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Abstract: The work presents the research results regarding the development of an innovative technol-
ogy for the production of lithium perrhenate. The new technology is based entirely on hydromet-
allurgical processes. The source of lithium was solutions created during the processing of Li-ion
battery masses, and the source of rhenium was perrhenic acid, produced from the scraps of Ni-based
superalloys. The research showed that with the use of lithium carbonate, obtained from post-leaching
solutions of Li-ion battery waste and properly purified (by washing with water, alcohol, and cyclic
purification with CO2), and perrhenic acid, lithium perrhenate can be obtained. The following
conditions: room temperature, time 1 h, 30% excess of lithium carbonate, and rhenium concentration
in the acid from 20 g/dm3 to 300 g/dm3, allowed to produce a compound containing a total of
1000 ppm of metal impurities. The developed technology is characterized by the management of all
aqueous waste solutions and solid waste and the lack of loss of valuable metals such as rhenium and
lithium after the initial precipitation step of lithium carbonate.

Keywords: battery mass; Li-ion batteries; superalloy scrap

1. Introduction

Rhenium in the Earth’s crust occurs only in a dispersed state, mainly in molybdenite,
columbite, and copper-bearing shales [1–3]. In contrast, due to its high reactivity, lithium
does not occur in nature in its free state but only in the form of compounds that usually
have an ionic structure. Lithium occurs in many pegmatites but also in seawater [1,4].
Both elements are valuable, strategic metals, and in some regions of the world are even
considered to be critical materials [5,6]. Rhenium is a critical material for the Republic of
Korea, Japan, and Australia, and lithium for the USA, Japan, Australia, the Republic of
Korea, and the EU [7–10].

Currently, the importance of lithium is increasing due to the application of this metal
in the production of Li-ion batteries [11–13]. Rhenium is mainly used for the manufacture
of superalloys but also catalysts [1,14–19]

Rhenium occurs in various oxidation states, from +I to +VII. In the seventh oxidation
state, it forms stable salts with other metals, such as Ni [20–22], Co [20,22], Cs [23], Fe [24],
Cu [25], Ag [26,27], as well as with Li, which are called perrhenates. These salts are used
in the production of mordants (for the alloys, superalloys, and heavy sinters), in catalysis,
and in medicine, although nowadays, these compounds are researched for their use in
the battery industry [28,29]. Selected physicochemical properties of the above-mentioned
rhenium salts are shown in Table 1. [30]

As is commonly known, there are many different methods of recovering lithium from
battery masses, which are already described in the literature [31–33]. These technologies

Batteries 2024, 10, 151. https://doi.org/10.3390/batteries10050151 https://www.mdpi.com/journal/batteries

https://doi.org/10.3390/batteries10050151
https://doi.org/10.3390/batteries10050151
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/batteries
https://www.mdpi.com
https://orcid.org/0000-0002-3206-6317
https://orcid.org/0000-0002-0294-1766
https://orcid.org/0009-0006-3477-1294
https://orcid.org/0000-0001-9737-2887
https://orcid.org/0000-0003-2039-5858
https://orcid.org/0000-0001-9847-3225
https://doi.org/10.3390/batteries10050151
https://www.mdpi.com/journal/batteries
https://www.mdpi.com/article/10.3390/batteries10050151?type=check_update&version=1


Batteries 2024, 10, 151 2 of 14

are based on hydrometallurgical processes [34,35] as well as pyrometallurgical [36–38] or
can be a combination of both [38–41].

Table 1. Physicochemical properties of perrhenates of selected metals [30].

Compound Melting Point, ◦C
Solubility in Water, %

Density, g/cm3
0 ◦C 30 ◦C 50 ◦C

AgReO4 455.0 0.40 1.30 2.60 6.96
Ni(ReO4)2 - - 75.60 - -
Co(ReO4)2 816.0 - 74.90 - 5.33
Fe(ReO4)3 - - 73.00 - -
RbReO4 598.0 0.38 1.57 3.40 4.73
CsReO4 616.0 0.41 1.38 2.95 4.76

NH4ReO4 - 2.81 7.50 12.50 -
LiReO4 426.0 74.50 80.30 80.30 4.61

LiReO4·2H2O 87.5 275.15 385.21 385.21 3.69

The method of recovering lithium from solutions created during the processing of
Li-ion batteries, presented in this publication, maybe a separate method of lithium recovery.
However, due to the need to obtain a specific product, i.e., lithium perrhenate, all purifi-
cation operations are dedicated to the production of the intended compound and are the
subject of a patent application.

There are relatively few publications related to the preparation, properties, and use of
lithium perrhenate in its various forms. Most of them come from the 20th century [42–45],
and among them, there are many articles concerning only the properties of various forms of
lithium perrhenate [46,47]. There are no reports on the industrial production of this compound.

The first report on the preparation of lithium perrhenate appeared in the literature
in 1948, when W.T. Smith and S.H. Long described the preparation of lithium perrhenate
dihydrate via the reaction of lithium carbonate and lithium hydroxide with perrhenic acid.
The obtained salt was purified in the recrystallization process. The tests also determined
the solubility, density, and freezing point of lithium perrhenate dihydrate. It was also found
that it has an anisotropic structure [30].

In 1973, K. Skudlarski and W. Lukas analyzed lithium perrhenate vapors using mass
spectrometry in the temperature range of 750–950 K. Lithium perrhenate used for the
research was obtained from ammonium perrhenate in the ion exchange process [48].

In turn, in Zh. Neorg. Khim. in 1977, published an article describing the thermal
and chemical analysis performed for lithium perrhenate dihydrate. It showed that the
above-mentioned hydrate undergoes two polymorphic transformations and is isostructural
with lithium pertechnetate [49].

In 1979, W. Lukas once again determined the thermodynamic properties of lithium
perrhenate in a LiReO4-CsReO4 system using mass spectrometry. Lithium perrhenate was
obtained as a result of the ion exchange process in the following way: lithium chloride was
passed through a column filled with a cationic resin in the form of a sulfonated copolymer
of styrene and divinylbenzene [50].

In Z. Anorg. Allg. Chem. in 1983, the results of the research on the crystallographic
structure of lithium perrhenate were published [51]. In 1984, the same journal printed an
article describing the crystallographic structure of Li5ReO6, which was obtained in the
reaction of LiReO4·1.5H2O with Li2CO3 [52].

In 1995, V.N. Khrustalev, S.V. Lindeman, and Yu.T. Struchkov determined the octa-
hedral crystal structure of monoclinic LiReO4·1.5H2O [53], and in 2001, A.M. Abakumov
described the synthesis of lithium perrhenate monohydrate, using ammonium perrhenate
and lithium carbonate. In the first stage, metallic rhenium was obtained as a result of
the decomposition of ammonium perrhenate in a hydrogen atmosphere at a temperature
of 1000 ◦C, while the reaction lasted for 10 h. Rhenium was then dissolved in a 15% hy-
drogen peroxide solution, and lithium carbonate was added to it. The solution obtained
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in this way was evaporated at room temperature, allowing to obtain white crystals of
LiReO4·1.5H2O. This compound was slowly dehydrated at 30 ◦C to obtain its monohydrate
form. This publication also presents the analysis of the crystallographic structure of all
forms of rhenium(VII), i.e., sesquihydrate, monohydrate, and anhydrous [54].

In Zhu. Struct. Khi. in 2002, an article was published describing a non-empirical study
of the motion of nuclei in a lithium perrhenate molecule. It is described there that lithium
perrhenate is a non-rigid molecule. The energy levels, transition frequencies, transition
dipole moments, and average values of geometric parameters of the salt molecules were
calculated [55].

However, in 2004, V. Burenin determined the symmetry of internal dynamics and the
separation of movements in the main isomer of lithium perrhenate [56].

In 2020, Discover Applied Sciences published an article about the possibility of using
lithium perrhenate as a catalyst in the production of supercapacitors based on carbon
airgel. It was found that LiReO4 is a suitable catalyst for the reaction of resorcinol and
formaldehyde gel formation. The gel obtained in the presence of a rhenium catalyst had an
increased specific surface area and a better-developed pore structure [28].

In 1968, Von K. Ulbricht and H. Kriegsmann conducted Raman and IR spectroscopy
analyses and examined the influence of the crystal structure and properties of cations on
the internal vibrations of the LiReO4 molecule. For research purposes, lithium perrhenate
was obtained in the reaction of perrhenic acid with lithium carbonate [57].

In 2000, M.M. Gaphurov and A.R. Aliev also performed Raman and IR spectroscopy
analyses of lithium perrhenate. The research was carried out in the area of phase transition
between solid and liquid states [58].

Additionally, there are also mentions in the literature that lithium perrhenate can be
used in the production of rhenium isotopes 186Re and 188Re, which can then be applied for
therapeutic purposes and medical diagnostics [1,59].

This work presents a hydrometallurgical method of producing lithium perrhenate
entirely from waste. Lithium perrhenate is not a widely utilized compound, even within
the relatively small market for rhenium (with an annual production of 56–75 tonnes of
this metal). This compound’s properties are best suited for medical applications and for
creating both homogeneous and heterogeneous catalysts, which play key roles in various
large-scale industrial processes like metathesis, reforming, and epoxidation. Traditional
production methods using commercial reagents may not be cost-effective and profitable,
prompting the development of a new technology that relies on readily available waste
materials, such as superalloys and battery waste. Producing lithium perrhenate from
waste sources maximizes the use of all available materials, which is in alignment with the
principles of the circular economy strategy.

Lithium carbonate prepared in this technology, specially purified for the production
of lithium perrhenate, will not be fully processed into only this compound, but it is the
most suitable source of lithium for the production of LiReO4. The production of lithium
carbonate is a crucial step in processing waste battery materials. By utilizing a portion of
this compound to generate a new substance with novel applications, we are maximizing
the value extracted from waste materials. Presently, in hydrometallurgy industries, only
technologies that rely entirely on waste sources for processes have a realistic chance of
being implemented, exemplified by the method proposed here.

2. Materials and Methods
2.1. Materials

Perrhenic acid used in the research was obtained by leaching the superalloy scrap and
further production of ammonium perrhenate from these post-leaching solutions. The tech-
nology was developed by Łukasiewicz Research Network–Institute of Non-Ferrous Metals
and implemented at Innovator, Gliwice, Poland. This method was based on the ion ex-
change technology: sorption of rhenium was carried out using a weakly basic ion exchange
resin A170 (Purolite, King of Prussia, PA, USA, hydroxide form), and elution with an aque-
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ous ammonia solution (25%, Chempur, Piekary Śląskie, Poland, p.a.). Catalytically pure
ammonium perrhenate was crystallized from the aqueous ammonia solutions, which was
then dissolved in water, and ammonium ions were sorbed, this time using a strongly acidic
cation exchange resin C160 (Purolite, USA, hydrogen form) [20,60,61]. The post-sorption
solution was evaporated to obtain the desired rhenium concentration of 20–400 g/dm3. In
this way, perrhenic acid was obtained, containing: <0.0001% Ca, <0.0005% K, <0.0001%
Mg, <0.0001% Cu, <0.0001% Na, <0.0001% Mo, <0.0001% Ni, <0.0001% Pb, <0.0001% Fe,
<0.0002% NH4+, <0.0001% Bi, <0.0001% Zn, <0.0001% W, <0.0001% As and <0.0001%
Al [22,62–64].

In the case of lithium, solutions obtained after the leaching of battery masses of waste
Li-ion batteries were selected for the tests. Their compositions are presented in Table 2.
Sulfuric acid with/without the addition of H2O2 was used for the leaching process. The
battery masses for the leaching process were obtained as a result of the use of a technology
developed and patented by Łukasiewicz-IMN [65]. The materials came from three different
types of sources, i.e., car batteries, laptops and power tools.

Table 2. Compositions of the solutions containing Li used in the research.

Solution pH
Concentration, g/dm3

Li Ni Co Fe Al Cu Mn F

A 6.0 14.0 0.2 0.5 <0.01 <0.01 <0.01 0.2 2.4
B 3.2 3.2 15.8 30.2 <0.01 <0.01 <0.01 4.5 1.1
C 3.3 2.8 7.5 8.5 <0.01 <0.01 <0.01 6.4 1.2
D 1.3 2.9 15.2 30.5 1.2 2.1 2.5 6.5 0.9

The following materials were also used in the tests: sulfuric acid (95%, Chempur,
Piekary Śląskie, Poland, p.a.), nitric acid (65%, Chempur, Piekary Śląskie, Poland, p.a.), hy-
drogen peroxide (30%, P.P.H. Stanlab, Lublin, Poland, p.a.), demineralized water (<2 µS/cm;
Łukasiewicz-IMN, Gliwice, Poland), methyl orange (85%, Merck, Warsaw, Poland, ACS
reagent), sodium hydroxide (Stanlab, Lublin, Poland, p.a.), anhydrous ethanol (>99%,
Chempur, Poland), anhydrous isopropanol (>99%, Chempur, Poland), sodium carbonate
(>99%, Avantor, Gliwice, Poland), CO2 gas (≥99.5%, SIAD, Ruda Śląska, Poland).

2.2. Analytical Methods

All analyses were performed at the Łukasiewicz Research Network–Institute of Non-
Ferrous Metals, mainly at the Centre of Analytical Chemistry (Gliwice, Poland). The
rhenium content in lithium perrhenate and perrhenic acid was determined by thin-layer
X-ray fluorescence spectrometry using an X-ray fluorescence spectrometer (ZSX Primus,
Rigaku, Tokyo, Japan). The following instrumental techniques were used to calculate
the concentrations of some pollutants (such as Cu, Mg, Ca, Fe, Mn, Co, and Ni): GFAAS
(graphite furnace atomic absorption spectroscopy, Z-2000, HITACHI, Tokyo, Japan), ICP-
OES (inductively coupled plasma-optical emission spectroscopy, ULTIMA 2, HORIBA
Jobin-Ivon, Kyoto, Japan) and ICP-MS (inductively coupled plasma-mass spectroscopy,
Nexion, PerkinElmer, Waltham, MA, USA). The concentrations of lithium and rhenium in
solutions were determined by the FAAS method, using a THERMO SOLAAR S4 atomic
absorption spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with a
flame module and deuterium background correction. Ammonium ions, e.g., in the aqueous
solution of perrhenic acid, were determined by a distillation method with titration (the
Nessler method). In order to determine the main pollutants, atomic emission spectrometry
with inductively coupled plasma ICP-OES with a Horizon ARL system was used. XRD
analyses were performed at the Łukasiewicz Research Network–Institute of Non-Ferrous
Metals, the Centre of Functional Materials (Gliwice, Poland), based on the interpretation of
diffraction patterns prepared using a Rigaku MiniFlex 600 XRD diffractometer equipped
with an X-ray tube with a wavelength of 1.5406 Å, a detector D/TeX silicon strip and Soller
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slit with high resolution of 2.5′′ on the primary and scattered beam. SEM analyses were
performed at the Centre for Advanced Materials Technologies (Gliwice, Poland), using a
high-resolution Zeiss Gemini 1525 scanning electron microscope equipped with a Quantax
xFlash®6 Bruker Nano X-ray spectrometer.

3. Results
3.1. Lithium Recovery from the Post-Leaching Solutions and Analysis of the Obtained
Lithium Carbonate

Studies on the precipitation of lithium carbonate from the post-leaching solutions
(Table 2) were carried out using 1–10 dm3 portions of the solution. Four purification
cycles were carried out using CO2 gas. The research was conducted under the following
conditions: an aqueous solution of sodium carbonate (~10% excess based on the amount of
Li in the solution) with a concentration of 280 g/dm3 was added to the solution obtained
from the leaching of battery masses. Precipitation was carried out in a temperature range
of 90–95 ◦C, with stirring, and at a constant rate of dosing the Na2CO3 solution. After
the dosing step, the obtained precipitate of crude lithium carbonate was separated from
the solution by vacuum filtration. The precipitate was washed on a filter with water and
successively with a mixture of alcohols (ethanol and isopropanol). Then, it was sent to
the cyclic purification stage by dissolving lithium carbonate in water, to which CO2 gas
was added continuously at a constant rate of 1.0 dm3/min for 30 min. The resulting
solution was separated once again by vacuum filtration, and then the filtered solution was
heated to a temperature in the range of 90–95 ◦C and stirred for another hour. The formed
lithium carbonate precipitate was separated from the solution using vacuum filtration
at a temperature >90 ◦C. Lithium carbonate formed after cyclic purification was washed
with water and an anhydrous mixture of ethanol and isopropanol. In this way, lithium
carbonates were obtained from solution A, the compositions of which are listed in Table 3.
For the selected lithium carbonate, after all purification stages, XRD analysis was performed
(Figure 1). A scheme of the method of producing lithium carbonate is shown in Figure 2.
SEM images were taken for the purified carbonate (Figure 3).

It should be noted that the use of four cycles in all four solutions allowed us to obtain
lithium carbonate of a high purity, which can be used for the further synthesis of lithium
perrhenate. XRD and SEM analysis additionally confirmed that the isolated and purified
compound, Li2CO3, had a crystalline structure and no pollutants.
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Table 3. Compositions of lithium carbonates obtained in precipitation and purification steps—solution
A and D.

Type of
Solution

Type of Lithium
Carbonate

Concentration, g/dm3

Li Ni Co Fe Al Cu Mg Ca Mn F

Solution A

Crude Li2CO3 18.6 <0.01 <0.01 <0.01 <0.01 <0.01 2.00 0.05 <0.01 0.1
Li2CO3 after the 1st cycle 18.7 <0.01 <0.01 <0.01 <0.01 <0.01 0.28 0.02 <0.01 <0.01
Li2CO3 after the 2nd cycle 18.7 <0.01 <0.01 <0.01 <0.01 <0.01 0.18 0.01 <0.01 <0.01
Li2CO3 after the 3rd cycle 18.7 <0.01 <0.01 <0.01 <0.01 <0.01 0.20 0.01 <0.01 <0.01
Li2CO3 after the 4th cycle 18.7 <0.01 <0.01 <0.01 <0.01 <0.01 0.18 0.01 <0.01 <0.01
Li2CO3 after purification 18.7 <0.01 <0.01 <0.01 <0.01 <0.01 0.10 <0.01 <0.01 <0.01

Solution D

Crude Li2CO3 18.7 0.13 0.60 0.05 <0.01 0.13 0.10 <0.01 0.12 0.05
Li2CO3 after the 1st cycle 18.7 <0.01 0.20 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Li2CO3 after the 2nd cycle 18.7 <0.01 0.15 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Li2CO3 after the 3rd cycle 18.7 <0.01 0.10 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Li2CO3 after the 4th cycle 18.7 <0.01 0.06 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Li2CO3 after purification 18.7 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

3.2. Preparation and Characterization of the Obtained LiReO4·H2O

Purified lithium carbonate was used for the experiments on the preparation of lithium
perrhenate (Table 3). The research was carried out to determine the influence of the
concentration of rhenium in perrhenic acid, the excess of lithium carbonate used, and the
pH on the efficiency of lithium perrhenate precipitation. It was calculated as the ratio of
the mass of precipitated lithium perrhenate to the mass of theoretical lithium perrhenate
in its monohydrate form, which should be obtained. The research also took into account
the purity of the obtained compound. The tests were carried out for three concentrations
of perrhenic acid, i.e., 18.4, 50, and 295 g/dm3. In the case of testing the effect of the
concentration of perrhenic acid, a constant 30% excess of lithium carbonate was used.
The tests were performed at the resulting pH of approximately 8 for 1 h at a temperature
not exceeding room temperature. For the tests, due to the large difference in rhenium
concentrations, in the case of acid with the Re concentration of 18.4 g/dm3, a sample with a
volume of 1 dm3 was used, and for acids with the higher rhenium concentrations, samples
with a volume of 500 and 50 cm3 were used, respectively. The volume of the acid was
selected so that approximately 30 g of the target compound could theoretically be obtained.
After neutralization, the solution was filtered from the residue and concentrated to dryness
at a temperature not exceeding 60 ◦C. The obtained precipitate was dried at 110–120 ◦C
until a constant mass was reached. Table 4 and Figure 4 present the results of the influence
of rhenium concentration in perrhenic acid on the efficiency of LiReO4·H2O precipitation.

Table 4. Test results of the influence of rhenium concentration in perrhenic acid on the efficiency of
LiReO4·H2O precipitation.

Concentration of
Re

in HReO4,
g/dm3

Volume of
HReO4,

cm3

Final
pH

Mass of
Li2CO3,

g

Mass of
LiReO4,

g

Precipitate Mass
after

Neutralization,
g

Precipitation
Efficiency of
LiReO4·H2O,

%

18.4 1000 7.7 4.75 25.27 0.35 92.9
50.0 500 8.3 6.45 34.20 0.55 92.6
295.0 50 7.8 3.80 20.34 0.60 93.3

According to data in Table 4, it is clearly visible that there is no effect of rhenium
concentration in perrhenic acid in the tested range on the efficiency of LiReO4·H2O precipi-
tation. For the selected range, very similar precipitation efficiencies of the target compound
were obtained, amounting to approximately 93%. Therefore, it is possible to precipitate
lithium perrhenate in a wide range of rhenium concentrations in perrhenic acid. However,



Batteries 2024, 10, 151 8 of 14

when developing technologies consistent with the principle of sustainable development,
one should remember to minimize the number of waste solutions, which in this case is
guaranteed by the use of more concentrated solutions of perrhenic acid.
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In subsequent studies, the effect of the excess lithium carbonate used on the efficiency
of lithium perrhenate precipitation was tested. Lithium carbonate excess in the range
of 10 to 90% was tested. The experiments were performed at the resulting pH of the
solutions, ranging from 7.7 to 9.4, for 1 h, at room temperature, for two concentrations
of rhenium in perrhenic acid (18.4 and 295.0 g/dm3, therefore using samples with a
volume of 1000 and 50 cm3, respectively). The acid volume was selected as in the case
of previously conducted tests. After neutralization, the solution was filtered from the
residue and concentrated to dryness at a temperature not exceeding 60 ◦C. The obtained
precipitate was dried at 110–120 ◦C until a constant mass was reached. Tables 5 and 6 and
Figure 5 present the results of the influence of excess lithium carbonate on the efficiency of
LiReO4·H2O precipitation.

Table 5. Test results of the influence of excess lithium carbonate on the efficiency of lithium perrhenate
precipitation—for the solution containing 18.4 g/dm3 of Re.

Excess of
Li2CO3, % Final pH Mass of

Li2CO3, g
Mass of

LiReO4·H2O, g
Precipitate Mass after

Neutralization, g
Precipitation Efficiency of

LiReO4·H2O, %

0 7.7 4.02 24.40 0.22 89.70
30 7.7 4.75 25.27 0.35 92.90
40 8.5 5.11 23.98 0.40 88.20
90 9.3 6.94 24.52 0.60 90.20

Table 6. Test results of the influence of excess lithium carbonate on the efficiency of lithium perrhenate
precipitation—for the solution containing 295 g/dm3 of Re.

Excess of
Li2CO3, % Final pH Mass of

Li2CO3, g
Mass of

LiReO4·H2O, g
Precipitate Mass after

Neutralization, g
Precipitation Efficiency of

LiReO4·H2O, %

0 7.7 3.22 19.20 0.40 88.10
30 7.8 3.80 20.34 0.60 93.30
40 8.5 4.10 19.43 1.20 89.10
90 9.4 5.56 19.20 1.70 88.10
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Figure 5. The influence of excess lithium carbonate on the efficiency of LiReO4·H2O precipitation.
(a) rhenium concentration in perrhenic acid—18.4 g/dm3; (b) rhenium concentration in perrhenic
acid—295 g/dm3

According to the test results, it was concluded that there was no significant effect of
the excess of lithium carbonate on the efficiency of lithium perrhenate precipitation. For
the selected range, very similar efficiencies of the precipitation were obtained, ranging
from 88% to 94%. Therefore, it can be said with certainty that the 30% excess of Li2CO3 is
sufficient to precipitate LiReO4·H2O with an efficiency of over 93%. It was also noted that
the process should be carried out at a pH of 7.6–7.8, but it is possible to conduct it at a pH
above 9. However, this involves the production of an unnecessarily larger mass of solid
waste that needs to be managed.

At the evaporation stage, it is necessary to add H2O2 due to the temperature used,
which may reduce rhenium compounds to lower oxidation states. Therefore H2O2 is used
as a stabilizer of the oxidation state of rhenium(VII).

The selected lithium perrhenate composition was analyzed and is presented in Table 7.
Additionally, for LiReO4 obtained at the pH = 7.7, an XRD analysis was performed and is
shown in Figure 6. A scheme of the technology for the synthesis of lithium perrhenate after
the lithium carbonate separation and purification steps is shown in Figure 7.

Table 7. Test results of the selected lithium perrhenate.

Conditions for the Precipitation
of LiReO4·H2O

Composition, %

Re Li Ni Co Fe Mg

30%, 295 g/dm3 Re, pH = 7.7 67.5 2.57 <0.02 <0.02 <0.03 <0.01
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4. Conclusions

The research work confirmed that with the use of lithium carbonate, obtained from
the post-leaching solutions of Li-ion battery waste, and perrhenic acid, it is possible to
obtain hydrated forms of lithium perrhenate, containing up to 1000 ppm of the total sum
of metallic impurities. The reaction should be carried out under the following conditions:
room temperature, 1 h, 30% excess of lithium carbonate, and rhenium concentration in
perrhenic acid from 20 g/dm3 to 300 g/dm3.
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Based on the described research, new hydrometallurgical technology was developed
for obtaining lithium perrhenate, which can be produced entirely from waste. The method
consists of 10 steps—4 main steps, i.e., precipitation of lithium carbonate, neutralization of
perrhenic acid with lithium carbonate, evaporation, and drying; and six additional steps
aimed at obtaining a high-purity product. In addition, filtration is necessary between
some operations.

The developed technology is characterized by the management of all aqueous waste
solutions and solid waste and the lack of loss of valuable metals such as rhenium and
lithium. It was created in agreement with the assumptions based on the principles of
sustainable development, such as:

− maximizing the use of waste;
− maximizing the recirculation;
− minimizing the losses of valuable ingredients (rhenium and lithium);
− minimizing the energy consumption;
− maximizing the use of CO2.

Figure 8 shows a diagram of the developed method in its entirety, with all the recircu-
lation possibilities and the indication of the so-called auxiliary operations, e.g., purification.
The blue line represents the recirculation of solutions and precipitates from the purification
of lithium carbonate, preventing any lithium losses except the amount contained in the dis-
charged multi-component solution for the recovery of other metals. The green line shows
the recycling of organic solutions, minimizing their consumption. The purple line presents
the recycling of waste from the purification of LiReO4·H2O, minimizing rhenium losses.
The orange line shows the recirculation of excess carbonate, minimizing lithium losses.
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5. Patents

Part of the results of the work presented in this publication is the material submitted
for patenting in the Patent Office of the Republic of Poland on 15 March 2024, entitled
Sposób otrzymywania renianu(VII) litu wysokiej czystości, z roztworów pochodzących z
przerobu baterii Li-ion (English title: Method of producing high-purity lithium perrhenate
from solutions obtained from the processing of Li-ion batteries).
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Renianu(VII) Żelaza(III)—PL 221891 B1 2010. Available online: https://api-ewyszukiwarka.pue.uprp.gov.pl/api/collection/68
e950abb9a3e8ca4695b16a91c567be (accessed on 26 January 2024).

25. Leszczynska-Sejda, K.; Benke, G.; Malarz, J.; Ciszewski, M.; Kopyto, D.; Piatek, J.; Drzazga, M.; Kowalik, P.; Zemlak, K.; Kula,
B. Rhenium(VII) Compounds as Inorganic Precursors for the Synthesis of Organic Reaction Catalysts. Molecules 2019, 24, 1451.
[CrossRef]
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