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Abstract: Here, the time dependence of the interfacial resistance for Li/polyethylene oxide (PEO)-
Li(CF3SO2)2N (LiTFSI)-LiPF6/LiCoO2 cells was measured to investigate the stabilization effect of LiPF6

on the interface between a solid polymer electrolyte (SPE) and a 4-volt class cathode, LiCoO2. Impedance
measurements under the applied potentials between 4.1 V and 4.4 V vs. Li/Li+ indicated that the
addition of LiPF6 to LiTFSI was effective in improving the stability at high potentials such as 4.4 V
vs. Li/Li+. In contrast, the resistance of the non-doped PEO-LiTFSI/LiCoO2 interface increased with
time under the lower potential of 4.1 V vs. Li/Li+. Fairly good cycle performance was obtained for the
LiPF6-doped cell, even at a cut-off voltage of 4.5 V vs. Li/Li+.

Keywords: lithium solid polymer electrolyte; 4-volt class cathode; lithium polymer battery; lithium
hexafluorophosphate

1. Introduction

Since polyethylene oxide (PEO)-based lithium solid polymer electrolytes (SPEs) were
introduced in solid lithium batteries in the late 1970s [1,2], much research effort was devoted
to the development of high-performance all-solid lithium polymer batteries from the 1980s to
the 2000s. However, various issues associated with PEO-based electrolytes have held back the
practical realization of all-solid lithium polymer batteries. The weak points of PEO–lithium
salt complexes (PEO-LiX) are typically as follows. (1) The conductivity is low in the range of
10−7 to 10−8 S/cm at room temperature. Therefore, the cells must be operated at a temperature
higher than 60 ◦C, where the amorphous phase in the PEO–salt complex becomes dominant,
which is associated with the high lithium ion conductivity [3–5]. (2) High-voltage cathode
materials such as LiCoO2, Li(Ni,Co,Mn)O2, and LiMn2O4 have low reversible capacities in
SPE cells [6,7], which are assumed to be the result of the low decomposition potential (narrow
electrochemical window) of polymer electrolytes compared with that of conventional liquid
electrolytes [8].

However, such a solid polymer has a flexible and deformable character, which enables
better mechanical and electrical contact with active electrode materials than that with
inorganic solid electrolytes. In addition, the relatively good stability against Li metal [9]
is advantageous compared to inorganic oxide and sulfide solid electrolytes, although the
process is prone to lithium dendrite formation under high-current-cell operation [10–12].
The good compatibility with graphite as an anode [13,14] is also beneficial in comparison
to other solid electrolytes.

Efforts to improve the poor low-temperature characteristics of PEO-based electrolytes
have been continued by the modification of PEO-based polymers over the past two decades
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(see cited reviews [15–17]); i.e., (1) the appropriate design and selection of easily dissoci-
ated lithium salts with a high lithium transference number (t+) [18], (2) the addition of
plasticizers to facilitate the segmental motion of polymer chains, (3) the dispersion of fine
ceramic particles in the PEO matrix to improve the fraction of amorphous phase, and (4) the
synthesis of copolymeric, cross-linked, or branched PEO-based polymers with structures
suitable for the acceleration of lithium ion hopping.

Over the past decade, various reports aimed at an increase in the performance of SPEs
have been published. Although there have been a fair number of reports on studies to
improve the stability of so-called 4 V class cathodes and SPEs [19,20], sufficient battery
properties have not been established as well as with liquid electrolytes. In many cases,
3 V class cathode materials, especially LiFePO4, have been selected to demonstrate good
electrolyte performance in tested cells. No detailed discussions on the decomposition
potential for high-voltage cathode materials have been reported.

The 4 V class cathode materials, such as LiCoO2, LiMn2O4, Li (Ni, Co, Mn) O2, etc.,
that have been extensively used in liquid electrolyte cells have been known to show much
lower reversible capacity in PEO-based electrolyte cells [6,7]. In 2001, we reported the cut-
off voltage dependence on the capacity vs. cycling number for a Li/PEO19-Li(CF3SO2)2N
(LiTFSI)-10 wt% BaTiO3/LiNi0.8Co0.2O2 cell [21], where the subscript 19 indicates that
the molar ratio of Li salt to the oxygen in PEO(Li/O = 1/19). The cell capacity decreased
rapidly with cycling by charging up to 4.0 V and discharging to 2.5 V. On the other hand,
no significant capacity fade was observed by charging up to 3.9 V or less. Aihara et al.
reported 500 charge–discharge cycles with 100% capacity retention in the operating range
of 3.0–4.1 V for Li/LiCoO2 cells with an SPE modified from PEO [22]. Judging from the
reports on polymer electrolyte cells, the decomposition potential of PEO-related electrolytes
can be estimated to be in the range from 3.7 V to 4.1 V [8,9].

The research group of the Central Research Institute of Electric Power Industry, Japan,
succeeded in the relatively stable cycling of a Li/PEO-based SPE/LiCoO2 cell up to 4.6 V vs.
Li/Li+ (better cyclability was obtained at less than 4.4 V vs. Li/Li+) by interposing Li3PO4
between the polymer electrolyte and LiCoO2 [23,24]. Our group reported the cycle test of
a Li/[(PEO–10 wt% HBP)10(LiTFSI–10 wt%LiPF6)]–10 wt%BaTiO3/LiNi0.8Co0.2O2/Al cell,
where HBP (hyperbranched polymer poly[bis(triethyleneglycol)benzoate] capped with an
acetyl group) and BaTiO3 were added to enhance the conductivity of the SPE. The addition
of 10 wt% LiPF6 to LiTFSI increased the cycle performance significantly. The initial cathode
capacity of 150 mAh/g declined to 74 mAh/g after 410 charge–discharge cycles at 0.57 C
with a cut-off voltage of 4.4–2.5 V. The capacity fade rate was ca. 0.12%/cycle [25], where the
retention was less than that of a typical liquid electrolyte system but was largely superior to
that of 4 V class solid lithium polymer cells with typical lithium salts such as LiClO4 and LiTFSI.
Aluminum current collectors are known to undergo serious corrosion in carbonate-based
liquid electrolytes containing LiTFSI, whereas a protective film is formed on the aluminum
surface when LiPF6 and LiBF4 are added to LiTFSI [26,27]. Inspired by these reports, the
addition of LiPF6 to the SPE was attempted and an improvement in the cell performance was
obtained [25]; however, the reason for the improvement remained obscure.

In this paper, we provide a detailed examination of the effect of LiPF6 addition on
a Li/PEO-LiTFSI/LiCoO2 cell. LiTFSI was used as a base lithium salt because, from the
early period of study of all-solid lithium polymer batteries, PEO-LiTFSI electrolyte systems
have been used because of the high lithium ion conductivity due to the plasticization
effect [28]. The PEO-to-LiTFSI ratio was fixed at Li/O = 1/18. Although SPE with a higher
LiTFSI content has higher Li ion conductivity, the mechanical strength decreases due to the
sticky and fluid tendency of the SPE; therefore, an appropriate composition with respect
to both the conductivity and mechanical strength was determined. The potential stability
of polymer electrolytes has often been estimated according to linear sweep voltammetry
(LSV) or cyclic voltammetry (CV) results. However, from non-equilibrium dynamic LSV or
CV methods conducted in a short measurement time, it is difficult to obtain information on
long-term stability between SPEs and electrode materials. Therefore, the stability of the
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SPE with the 4 V class LiCoO2 cathode material was estimated by employing the static
method; i.e., impedance measurements under various constant potentials were applied to
the SPE/LiCoO2 interface from 4.1 V to 4.4 V vs. Li/Li+. This method was modified from
the report by Seki et al. [24,29].

2. Materials and Methods

All of the polymer electrolytes described here were prepared by the solvent casting
technique with acetonitrile (AN) as a carrier solvent. High-molecular-weight (MW: 6 × 105)
PEO (Aldrich Chemical, St. Louis, MO, USA) and Li salts (Li(CF3SO2)2N (LiTFSI; Wako
Pure Chemicals, Osaka, Japan) and LiPF6 (Kishida Chemical, Osaka, Japan) were used
as received. PEO and the lithium salts (LiTFSI and LiPF6) were dissolved in AN with a
molar ratio of Li/O = 1/18. The composition of LiPF6 was set in LiTFSI:LiPF6 weight ratios
of 10:0, 9:1, 75:25, 50:50, 25:75, and 0:100. The polymer electrolyte solution was cast in a
polytetrafluoroethylene (PTFE) dish under a dry argon atmosphere. The solvent in the
slurry was evaporated slowly under a flow of nitrogen gas for 48 h at room temperature.
The polymer electrolyte films were then dried at 120 ◦C under vacuum for 12 h. These
procedures yielded homogenous membranes with an average thickness of ca. 300 µm.

The working electrode was composed of 95 wt% LiCoO2 (Nihon Chemical, Kabupaten
Bekasi, Indonesia) as an active material, 3 wt% acetylene black (AB; Wako Chemicals,
Richmond, VA, USA) as a conductive additive, and 2 wt% polyvinylidene difluoride
(PVdF; Kureha, Tokyo, Japan) as a binder. The viscosity of the slurry was adjusted to a
toothpaste-like consistency by control of the N-methyl-2-pyrrolidone (NMP) content. The
slurry obtained was cast on an aluminum foil (Thank-Metal Co., Hyogo, Japan), dried in
air at 80 ◦C for 2 h, and then vacuum-dried at 120 ◦C for 3 h. Each electrode treated in
a vacuum was transferred to an Ar gas-filled glove box and punched out into a 12 mm
diameter, ca. 20 µm thick (exc. foil) electrode for cell assembly.

Pouch cells were used for electrochemical measurements. An SPE membrane was
placed between two electrode sheets in a glove box, and these were inserted into the
pouch-like film, overlapping the electrode leads, and then heat-sealed on three sides. The
cell was then sandwiched between laminated sheets, and the four surrounding sides were
heat-sealed. A small hole was drilled in one corner of the laminated cell and vacuumed to
seal it. All operations were performed in a glove box.

The conductivities of the polymer electrolytes were measured using a symmetrical
blocking cell, Au/PEO-LiTFSI-LiPF6/Au, in a pouch cell using a frequency response
analyzer (Solartron 1260) in the temperature range from 30 to 80 ◦C. An AC perturbation of
10 mV was applied in the frequency range from 1 × 106 to 0.1 Hz. The cells were initially
heated at 80 ◦C and then cooled down to the measurement temperature to ensure good
contact between the electrolyte and electrode.

The quasi-decomposition phenomenon of the polymer electrolytes was estimated from
CV measurements of the cells, Li/electrolyte/Au and Li/electrolyte/Al, at 80 ◦C, where a
potentiostat (Solartron 1287) was run for 5 cycles at a scan rate of 1 mV/s in the voltage
range of 2.0–5.0 V vs. Li/Li+.

The cell for the electrochemical tests consisted of the Al metal sheet lead, LiCoO2
cathode, the polymer electrolyte, and a lithium metal counter electrode with a Cu metal
lead, all of which was sealed in a laminated sheet pack under vacuum. The test cell
was heated at 80 ◦C for 20 h so that the polymer electrolyte penetrated into the LiCoO2
electrode. The completion of penetration was confirmed by recognition of the equal first
charge capacity to that of a Li/LiCoO2 cell with a liquid electrolyte (LiPF6/EC-DEC).

To evaluate the stability of the SPE with the LiCoO2 cathode material under static
conditions, AC impedance measurements were performed under each potential of the
Li-deintercalated Li1−xCoO2 electrode by the combination of constant current–constant
voltage charging processes. The cells were charged to 4.1 V, 4.2 V, 4.3 V, and 4.4 V vs. Li/Li+

with the voltage maintained for 2 h and then open-circuited for 2 h followed by the impedance
measurements (from 1 × 106 to 0.05 Hz) using a multi-potentiostat with an impedance
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analyzer (Biologic VMP3). The measurements were repeated 20 times to observe the variation
in the interface resistance with time. All measurements were performed at 80 ◦C.

Charge–discharge tests of the cells were performed in the potential ranges of 2.5 V to
each potential (4.2–4.4 V vs. Li/Li+) with a rate of 0.1 C at 80◦ C.

3. Results

Figure 1 shows Arrhenius plots for the electrical conductivity of PEO18 (100-x)LiTFSI-
xLiPF6 as a function of x (wt%), where the subscript 18 indicates a PEO-to-Li salt ratio
of Li/O = 1/18. The conductivity inflection around 60–50 ◦C reflects the transition from
the crystalline to amorphous phase at the eutectic temperature [30,31]. The conductivity
decreased with an increase in the LiPF6 content, both in the high- and low-temperature
region, although the decrease was stronger in the crystalline phase region. The transition
temperature increased with the LiPF6 content. (PF6)− anions, which are smaller than
(TFSI)− anions, attract Li+ ions more strongly to themselves, which could decrease both
the volume fraction of the amorphous phase of the PEO–salt complex and the number of
charge carriers due to the low degree of ion dissociation [4]. The conductivities at 80 ◦C
ranged from 1.15 × 10−3 S/cm for 0% LiPF6 to 0.58 × 10−3 S/cm for 100% LiPF6, and those
at 60 ◦C were from 0.54 × 10−3 S/cm for 0% LiPF6 to 0.23 × 10−3 S/cm for 100% LiPF6. The
conductivities at 80 ◦C are considered acceptable for an SPE for battery operation; however,
at the working temperature of 60 ◦C, the conductivities for the LiPF6-rich region may be
too low for high-rate cycle testing. Therefore, all the electrochemical measurements were
performed at 80 ◦C.
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Figure 1. Temperature dependence of the electrical conductivity for PEO18(100-x)LiTFSI-xLiPF6 for
various x (wt%).

At the beginning, the decomposition potentials (electrochemical stability window)
and the aluminum dissolution potential of the polymer electrolytes were evaluated from
CV measurements of the Li/electrolyte/Au and Li/electrolyte/Al cells. Figure 2 shows
potential sweep results from 2.5 V to 5.0 V vs. Li/Li+ in the second cycle at 80 ◦C. In the first
oxidation sweep, small irregular peaks appeared, which disappeared after the second cycle,
and the CV curves became stable with similar curves after the second cycle. Although it is
difficult to estimate the decomposition potential for each electrolyte from Figure 2a, the
smaller current with a higher content of LiPF6 indicates that the presence of LiPF6 increases
the resistance of the electrolyte against oxidative decomposition (and/or oxidative reactions
with Au metal). The aluminum current collector has been known to undergo noticeable
corrosion in carbonate-based electrolyte solutions containing LiTFSI [26,27]. However, in
the case of the SPE containing LiTFSI, no significant corrosion in contact with the passive
layer of Al occurred, as shown in Figure 2b, where only a small current (one tenth of that in
the Au electrode) flowed at 5 V vs. Li/Li+ in the repeated CV measurements. The SPEs
tested showed larger stability windows at the Al surface than at the Au surface, and in
both cases, the addition of LiPF6 to LiTFSI was effective to expand the stability window
by forming a protective film. Therefore, in the following discussion, the possibility of a
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reaction between the SPE and the Al sheet is not considered (although the gradual reaction
for a long period may be left uncertain).
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Figure 2. CV curves for (a) Li/ PEO-LiTFSI-LiPF6/Au and (b) Li/PEO-LiTFSI-LiPF6/Al in the second
potential sweep from 2.5 V to 5.0 V vs. Li/Li+ at 80 ◦C.

To clarify the effect of LiPF6 addition in the PEO-LiTFSI electrolyte, the variation
in the interfacial resistance with time between the PEO-LiTFSI-LiPF6 electrolyte and Li-
deintercalated Li1−xCoO2 at each charged potential was monitored by impedance mea-
surement. A schematic pattern of the impedance measurement combined with constant
current–constant voltage charging is shown in Figure 3a. In this example, the cell was
charged to 4.2 V vs. Li/Li+ at constant current, maintained for 2 h at that voltage by
constant voltage, and after being open-circuited, the impedance was measured 20 times.
Figure 3b shows an assumed equivalent circuit. The impedance profiles were analyzed to
estimate the Li metal/SPE and LCO/SPE resistances using a non-linear instant fit program
in the Z view software package (Ver.3.5h).

Figure 3c,d show the time dependence of the impedance spectra for the Li/PEO
(LiTFSI 100 wt%)/LiCoO2 cell and Li/PEO (LiTFSI 80 wt% + LiPF6 20 wt%)/LiCoO2 cell
at 4.2 V vs. Li/Li+, respectively. The impedance components were separated into the
electrolyte bulk resistance (Rb), the electrolyte/Li anode interfacial resistance (RLi), and the
electrolyte/LiCoO2 cathode interfacial resistance (RLiCoO2 ) from the high-frequency side.
The attribution of (RLi) and (RLiCoO2 ) was determined from the resistance values obtained
by measuring the impedance of electrodes with different cathode areas. Not all samples
measured showed notable changes in resistance (Rb and RLi) with time; however, the time
dependence of the resistance at the electrolyte/LiCoO2 cathode interface (RLiCoO2 ) was
significantly different between the non-LiPF6-doped and LiPF6-doped SPE.

The variations in RLiCoO2 with time for various applied potentials are shown in Figure 4a,b.
A large difference was observed in the rate of increase between the systems with and without
LiPF6. As shown in Figure 4a, the PEO-LiTFSI/LiCoO2 interface resistance RLiCoO2 increased
slightly with time, even under the applied voltage of 4.1 V vs. Li/Li+, and under higher
voltages, the slope increased significantly with time and RLiCoO2 rose exponentially with the
applied voltages. The result from the interfacial resistance measurement is consistent with
previous reports on the decomposition potential of PEO-related electrolytes, which fell in the
range of 3.7–4.1 V [8,9]. In contrast, the interface of PEO-LiTFSI-LiPF6/LiCoO2 was largely
stabilized by the presence of LiPF6, as shown in Figure 4b, where the change in resistance
with time for the SPEs with LiPF6 is plotted under applied potentials of 4.2 to 4.4 V vs. Li/Li+.
At 4.2 V and 4.3 V vs. Li/Li+, RLiCoO2 showed almost no variation with time; even at 4.4 V
vs. Li/Li+, only a slight increase in resistance from 100 Ω to 400 Ω was observed during the
exposed time of 50 h, which significantly contrasted with the large increase in resistance from
400 Ω to 20,000 Ω during the 30 h period with the non-doped PEO-LiTFSI system. Therefore,
LiPF6 plays an important role in stabilizing the polymer electrolyte/LiCoO2 interface, even at
only 10 wt% addition.
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constant voltage charging. In this example, the cell was charged to 4.2 V vs. Li/Li+ by constant current,
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4.2 V vs. Li/Li+.
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Figure 5 shows charge–discharge curves and the cycle performance between 2.5 V
and 4.4 V for Li/PEO-LiTFSI-LiPF6/LiCoO2 cells with 0 wt%, 25 wt%, and 100 wt% of
added LiPF6. A significant difference in cell performance was observed with and without
LiPF6. The cells with SPE containing LiPF6 display stable charge/discharge curves and
cycling performance with a capacity retention of 150 mAh/g after 20 cycles. The capacity
during charge for the cell without LiPF6 dropped to 100 mAh/g from the first discharge
capacity of 170 mAh/g after 20 cycles. In the cut-off voltage of 2.5–4.5 V, degradation of the
cycle performance was also appreciably suppressed in the case of LiPF6 addition (Figure 6).
The cell with the SPE containing 10 wt% LiPF6 maintained a capacity of 100 mAh/g after
100 cycles, the retention of which is 53%, as calculated from the capacity of 190 mAh/g in
the first discharge.

The electrochemical stability window of SPE should be the same as that of the electrode
potential or higher. For 4 V class cathodes with operating voltages as high as 4.2–4.4 V vs.
Li/Li+, stability at 4.5 V vs. Li/Li+ is, at least, required to compensate for the overpotential
during charge [31]. The PEO-based SPE including LiPF6 as a Li salt has the possibility to
meet these criteria, although further electrochemical investigation will be necessary. At
the moment, it is unclear as to what the stability enhancement of the polymer/cathode
interface can be attributed to by the addition of LiPF6 as a lithium salt to the PEO electrolyte.
Detailed surface analyses are also desirable as a next step.
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Figure 5. Charge–discharge curves for the Li/PEO-LiTFSI-LiPF6/LiCoO2 cells with the addition of
(a) 0 wt%, (b) 25 wt%, and (c) 100 wt% LiPF6, and (d) the cycle performance with cut-off voltages of
2.5 V and 4.4 V with 0.1 C rate at 80 ◦C. The red lines show the first charge–discharge curves. In the
case of PEO:LiPF6 = 18:1 (c), imperfect penetration of the SPE into the electrode caused a decrease in the
first charge capacity because of the low fluent SPE characteristic due to the high concentration of LiPF6.
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cells, and (c) the cycle performance. The red lines in (a,b) show the first charge-discharge curves. The
cut-off voltage was 2.5–4.5 V with a rate of 0.1 C at 80 ◦C.

4. Conclusions

The addition of LiPF6 with LiTFSI (Li(CF3SO2)2N) as lithium salts in a PEO-based
electrolyte is effective to stabilize the interface of the SPE and the 4 V class LiCoO2 cathode
material. Impedance measurements of the interface of SPE with LiPF6 and LiCoO2 under
applied potentials of 4.2–4.4 V vs. Li/Li+ revealed that the increase in interface resistance
was suppressed at a high potential such as 4.4 V vs. Li/Li+. Fairly good cycle performance,
even at a cut-off voltage of 4.5 V vs. Li/Li+, was obtained from the charge–discharge
tests for Li/PEO-Li(CF3SO2)2N-LiPF6/LiCoO2 cells. The 10–25 wt% addition of LiPF6 to
LiTFSI was sufficient to trigger an improvement, and this composition had lithium ion
conductivity that was almost equal to the non-doped electrolyte. In this report, only an SPE
system of PEO with a molecular weight of 600 × 103 and a typical lithium salt, LiTFSI, was
investigated. It is therefore of interest whether the addition of LiPF6 would have similar
effects in polymer electrolytes with different molecular structures from a PEO electrolyte.
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