical Exfoliation Method

The mechanical exfoliation method was well known after graphene was exfoliated
through tape in 2004 [1]. Because of the weak van der Waals force between the layers
of layered materials, ultrathin and high-quality 2DMs can be obtained by this method
(Figure 4a). The bulk counterparts of 2D doped crystals can be obtained by a chemical
vapor transport (CVT) method where the source material is placed in the quartz tube by
vacuum sealing technology and the samples are grown under an appropriate temperature.
This method can obtain high-quality 2D substitution-doped materials with a low cost,
but the layer thickness of 2D materials is uncontrollable, the efficiency is low, and large-
scale production is difficult to achieve. Xie et al. have firstly exfoliated the Mo1−xWxS2
monolayer alloy from its bulk counterparts and shows its good optical performance [31].
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(c) Schematic of a common vapor growth experimental set-up. Reproduced with permission from [76].
(d) Schematic diagram of sulfurization of Er-doped Mo thin film predeposited by sputtering. Re-
produced with permission from [77]. (e) Schematic of pristine MoS2 (top) and vacancy doped
MoS2 annealed at 250 ◦C (bottom). Reproduced with permission from [78]. (f) Schematic of NOx

chemisorption process. Reproduced with permission from [60]. (g) In situ electrochemical-optical
measurement platform to monitor electrochemical intercalation process. Reproduced with permis-
sion from [79]. (h) Raman mappings of the pristine and Au-decorated WSe2. Reproduced with
permission from [80].
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5.2. Surface Functionalization

Surface functionalization is an adsorption-doped method and is possible to integrate
various compositions of 2D functional units on single few-layered 2DMs. This method
is simple to operate, but the stability needs to be improved because the dopants are on
the surface and the interaction with the 2D materials is weak. Many 2DMs, such as
MoS2, MoSe2, and InSe, have chalcogenide atoms with one bond occupied by lone pair
electrons. According to the Pauli exclusion principle, the fully occupied orbital cannot
accept extra electrons to form a chemical bond, resulting in an inert 2D surface. However,
Lewis acids, featuring empty electron orbitals, can accept these lone pair electrons and
form stable coordinate covalent bonds [75]. Ajayan et al. made use of the lone pair
electrons found in most of 2D TMDCs and reported a functionalization method to tune
their electronic transport via a Lewis acid–base reaction that does not alter the host structure
(Figure 4b) [75].

5.3. Vapor Phase Deposition Method

Vapor phase deposition, including physical vapor deposition (PVD) and chemical
vapor deposition (CVD), is a very common method to obtain 2D doped materials [21]. This
method can control the thickness and size of 2D substitution-doped materials and can
achieve the growth of large-area and high-quality 2D materials. Pan et al. developed a PVD
method to grow a 2D alloy with a controlled concentration [76]. The precursor is usually
the corresponding powder of a chalcogenide semiconductor. The two boats in the system
are linked together and can be pushed optionally during the growth process. The vapor
concentration of the two materials can be controlled precisely to modulate the chemical
composition of the alloy [35,36,76]. Until now, there are mainly three CVD methods for
synthesizing the 2D doped materials: (1) a direct synthesis from various source materials
by a chemical reaction. In the synthesis of Co-doped MoS2, Co3O4, MoO3, and S are
used as the source materials in a CVD system [81]. (2) Metal alloys were obtained by a
vacuum evaporation on the substrate, and then vulcanized in the CVD system. Er-doped
Mo thin films were deposited on SiO2/Si substrates by sputtering high purity Er and Mo
targets with a different power to achieve Er doping into the films. Then, Er-doped MoS2
layered nanosheets were synthesized by the CVD method [77]. (3) The CVD approach
combined with a solution-processed precursor deposition. The MoO3 and WO3 solution
were prepared by adding MoO3 and WO3 powder into NH4OH and then annealed to form
films, respectively. The films can be used as source materials to form a 2D alloy by the CVD
approach [82].

5.4. Plasma Treatment

Plasma technology is used for doping 2DMs because of its simplicity and univer-
sality. It is well known that in chemically grown 2DMs, vacancy defects are particularly
noticeable due to imperfections in the growth process. It is an effective approach to ob-
tain 2DMs with a vacancy defect by an oxygen plasma exposure and hydrogen treatment
(Figure 4e) [78]. Plasma can impact 2DMs to form vacancy defects, and H2 reacts with
2DMs to form a vacancy. The concentration of the vacancy increases with the increase in
the dose and exposure time in the oxygen plasma’s exposure and temperature, and the
hydrogen concentration in the hydrogen treatment [78].

5.5. Molecular Absorption Method

A molecular physical and chemical absorption method are extensively reported to
achieve both n- and p-doping in 2DMs utilizing the surface charge transfer mechanisms
which are aided. This method is simple to operate, but the stability needs to be improved
because the dopants are on the surface and the interaction with the 2D materials is weak.
Figure 4f shows that NO2 is located on WSe2 by physical and chemical absorption, and the
sample is placed inside an evacuated Pyrex glass flask with an inert gas flow for the gas
exchange [60,83]. Subsequently, a constant NO2 gas flow is introduced through the flask
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and maintained throughout the entire doping procedure, exhausting an external oil bath.
Simultaneously, the flask is placed on a hot plate with the sample temperature maintained
at a certain temperature and cooled down to room temperature [60].

5.6. Electrochemical Intercalation Method

Electrochemical intercalation has been recently used for doping 2DMs and obtaining
a 2D superlattice. This method can obtain 2D intercalated materials with novel structures
and physical properties, but it is difficult to achieve a mass preparation. Wang et al. used
a home-designed electrochemical-optical measurement platform for the in situ monitoring
of the intercalation dynamics and the corresponding evolution of the electronic and optical
properties (Figure 4g) [79]. This method can be used for several different 2D atomic crystals,
such as black phosphorus, molybdenum disulfide, and tungsten diselenide, to produce
a broad class of superlattices with tailored molecular structures, interlayer distances, phase
compositions, electronic, and optical properties [79].

5.7. Thermal Evaporation Method

The thermal evaporation method is carried out to product Au-decorated WSe2 with
a p-type doping [80]. This method can achieve adsorption doping, but its ability to precisely
control the physical properties is weak. A more p-type behavior of the decorated WSe2
field effect transistor is realized by the electron transfer from the WSe2 to the gold (Au)
decorated on the WSe2 surfaces. This simple and scalable method is considered to be
a promising method to introduce p-doping to other 2DMs (Figure 4h) [80].

6. Characterization of 2D Doped Materials

There are mainly seven methods to characterize 2D doped materials, including optical
microscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), high angle
annual dark field scanning transmission electron microscopy (HAADF-STEM), aberration-
corrected transmission electron microscopy (TEM), and Raman and photoluminescence
(PL) spectra.

6.1. Optical Microscopy

Two-dimensional doped materials with a different electronic structure and band gap
may show a different color optical image. It is reported that the colors of Cu-SnS2 and
Co-SnS2 become more opaque and turn dark blue and violet-red, respectively, from the
light blue color of SnS2 (Figure 5a) [53].

6.2. Scanning Transmission Electron Microscopy

High angle annual dark field scanning transmission electron microscopy (HAADF-
STEM) is one direct way to characterize the atomic arrangement in 2D substitution-
doped materials, which has an atomic resolution and Z-contrast capability (contrast
proportional to ~Z1.5−1.9) [86,87]. The HAADF-STEM image has been carried on 2D
alloys [31,33,41,47,88,89], Mn-MoS2 [90], Fe-MoS2 [91], Fe-SnS2 [92], Nb-MoS2 [84], and
Ti-InSe [75]. In the MoS2(1−x)Se2x alloy, the HAADF-STEM image is used to quantify the
concentration of the Se local atom on the nanometer scale and map the atomic distribution
of the Se dopants, where a single Se substitution site and a double substitution site are
indicated in bright green and white, respectively (Figure 5b,c) [47].
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Figure 5. Characterization of 2D doped materials. (a) Optical microscopy image of n-type SnS2,
p-type Cu-SnS2, and metallic Co-SnS2 in-plane 2D heterostructures. Reproduced with permission
from [53]. (b) ADF image of Se-doped MoS2. (c) Structure model obtained from histogram analysis
showing the distribution of single- and double-Se substituted S2 sites. Reproduced with permission
from [47]. (d) Raman spectra of Mo1-xWxSe2 monolayers. (e) Composition-dependent PL spectra
of Mo1-xWxSe2 monolayer alloys. Reproduced with permission from [48]. (f) XPS scans of the
Nb 3d (top), the Mo 3d, and S 2s (both in bottom) core-levels measured from the Nb-doped and
undoped MoS2. Reproduced with permission from [84]. (g) Comparison between intensity profiles
along the red dashed line and simulated high-resolution TEM image of single SV shows quantitative
agreement. Reproduced with permission from [85]. (h) XRD patterns of pure MoS2 and MoS2

intercalated with quaternary ammonium molecules with four equivalent substitutional groups of
an increasing chain length. Reproduced with permission from [79].

6.3. Raman Spectroscopy

Raman spectroscopy has been widely used in 2D substitution-doped materials to
characterize the phonon structure, including the crystallinity, composition, and doping.
Modified random element isodisplacement (MREI) has been successfully used to explain
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the Raman behavior of the 2D alloys. The MREI model is based on the assumptions
of isodisplacement and randomness: (1) the same kind of atoms vibrate in the same
amplitude and phase and (2) all the substituted atoms are randomly distributed [32]. The
MREI model can predict the mode behaviors and fit the composition-dependent Raman
frequencies of A’1and E’ modes in a 2D alloy [32]. In the Raman spectra of Mo1-xWxSe2,
when the W component x is increased from 0 to 1, the A1g mode continuously changes
from 240.1 to 249.3 cm−1, which is close to the linear dependence on the W component
(Figure 5d). In addition, as the W component changes, the second-order Raman peak
also shifts and exhibits a dual-mode behavior [48]. The photoluminescence spectroscopy
(PL) measurements are a non-destructive measurement method that quickly and easily
characterizes the defects, impurities, and luminescence properties of 2DMs. In the PL
spectrum of Mo1-xWxSe2, as the W component increases, the PL emission exhibits a bowing
effect (Figure 5e). The emission energy is first red-shifted to a minimum at x = 0.2–0.3, and
then monotonically blue-shifted [48].

6.4. X-ray Photoelectron Spectroscopy

XPS is an effective characterization for understanding the chemical states and com-
position of elements in 2D substitution-doped materials. The binding energy of the XPS
spectra is referenced to the Fermi level in the material; the red/blue shifts of the binding
energy can be interpreted by the move down/up of the Fermi level in the semiconductor,
demonstrating p/n doping, respectively [93–95]. The XPS has been used to prove the
doping concentration in Nb-MoS2 and it is found that the core-level peaks of Mo and S in
the doped sample show a uniform shift toward the lower binding energies compared to
those of the undoped one, demonstrating p doping (Figure 5f) [84].

6.5. Aberration-Corrected Transmission Electron Microscopy

Aberration-corrected transmission electron microscopy (TEM) is used to characterize
the vacancy defect in 2DMs. A typical atomic image of a single-layer MoS2 showed the
expected hexagonal symmetry, and the defects can be clearly distinguished by analyzing
the intensity profile (Figure 5g) [85].

6.6. X-ray Diffraction Pattern

XRD is a powerful tool for analyzing the crystal structure of materials and is powerful
to characterize 2D intercalated materials. The crystal plane spacing can be calculated
from the XRD pattern by the Bragg equation. An intercalation in 2DMs will result in
the increasing of the (001) crystal plane spacing, which can be characterized by XRD
(Figure 5h) [79,96].

7. Properties and Applications of 2D Doped Materials

A wide variety of 2DMs have been used as the active material to fabricate field-effect
transistors (FETs) [97–99], a photodetector [100], and hydrogen evolution catalysts [101].
Doping 2DMs can regulate their properties to meet the practical application [102]. We will
focus on the applications of 2D doped materials in electrical, optoelectronic, catalytic, and
magnetic fields.

7.1. Electrical Transport and Devices

To reduce the channel length in the current silicon-based transistor, the thickness of
the semiconductor must also be reduced to ensure that 2D electrostatic screening effects are
minimized [103]. Two-dimensional semiconductors with an atomic thickness are suitable
for field effective transistors (FETs) because of their compatibility and the lack of short-
channel effects. The mobility (µ) and current ON/OFF ratio (ION/IOFF) are performance
indicators of FETs. µ is an important physical parameter to indicate the speed of the
carrier electron movement under an electric field. A high mobility can reduce the power
consumption of devices and improve the current carrying capacity and operating frequency
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of devices. The mobility is decided by the mean-free time (τ) and effective mass (m*) of the
electron as follows:

µ =
qτ

m∗ (2)

where m* is related to the band structure. Because doping tends to increase the scattering
and τ, it is a feasible method to reduce the effective quality by selecting specific dopants.
On the other hand, doping can also achieve a low contact resistance and improve the
mobility of 2DMs by adjusting the Fermi energy level to adjust the work function.

A large ON/OFF ratio can contribute to a reduced power dissipation and static leakage
current. The ON current (ION) is related to the carrier mobility, saturation velocity, and
metal–semiconductor contact resistance, and has no direct relation with the bandgap [104].
The OFF current (IOFF) of the transistor is strongly dependent on the bandgap (Eg), accord-
ing to the equation:

IOFF ∝ exp
Eg

αKT
(3)

where K is the Boltzmann constant, T is the temperature, and α is a constant.
Doping can change the band’s structure and affect the electrical properties of 2DMs. In

a typical n-type 2D semiconductor, doping can introduce more electrons or holes, resulting
in the Fermi level closing to the conduction band or valence band (Figure 6a). It can even
turn an n-type semiconductor into a p-type. So, more n-type and p-type materials can be
obtained by doping, which is the cornerstone of the whole integrated circuit. There are
some doping methods to control the conductive type of 2D semiconductors: substitution,
surface functionalization, and intercalation.

Natural MoS2 show n-type. Niobium (Nb) has one less valence electron than Mo
and is suggested as the suitable acceptor [106]. It was reported that 0.5%Nb substitutional
doped MoS2 show p-type with a degenerate hole density of ~3 × 1019 cm−3 (Figure 6b) [84].
Two-dimensional TMDs have a van der Waals gap between two neighboring chalcogenide
atoms layers and the chalcogen ions on the 2D surfaces are capped with lone pair electron
orbitals [75]. On the basis of the Pauli exclusion principle, the fully occupied orbital
cannot accept extra electrons to form a chemical bond, resulting in an inert 2D surface.
However, Lewis acids (e.g., TiCl4), possessing empty electron orbitals of the metallic ions,
can accept these lone pair electrons of chalcogenide atoms and form stable coordinate
covalent bonds [75]. Thus, some n-type 2D semiconductors can be changed into the
p-type by the surface functionalization doping method via a Lewis acid–base reaction
(Figure 6c) [76]. There are van der Waal gaps in 2D layered materials, and heteroatom
can be intercalated into the gap by a solvent-based method. The electrons of intercalated
heteroatom will couple with those of 2DMs, thus changing the band structure of the 2DMs.
Gong et al. reported that pristine bilayer SnS2 show the n-type, the Cu intercalated bilayer
SnS2 displays a hole field-effect mobility of ~40 cm2 V−1 s−1, and the Co intercalated bilayer
SnS2 exhibits a metal behavior with a sheet resistance comparable to that of few-layer
graphene (Figure 6d) [53]. Chalcogenide atoms in 2D TMD can easily form vacancies,
which can be occupied by a molecular doping. A new type of 2D doped material, such
as Cl-doped MoS2 (Figure 6e), can shorten the width of the Schottky barrier between
MoS2 and metal, and thus reduce its contact resistance (Figure 6f) [61]. The 2D vertical
superlattice can be formed by inserting organic molecules into 2DMs by the electrochemical
method [107]; it can increase the interlayer spacing and change the electronic structure of
materials and make the multi-layer 2DMs exhibit single-layer properties (Figure 6g). At
the same time, the stability of 2DMs in air can be improved (Figure 6h) [79]. The electronic
structure of 2DMs can be changed by the charge transfer between the organic compound
and 2DMs by placing some electron donor organic compound on the surface of 2DMs by
chemical method. When benzyl viologen (BV), one of the highest reduction potentials of
all electron donor organic compounds, as a surface charge transfer donor for MoS2 flakes
can obtain a high electron sheet density of ~1.2 × 1013 cm−2, which corresponds to the
degenerate doping limit for MoS2 (Figure 6i) [105].
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Figure 6. Regulating electrical properties of 2DMs by doping. (a) N-type doped band structure
diagram. (b) Typical electrical transport characteristics of Nb and undoped MoS2 devices. Repro-
duced with permission from [84]. (c) Field effect measurements of the InSe before and after the Ti
treatment. Reproduced with permission from [75]. (d) R-T curves of SnS2, Cu-SnS2, Co-SnS2, and
graphene. Reproduced with permission from [53]. (e) Schematic diagram of Cl-doped few-layer WS2

back-gate FET. (f) Transfer length method resistances of Cl-doped WS2 and MoS2. Reproduced with
permission from [61]. (g) The on/off ratio measurement of the same BP before and after intercalation.
(h) Electrical stability of three MPMS and three BP devices with similar starting on-current. Repro-
duced with permission from [79]. (i) Transfer characteristic curves of the top-gate device before and
after BV treatment. Reproduced with permission from [105].

7.2. Optoelectronics, Catalysis and Magnetism

In an optoelectronic device based on 2DMs, the photocurrent (Iph) is defined
by the equation:

Iph =

(
Petα
hv

)
τl/τt (4)

where P is the incident power, e is the electron charge, t is the thickness of 2DMs, α is the
absorption coefficient of 2DMs at the photon energy hv, τl is the minority carrier lifetime,
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and τt is the transit time of the electron in 2DMs. The photoresponsivity R of the device
can be described by the equation:

R = Iph/P =

(
etα
hv

)
τl/τt (5)

When the illumination reaches the sample, the electron–hole pairs are generated [108,109].
The photoconductivity is enhanced by decreasing the recombination of these electron–hole
pairs via the trap states to capture the minority carriers to prolong their τl, and at the same
time, most carriers are allowed to transmit effectively multiple times over the channel
between the source and drain the electrode.

Doping often leads to an increase in the defects in 2DMs, which leads to the increase
in the trapped states in the band structures, τl, and the photoresponsivity [110–112]. On
the other hand, the defect trap states will prolong the photo response time. Doping can
lead to the introduction of impurity levels or a changing of the band structure, which can
improve the optical absorption coefficient. Two-dimensional SnSSe as a phototransistor is
demonstrated to exhibit a high photoresponsivity of about 6000 A W−1 due to the presence
of Van Hove singularities in the band structure introduced by doping (Figure 7a) [44].
CoMoS and NiMoS formed by Co and Ni doping MoS2 have excellent hydrogen evolution
reaction (HER) performances. For an HER, the catalytic performance is closely related to the
adsorption energy of hydrogen and the kinetic energy barrier of the hydrogen generation
pathway. The introduction of a foreign metal element (e.g., Co, Ni, or Fe) in the MoS2 lattice
affords the opportunity to engineer the electronic and/or surface structures for improving
the HERs performances. The optimized Co-doped MoS2 catalyst shows a superior HER
performance with a high exchange current density of 0.03 mA·cm−2, a low onset potential
of 90 mV, and a small Tafel slope of 50 mV·dec−1, which also exhibits the excellent stability
of 10,000 cycles with a negligible loss of the cathodic current (Figure 7b) [113]. Lithium
intercalation in 2D layered materials can be used to tune the phase. The 2H-1T phase of
MoS2 transform during the intercalation reaction, which is driven by an electron transfer
from Li to MoS2, causing a change in the electron count from d2 to d3, leading to the
destabilization of the original crystal structure [114]. The plasma-assisted approach (SF6,
CHF3, CF4, and O2 plasmas) is an effective method to make a change from n-type MoS2
to p-type MoS2 by doping (Figure 7d). Because of the relatively strong electronegativity
of the F and O atoms, the excess electrons are preferentially transferred from the MoS2
layers onto the F and O atoms, resulting in p-doping in the MoS2 layers [115–117]. Charge
doping is used to tune the phase of TMDs by modulating the Fermi level and changing the
electronic properties. The excitation of the plasmon modes in Au nanoparticles deposited
on a MoS2 monolayer may induce a transient reversible 2H to 1T phase transition in
MoS2 by hot electron doping (Figure 7e). The doping of the 2H phase first leads to the
destabilization of the lattice, and then, through the population of the Mo 4d orbitals, into
a structural transition to the 1T phase. The Raman spectra taken with and without Au
NPs further confirms this phase transition (Figure 7f) [118]. The magnetic atoms doped
in TMDs may induce a ferromagnetism by p–d antiferromagnetic coupling (Figure 7g). It
is reported that undoped SnS2 show no magnetism (Figure 7h), but Fe-doped SnS2 with
a Curie temperature of 31 K show a ferromagnetism under 2 K (Figure 7i) [92,119].
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Figure 7. Optoelectronics, catalysis, and magnetism of 2D doped materials. (a) Three-dimensional
view of photoresponsivity mapping of few-layered SnSSe phototransistor. Reproduced with per-
mission from [44]. (b) Polarization curves of various Co/Mo ratios and calcination temperatures.
Reproduced with permission from [113]. (c) Reaction schematic for the preparation of exfoliated
2H MoS2. Reproduced with permission from [114]. (d) The curve of the integral of the overlap
between these measured EQE values and the standard AM1.5G spectrum over a wavelength range of
300–800 nm. Reproduced with permission from [118]. (e) The principle of hot electron generation.
(f) Raman spectra of MoS2 before and after the Au NP deposition and illumination. Reproduced
with permission from [118]. (g) The distribution of the spin density for the Fe-SnS2 monolayer.
(h,i) Magnetic hysteresis loops for SnS2 and Fe0.021Sn0.979S2 at 2 K, respectively. Reproduced with
permission from [92].

8. Conclusions and Outlook

Doping is an important technology in the field of semiconductor science, which is also
very important for the future device application research of 2DMs. In this review, we sys-
tematically introduced 2D doped materials, including various doping types and theoretical
calculations, preparation and characterization methods, and a multifunctional application.

Although in the past few years great progress has been achieved in the field of 2D
doped materials, there still exist a number of significant issues that need to be addressed
and studied. First, the device size of 2DMs will continue to shrink, and the doped atoms
will have a great impact on the device’s performance. Therefore, it is urgent to develop
a 2DM doping method with a large-scale, universal, and atomic accurate. Second, the
electrical, optoelectronic, catalytic, and magnetic properties of 2DMs have been widely
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studied. How to select appropriate doped atoms to significantly improve these performance
needs further research, including theoretical and experimental research. Third, most of the
2D doped materials are still focused on basic research. In order to further promote their
practical application, they need to be constructed into multi-functional devices, such as the
p-n junction formed by 2D p-type doped and n-type doped materials, and magnetic doped
semiconductors used in semiconductor spintronic devices.
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