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Abstract: Driver mental fatigue is considered a major factor affecting driver behavior that may result
in fatal accidents. Several approaches are addressed in the literature to detect fatigue behavior in
a timely manner through either physiological or in-vehicle measurement methods. However, the
literature lacks the implementation of hybrid approaches that combine the strength of individual
approaches to develop a robust fatigue detection system. In this regard, a hybrid temporal approach is
proposed in this paper to detect driver mental fatigue through the combination of driver postural con-
figuration with vehicle longitudinal and lateral behavior on a study sample of 34 diverse participants.
A novel fully adaptive symbolic aggregate approximation (faSAX) algorithm is proposed, which
adaptively segments and assigns symbols to the segmented time-variant fatigue patterns according
to the discrepancy in postural behavior and vehicle parameters. These multivariate symbols are then
combined to prepare the bag of words (text format dataset), which is further processed to generate a
semantic report of the driver’s status and vehicle situations. The report is then analyzed by a natural
language processing scheme working as a sequence-to-label classifier that detects the driver’s mental
state and a possible outcome of the vehicle situation. The ground truth of report formation is validated
against measurements of mental fatigue through brain signals. The experimental results show that
the proposed hybrid system successfully detects time-variant driver mental fatigue and drowsiness
states, along with vehicle situations, with an accuracy of 99.6% compared to state-of-the-art systems.
The limitations of the current work and directions for future research are also explored.

Keywords: driver mental fatigue; driver safety; hybrid detection system; fatigue posture patterns;
vehicle situations; fully adaptive SAX; semantic learning

1. Introduction

Driver fatigue significantly contributes to driving errors that, in turn, can lead to fatal
crashes [1–3]. According to Transport for New South Wales (NSW), Australia, between
2015 and 2019, approximately 290 deaths out of 1160 reported fatalities resulted from
driver fatigue, ranking it as the second most perilous factor after speeding [4]. May and
Baldwin [5] suggest that driver fatigue can be experienced due to: (a) sleep deprivation
during circadian rhythms causing drowsiness, or (b) cognitive underload or overload
causing tiredness and inattentiveness. Overload conditions are prompted due to poor
visibility at night, heavy traffic, and demanding driving tasks on complex roads. On the
contrary, underload conditions are induced due to continuous driving on long monotonous
highways and negligible environmental feedback due to smart suspension or shared
control systems.
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Various methods are employed in the literature to detect the state of mental fatigue
in drivers, utilizing visual, physiological, and in-vehicle measurement approaches [2,6–9].
However, each method presents its own set of advantages and disadvantages. Clinical
physiological methods, such as electroencephalography (EEG) [10], electrocardiogram
(ECG) [11], and skin conductivity [12], offer precise insights into the driver’s vital signs.
Nevertheless, their intrusive nature, involving the placement of sensors on the skin and
the scalp, renders them impractical for real-world driving applications [10–12]. On the
other hand, visual-based systems nonintrusively monitor facial features and eye gaze
position [13–15]. However, challenges arise from factors like vehicle lighting, sunglasses,
or face masks, posing obstacles to accurate driver state detection using camera-based
systems. Wearable sensors, although still intrusive, are perceived as a viable alternative to
medical-grade methods and visual techniques [16]. Devices such as smartwatches, fitness
trackers, motion trackers, wearable clothes, and caps have been increasingly utilized for
real-time driver behavior identification [7,17]. Moreover, human-machine shared control
is also required to tackle the operator fatigue behavior [18,19]. Despite being categorized
as direct driver measurement approaches focusing solely on driver characteristics, they
remain unaware of the vehicle situation. In contrast, an indirect measurement approach
involves monitoring driver states through vehicle dynamics and features, including path
planning, speed, roll rate, steering, and lane deviations [20,21]. However, due to the
inherent uncertainty in driver conditions, indirect measurement methods alone may prove
insufficient for accurately detecting the true driver state [8,20].

To address the gaps identified above, this paper investigates the effects of underload
mental or cognitive fatigue during peak sleepy times on body posture in conjunction with
vehicle behavior (longitudinal and lateral information) on a long, monotonous, straight
highway scenario. In the conducted study, temporal data from 34 subjects were acquired
using XSENS motion trackers (MTs) in a simulated driving environment [22]. The raw 3D
acceleration data of driver posture (head, neck, and sternum), vehicle road wheel angle, and
vehicle speed were utilized to develop a multivariate hybrid dataset. A novel improved
and fully adaptive temporal symbolic aggregate approximation (SAX) algorithm was then
developed based on the unsupervised Gaussian mixture models (GMM) of the acquired
data [23]. The GMM-generated sequences portrayed the cluster numbers for each time
step in the multidimensional dataset. The proposed fully adaptive SAX (faSAX) method
determined the adaptive sliding window and thresholds of the temporal data, leveraging
GMM sequences for detecting temporal patterns related to mental fatigue and vehicle
longitudinal and lateral situations, all without relying on predefined threshold criteria.

Leveraging the semantic or symbolic (symbols or text letters) driving patterns from
faSAX, our hybrid system generated a semiotic (text-format) report, encompassing both
driver and vehicle situations. The accuracy of the driver status report was rigorously
validated against EEG brain signal measurements [24]. Analyzing these reports using a
natural language processing (NLP) scheme based on a BiLSTM deep learning network [25],
acting as a sequence-to-label classifier, enabled a precise detection of driver mental states
and potential vehicle outcomes. Our experimental results showcased the superior perfor-
mance of our hybrid system in accurately identifying time-variant driver mental fatigue
and drowsiness states, surpassing existing state-of-the-art systems in discerning both driver
conditions and vehicle situations.

The earlier results of this study were published as a conference paper [26]. This paper
provides the latest results and a more detailed description of the proposed method, with
the following key contributions:

1. To the best of the authors’ knowledge, this study marks the inaugural effort in concen-
trating on the identification of the driver’s temporal patterns of mental fatigue state
through a hybrid approach integrating body posture and vehicle information.

2. Introducing a novel fully adaptive temporal segmentation algorithm named faSAX,
this method is designed to identify time-variant fatigue patterns. faSAX assigns sym-
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bols by comparing the approximated value of segmented hybrid data with adaptively
estimated breakpoints (thresholds).

3. This work represents a significant stride in advancing the monitoring of linguistic-
based temporal driver states and vehicle situations. It lays the groundwork for leverag-
ing semiotic driving patterns to enhance the precision of shared-access control systems.

4. In this study, the symbols extracted from the proposed algorithm can be utilized to
generate diverse semantic reports on the driver and vehicle status. These reports can
then undergo further analysis by natural language processing schemes to facilitate
the identification of potential driver and vehicle situations.

5. Highlighted by the experimental results, the proposed hybrid approach sur-
passes previous methodologies by precisely identifying time-variant fatigue and
drowsiness patterns.

The remainder of the paper is organized as follows: Section 2 offers an overview
of pertinent prior research. Section 3 outlines the methodology for the proposed hybrid
strategy, including the development of the fully adaptive symbolic algorithm and NLP
network. Section 4 delves into the results, validation, and discussion of the hybrid approach.
Lastly, Section 5 concludes with some final remarks, addressing limitations and suggesting
avenues for future research.

2. Background and Related Work

Detecting the variable temporal patterns of mental fatigue in drivers poses a chal-
lenging task. Numerous studies have been undertaken to accurately identify the temporal
patterns of mental fatigue through either direct or indirect monitoring approaches. In direct
methods, the driver’s vital parameters, such as EEG, ECG, respiratory characteristics, and
skin conductivity, are monitored to detect temporal anomalies [8]. The study reported
in [10] deployed an EEG-based system that successfully classified fatigue patterns on a
simulated platform with a weighted accuracy of 99%. A similar study is presented in [27],
where a simulated study involving 11 drivers was conducted based on a 32-electrode
EEG recorder, achieving an accuracy of 99.23%. Furthermore, a recent study utilized a
32-channel wearable EEG cap to detect the fatigue and rest states of a driver in a real-world
scenario, with an accuracy of 97.1% and 97.9% for fatigue and rest, respectively [28].

In another work reported in [11], ECG temporal intervals were monitored in real
driving experiments by attaching the electrodes to the driver’s skin. Certainly, these
methods provide an efficient and accurate status of the driver [11]. However, they have
proven impractical in real-life driving, as the continuous mounting of sensors on the driver’s
skin and head can cause irritation and movements that may confuse the feature recognition
algorithm. In addition to direct measuring systems, camera or vision-based methods [29]
have proven problematic in detecting facial features in poor lighting conditions or when
sunglasses or face masks are worn.

Wearable sensors have proven very effective in monitoring driver behavior. They are
considered a good alternative to physiological systems as they can track the driver’s heart
rate, skin response, and blood oxygen without deteriorating driver performance [16]. In the
work presented by Choi et al. [7], driver states were classified based on skin conductance
and temperature using a wristband. An example known as Basis Peak Smartwatch was
introduced by Reeder et al. [30], which could be deployed to monitor the driver’s heart
rate and skin response. In another study conducted by Yang et al. [17], the driver’s head
rotation and nodding response were tracked using a radio frequency identification device
(RFID) worn on the head. In an earlier work reported in [22], the driver’s head posture
variations reflecting various driver states were monitored using a head motion tracker. The
results indicated that involuntary driver behaviors such as yawning, nodding, and head
shaking performed while driving represented actions related to driver mental fatigue and
drowsiness. In such situations, driver posture becomes a viable signature of various driver
states. However, the study ignored vehicle situations, focusing only on driver information.
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Monitoring driver fatigue through vehicle information is an indirect measurement
approach. These approaches utilize vehicle and tire dynamics to detect motifs or anomalies
in vehicle functions, such as lane deviation, speed variability, and unstable lateral mo-
tions [31,32]. These motifs can represent different meanings of driver status. For instance,
lane deviation or speed variability can imitate a driver’s aggressive behavior instead of
fatigue behavior. Therefore, due to the uncertainty of the driver’s status, the indirect
methods on their own are not sufficient to detect the temporal patterns of the mental
fatigue state.

Hybrid systems integrate physiological or camera-based approaches with in-vehicle
monitoring systems. In the work reported in [33], a hybrid system combined heart rate
information retrieved from a wearable device with facial features tracked using a camera.
In another research conducted in [34], driver fatigue was diagnosed based on EEG signals,
head gyroscope data, and facial images. However, despite achieving a higher detection
accuracy, these hybrid methods were unaware of the vehicle status and driver posture,
such as whether the driver was nodding or taking sharp turns or speeding during a fatigue
event. Moreover, it is also necessary to track the temporal variations in fatigue patterns
and the temporal relationship between driver status and vehicle features.

Efficient tools are essential for converting dynamic temporal data into either time-
domain or frequency-domain representations. Symbolic mapping and piecewise approx-
imation have become crucial for time-series representation. Taniguchi et al. introduced
the double articulation analyzer (DAA) in natural language processing, which symbolized
fixed segmented time-series data as “driving letters” and combined them to generate a
driving word based on spatial distribution [35]. Similarly, the SAX algorithm stands out as a
commonly employed method in time-series applications for pattern recognition. It initiates
the estimation of a piecewise aggregate approximation (PAA) for segmented data using
a predetermined sliding window, subsequently assigning symbols through comparisons
with fixed breakpoints or thresholds [36,37]. The PAA incorporates statistical metrics like
standard deviation, mean, mode, median, maximum, and minimum derived from the fixed
segmented data. Nevertheless, the utilization of fixed segmented data carries the risk of
misinterpretation and potential overlap of critical information.

Various adaptive SAX algorithms have been proposed, as indicated in the literature.
For example, Sun et al. [38] introduced a variant of SAX for segmentation that adap-
tively adjusted the sliding window of time-series information using a variance-based
method. However, the effectiveness of the variance function was dependent on the
magnitude and a predefined multiple of the standard deviation from the temporal in-
formation. Another work, outlined in [39], entails the adaptive estimation of breakpoints
through a k-means clustering algorithm. Nevertheless, when dealing with time-variant
data, k-means may not exhibit optimal performance compared to alternative clustering
approaches, as indicated in [40]. This paper proposes a fully adaptive symbolic approxima-
tion based on GMM clustering, which adaptively estimates the dynamic temporal length
of a fatigue pattern and assigns symbols to all features of hybrid multivariate time-series
events. Consequently, a multivariate hybrid word is generated, further analyzed by a deep-
network-based natural language processor to identify the semiotic driver status as well as
vehicle situation.

3. Methodology

The methodology deployed in designing the end-to-end driver fatigue hybrid system
is shown in Figure 1. The hybrid approach comprises the following three stages:

Stage 1—Hybrid dataset: From the experiments, the 34 drivers’ data (head and chest
postures) and vehicle features were combined to prepare a hybrid dataset. The data were
collected in a simulated platform using XSENS MTs and through analytical nonlinear
vehicle dynamics model [22].

Stage 2—faSAX: The hybrid dataset was utilized to build separate GMM clustering
models for the driver posture and vehicle features based on the abundance criteria provided
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in [23]. The GMM sequences acquired from GMM models were then used to estimate the
dynamic temporal window. The variable window then estimated the aggregate value
(PAA) of each feature of the hybrid dataset. The PAA for each feature was then compared
with the estimated adaptive breakpoints using GMM clustering to generate the respective
symbol of a dynamic window. Finally, all the symbols were combined to form a driving
word for a respective dynamic temporal size.

Stage 3—NLP: In this work, NLP indirectly processed the hybrid time-series data
through the faSAX algorithm deployed in stage 2. The symbols retrieved by the proposed
algorithm through the previous stage were then utilized to produce driving words in this
stage. These words were then employed to generate the possible semantic reports of the
driver and vehicle situations, which were further analyzed by the BiLSTM text analyzer to
classify the driver fatigue state and possible vehicle situations.

faSAX

Hybrid Dataset
Driver 3D Posture 

Data

GMM Clustering Models

Dynamic Temporal 

Segmentation

Adaptive 

Breakpoints
Driving Words

Semantic Report 

1, 1, 2, 3, 4, …

   2, 3, 2, 1, 3, …

    4, 4, 2, 3, 2, …

AAAAABAABGI
CCBCBCCDCEL

...
DDDCDDCDCGK

Natural Language Processing

A, A, B, C, D, …

B, C, B, A, C, …

D, D, B, C, B, …

Vehicle Data

Down Sampling

Driver Fatigue and 

Vehicle Status

Safe Situation

Sleepy and Jeopardize situation

Fatigue and Speeding Situation

BiLSTM Text 

Analyser

Driver is Active and vehicle is turning slight right at slow speed

Driver is Yawning and vehicle is taking sharp left at fast speed
...

Driver is Fatigue and vehicle is turning short right at high speed

Figure 1. Framework of the hybrid temporal mental fatigue detection system.

3.1. Experimental Platform and Protocol

In general, detecting a driver’s mental state, distractions, and misjudgments requires
conducting experiments on driver behavior in real driving conditions, on actual roads, and
under authentic driving circumstances [9]. However, conducting real-world experiments
entails significant risks to the subjects and could lead to injuries or fatal accidents due
to sudden variations in body posture influenced by mental fatigue and unstable driving
conditions. Therefore, laboratory-based experiments conducted in a simulated environ-
ment are preferred to avoid the potential adverse consequences associated with fatigued
driving. Moreover, advancements in smart suspension systems, adaptive cruise control,
shared steering, and self-autonomous features found in vehicles like Mercedes Benz F015,
Chevrolet FNR, Volkswagen Sport Coupe, and Tesla Smart Summon with Autopilot fea-
tures contribute to a reduced driving burden [41]. These features indirectly contribute to
underload mental fatigue, where, due to comfort and reliability, drivers are less engaged in
driving, encountering negligent external disturbances such as road variations and bumps.

The driver-in-loop (DIL) experimental platform utilized in this study was crafted to
emulate the operation of the aforementioned smart features, ensuring that the driver was
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shielded from environmental disruptions, road changes, and sensations. In line with the
futuristic attributes outlined earlier, a static simulator is incapable of introducing external
disturbances such as seat vibrations or road bumps. Consequently, these features indirectly
contribute to driver fatigue during circadian rhythms, leading to an underload mental state
on monotonous roads, where the driver’s body posture may undergo unexpected changes.
To address this, we designed and implemented a stationary, cost-effective, customizable,
and open-source DIL platform, adhering to MATHWORKS guidelines and seamlessly
integrated with Unreal Engine Studio to provide a realistic virtual environment experi-
ence [22,23]. The experiments were conducted in scenarios involving long, monotonous,
straight and curvy highways, as depicted in Figure 2. Additional details regarding the
development of the DIL platform can be found in [22,23].

According to the literature, individuals aged between 18 and 26 years, commonly
referred to as younger drivers, exhibit a higher likelihood of being involved in fatigue-
related crashes. This heightened risk is attributed to their increased susceptibility to driving
mistakes and short-term sleep issues, as highlighted in studies like [42,43]. Research,
as suggested by [42], indicates that young adults in the 18–26 age bracket frequently
experience irregular sleep patterns. Notably, the literature reveals a correlation between
young drivers and a a higher incidence of crashes, particularly when they have less than
6 h of sleep. This can be attributed to the tendency of younger individuals to participate
in nighttime activities such as socializing, studying, or working late hours. The extended
periods of wakefulness during the night contribute significantly to a heightened risk of
fatigue while driving.

In this research, a total of thirty-four university students, comprising twenty-seven
males and five females aged between 18 and 32 years, participated in the experimental
work. To enhance diversity, two mature males aged 52 were also included. The primary
focus of the study was to investigate the influence of mental fatigue on driving performance,
specifically on long monotonous highways, by examining body posture. The inclusion
of a small number of older participants was intentional and aimed at introducing diver-
sity to the study cohort. Notably, a study reported in [44] suggested that older drivers
demonstrated comparable resilience to fatigue and drowsiness on extended monotonous
highways compared to their younger counterparts.

Before commencing the laboratory experiments, participants were sought for voluntary
consent and instructed to adhere to the ethics protocol approved by the UOW-HREC
committee (approval number 2019/154), as detailed in [22,23]. The experiments took place
at the Intelligent Control Laboratory, University of Wollongong, Australia. Participants
underwent the experiments after having had a minimum of 7 h of sleep and being awake
for at least 8 h prior to the start, a criterion subjectively verified by questioning participants
before each session. The experiments were conducted during circadian rhythms, specifically
in the afternoon (2:30 p.m. to 4 p.m.) and late at night (12:30 a.m. to 2 a.m.), as outlined
in [23]. Building on the findings of Zhang et al. [45], which highlighted the susceptibility
of drivers to fatigue within the initial 20–25 min of driving on lengthy and uneventful
highways after being awake for more than eight hours, we established a minimum duration
of one hour for each nonrisky experiment session. Participants also underwent a 15 min
training session preceding each experiment to familiarize themselves with the driving
platform. Notably, our participant cohort brought diverse driving experiences, ranging
from a minimum of 2 years to a maximum of 23 years.

Additionally, to address concerns about simulation sickness, we conducted a compre-
hensive analysis of sickness rates within our participant cohort. Following the experimental
sessions, it is noteworthy that 31 participants, including the mature participants, reported
no simulation sickness. These individuals specifically mentioned that the artificial torque
induced at the steering wheel successfully replicated the real-world torque feel. However,
we observed that two young males and one female reported experiencing simulation sick-
ness characterized by drowsiness and boredom after approximately 20 min of exposure.
Their discomfort was associated with the absence of seat vibration in the simulation. To
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quantify this, the calculated sickness rate was 8.82%. To mitigate the impact on the data,
we excluded the data points affected by simulation sickness from the dataset.

3.2. Data Collection and Preprocessing

In the initial phase, body posture data were gathered using 17 wearable motion
trackers (MTs) developed by XSENS technologies (manufactured by Movella, Henderson,
NV, USA) via MVN Studio [22,23]. The data were recorded at a sampling frequency of
60 Hz and subsequently processed by Matlab using the MVN Studio toolbox. To identify
variations in body posture influenced by mental fatigue, 3D acceleration samples in (m/s2)
from the head, neck, and sternum body segments were extracted and organized to form a
9D dataset. The placement of MTs on various body locations and the driver-in-loop (DIL)
platform is illustrated in Figure 2.
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Figure 2. MATHWORKS DIL platform and deployment of 17 MTs on various body parts.

To concurrently collect vehicle data, we utilized the vehicle dynamics blockset intro-
duced in [22]. The data were sampled at a frequency of 1000 Hz and were downsampled
to 60 Hz to synchronize with the postural data. Among the 14-degree-of-freedom (DOF)
vehicle parameters, we focused on the front road wheel steering angle (RWA) and speed,
capturing both lateral and longitudinal information of the vehicle. The simulated vehicle
had a lock-to-lock steering wheel angle of 900 degrees, with a 450-degree range for each
side of a turn. The steering ratio was set at 20:1, resulting in a maximum turning angle of
the front tires at 22.5 degrees. Finally, these datasets were held together to create a hybrid
multidimensional dataset.

3.3. faSAX

In the proposed algorithm, we adaptively estimated the three components (temporal
window size, piecewise aggregate approximation (PAA), symbol assignment) of the original
SAX method [36,37] using the Gaussian mixture model (GMM) clustering method [23].
The determination of optimal clusters relied on achieving a minimum abundance range
of 0.5–1%. This method is a common approach for estimating the number of clusters,
providing information about the population rate of data points within each cluster. For
a single cluster (k = 1), the abundance rate is 100%, signifying the significance of each
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cluster in the unsupervised data analysis and denoting the number of data points stored in
the respective cluster.

The main aim of this study was to detect the driver fatigue state and its dependent
vehicle maneuverability over time. Therefore, 9D postural features were considered as the
independent variables, focusing directly on driver behavior, while the vehicle features were
considered as dependent variables. Hence, the temporal variations in driver posture could
be regarded as reference values for the vehicle features.

To determine the adaptive temporal window size for the independent body postu-
ral event, we created a Gaussian mixture model (GMM) based on 9D postural features.
The resulting GMM time-series sequences were saved in a variable (Gs). A counter was
employed to identify similar GMM sequences by comparing the current and past GMM
sequences. The cumulative length of these similar sequences, obtained from the counter,
represented the variable time-series length of the driver posture event. The pseudocode for
temporal segmentation is outlined in Algorithm 1. The dynamic temporal window was
then utilized to compute the piecewise aggregate approximation (PAA) for each hybrid
feature (body posture + vehicle parameters). The PAA calculation involved applying var-
ious statistical functions to the dynamic segmented data, depending on the type of the
original data.

Algorithm 1: Dynamic time-series segmentation and PAA
Input: GMM Sequences (Gs)
Input: Dynamic time− series data o f body posture
Input: Vehicle RWA and speed
for p← 1 to last data step do

if Gs(existing value) = Gs(last value) then
Increment in counter

else
Ts = Save the current counter value

end
Restart the counter

end
Segment the Ts samples o f multivariate raw dataset

and per f orm the PAA on all hybrid f eatures

To dynamically determine thresholds for the symbol assignment in a segmented
window, we employed the unsupervised Gaussian mixture model (GMM) clustering
method on the piecewise aggregate approximation (PAA) of every dimension within the
overall dataset [23]. Consequently, for an 11D hybrid dataset, we constructed 11 distinct
GMM clustering models. Unlike the original SAX algorithm, where the alphabet size is
manually defined, our proposed algorithm assumed the number of GMM clusters to be
equal to the alphabet size, with a minimum abundance index (k) ranging between 0.5 and
1% [23]. By creating optimal clusters based on abundance criteria, this approach addressed
the constraint on the total number of symbols. Algorithm 2 outlines the pseudocode for
estimating adaptive thresholds. Each cluster was sorted from low to high, accompanied by
its estimated adaptive statistical thresholds, representing breakpoints for each estimated
GMM cluster. Finally, symbols were assigned to dynamic segmented data by summing up
logical comparisons of the respective PAA segment with the calculated thresholds.
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Algorithm 2: Dynamic breakpoints’ determination
Input: PAA applied to every variable within the hybrid data array
Input: Alphabet size (α)
Input: Separate GMM clustering models on PAA o f each f eature using [23]
for j← 1 to α do

Cluster(j) = Find the total data− points contained in every GMM cluster
nVal = Calculate the numerical breakpoints o f Cluster(j)

end
Thresholds = Arrange the nVal in ascending order
Semantics = [′CAABED. . . ′]
String = Sum o f the Logical comparison o f PAA with Thresholds
SAX_Report = Semantics(String)

3.4. BiLSTM Text Analyzer

In the third stage, the sequences of symbols or letters generated by the (faSAX) were
analyzed by the BiLSTM text analyzer. This morphological analyzer combined all the
letters of hybrid features into a sequence of words for each temporal window. These bags
of words represented the linguistic meaning of driver and vehicle situations. Hence, a
hybrid semantic report was generated, which was further analyzed by a sequence-to-label
classifier based on the BiLSTM deep learning layer to detect driver fatigue and potential
vehicle situations.

In this work, the initial step involved tokenizing the hybrid semantic reports or
documents to preprocess the text, eliminating repeated words, converting to lowercase,
and removing punctuation. Subsequently, the BiLSTM network converted the words into
numeric sequences with long dependencies. A word encoding or embedding layer was
employed to map the words in a vocabulary or dictionary to numeric vectors instead of
scalar indices [25]. For further details about the BiLSTM deep learning model, refer to [22].
The pseudocode for training and testing a semantic report is presented in Algorithm 3.

Algorithm 3: BiLSTM text analyzer network training and testing
Preprocessing
1. Tokenize the input documents (reports) into tokens (words).
2. Convert all the tokens to lower case.
3. Erase any punctuation present in the tokenized document.
4. Map all the tokens in a vocabulary to create a linguistic dictionary.
5. Convert the tokenized documents into sequences.

Training

6. Create a BiLSTM network with the following hyperparameters.

• Input size = 1.
• Embedding dimension = 100.
• Hidden neurons = 100.
• Number of words = total amount of words in the vocabulary or dictionary.

7. Deploy layers for the BiLSTM network.

• Input sequence layer with specified input size.
• Word-embedding layer to assign numeric vectors with specified embedding dimension.
• BiLSTM layer with specified number of hidden neurons.
• Fully connected layer.
• Softmax layer.
• Classification layer.

8. Specify the training characteristics based on the improved Adam optimization [46].
9. Train the BiLSTM sequence-to-label network (net) .

Testing

10. Preprocess the test documents using the above lines (1–5).
11. Predict the test labels using the trained model (net).
12. Update the model knowledge by adding the test documents with predicted classes in the database.
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4. Results and Discussion
4.1. Driver Posture and Vehicle Situation

In a state of alert posture, the driver actively and proficiently manages vehicle control.
The driver’s level of focus or distraction is primarily reflected in the behavior of the head.
Activities associated with an alert state include concentrating on the road, monitoring
surrounding vehicles and obstacles, utilizing infotainment systems, and adjusting the head
position in response to road curves. Temporal variations in this mode, as depicted by the
movements of the head, neck, and sternum, are minimal, as illustrated in Figure 3.

Alert 

situation

Yawning situation Nodding and 

Shaking situation

Figure 3. Driver posture variation in conjunction with vehicle lateral and longitudinal information.

The preceding investigation, focusing on driver fatigue detection based on head pos-
ture [22], highlighted certain driver activities such as yawning, nodding, and head shaking
as indicative of the driver’s fatigue state. This work operates on a similar assumption.
Unlike the prior study, which overlooked variations in chest posture reflecting respiratory
behavior, the current study comprehensively monitored the driver’s states through the
head, neck, and sternum body segments. Figure 3 illustrates an example of the body
postural variations. Moderate variations signify a high breathing (yawning) pattern, while
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anomalies or motifs indicate abrupt acceleration (m/s2) variations (nodding and head
shaking) in the driver’s posture.

The temporal patterns of yawning, nodding, and head shaking vary over time, de-
pending on the degree of driver drowsiness or sleepiness. This principle extends to the
nodding and head shaking patterns as well. As depicted in Figure 3, a 10-second window
indicates that the driver is experiencing sleepiness, as evidenced by a yawning posture
occurring over a variable time length, with the vehicle positioned laterally at high speed.
Similarly, a seven-second window suggests that the driver is drowsy due to mental fatigue,
characterized by nodding and head shaking postures, while the vehicle navigates sharp
turns at variable speeds. It becomes apparent that instances of higher acceleration magni-
tudes in body posture, even for a brief duration, can be perilous, signifying that the driver
is completely distracted under mental fatigue, with the vehicle executing unstable turns at
high speeds.

4.2. Dynamic Temporal Segmentation and Approximation

Utilizing the proposed faSAX algorithm, the dynamic segmentation of hybrid data
based on GMM sequences was employed to identify the temporal patterns associated
with mental fatigue, including yawning, nodding, and head shaking. The application
of Algorithm 1 specifically targeted the 9D postural data, acting as independent and
reference variables in relation to the dependent in-vehicle variables, as detailed in Section
III-C. This assumption is grounded in the driver’s role in influencing vehicle parameters,
establishing a dependency of in-vehicle variables on the driver’s states. Consequently,
the temporal window derived from postural data was applied to in-vehicle parameters,
facilitating the approximation of vehicle situations, such as executing slight or sharp turns
at varying speeds.

The adaptive segmentation of the driver’s drowsiness and fatigue states, character-
ized by yawning, nodding, and head-shaking motifs, was achieved through the faSAX
algorithm, showcasing an improvement over the original SAX algorithm, as depicted in
Figure 4. In the original SAX algorithm, the sliding window length was consistently fixed at
60 data samples per window, corresponding to one second of time. The effectiveness of the
proposed algorithm is apparent in its ability to dynamically segment temporal variations
without relying on predefined thresholds, in contrast to the original SAX algorithm, which
tends to overlap and misinterpret the identified motifs.

Figure 4. Comparison of temporal segmentation by proposed faSAX with original SAX: yawning motif
(left), nodding and head-shaking motifs (right).

In the original SAX method, the piecewise aggregate approximation (PAA) is utilized to
represent a time series of length n in a vector X = (x1, x2, . . . xn) of a different length m < n,
where x1 denotes the mean of the normalized segmented data with a sliding window of
length m. However, as observed in Figure 3, the fluctuation in the head, neck, and sternum
body segments exhibits an alternating nature, demonstrating similar amplitudes in both
positive and negative vertical axes. Consequently, the mean of a specific temporal window
is zero, as illustrated in Figure 5a. Depending on the characteristics of the postural data, a



Safety 2024, 10, 9 12 of 20

maximum function was employed to approximate the positive peak amplitude for a given
temporal window, as depicted in Figure 5b. For the in-vehicle parameters, the mean of
the dynamically segmented data using the same temporal window, estimated from the
9D postural data, was employed, as shown in Figure 5c,d. It is important to note that the
dynamically segmented data were not normalized in this study to facilitate the utilization
of raw data in real-time applications.

(a) (b) (c) (d)(a) (b) (c) (d)

Figure 5. Approximation of hybrid dataset. From left to right: (a) mean approximation of variable
1 of MT; (b) peak approximation of variable 1 of MT; (c) mean aggregation of RWA; (d) mean
approximation of vehicle speed.

4.3. Adaptive Breakpoints’ Estimation and Symbol Assignment

To assign symbols to the patterns segmented by Algorithm 1, breakpoints were deter-
mined for each variable in the hybrid dataset using Algorithm 2, with a benchmark against
the methodology employed in [39], as outlined in Table 1. As depicted in Figure 3, minimal
amplitudes in postural behavior signify an alert posture, moderate levels indicate a yawn-
ing posture, and severe magnitudes represent a nodding and head-shaking posture. In
this context, the proposed faSAX algorithm effectively estimated the necessary breakpoints,
addressing both postural variations and vehicle situations.

Table 1. Dynamic breakpoints’ determination.

Variables

aSAX Dependent upon k-Means
Method at α = 4 [39] Presented faSAX at α = 4

β1 β2 β3 β1 β2 β3

Head (x-axis) 0.009 0.2286 0.526 0.0686 0.2619 3.074

Head (y-axis) 0.1047 0.896 1.043 0.0783 0.2873 6.9518

Head (z-axis) 0.0083 0.2574 0.7527 0.055 0.1842 1.8964

Neck (x-axis) 0.0088 0.1693 0.83 0.0505 0.1326 1.6198

Neck (y-axis) 0.0223 0.2359 1.0817 0.0477 0.1713 2.292

Neck (z-axis) 0.009 0.1643 0.857 0.0463 0.16 1.6797

Sternum (x-axis) 0.0153 0.2576 0.9838 0.0679 0.2049 1.9579

Sternum (y-axis) 0.0257 0.3126 0.9076 0.0695 0.2537 2.9388

Sternum (z-axis) 0.011 0.2309 0.538 0.066 0.2151 1.0594

RWA (degrees) −0.56 0.012 0.078 −2.56 0.0441 2.0904

Speed (kmph) 2.0569 4.0257 15.3604 20.56 71.29 87.36
Table notes: β: thresholds, α: word dimension.

Examples of diverse symbol assignments by the faSAX algorithm to hybrid features
are illustrated in Figures 6 and 7. Minor variations are denoted by symbols “A” and “B”,
while inconspicuous patterns are represented by “C”, and more pronounced magnitudes in
postural behavior are signified by the “D” symbol. Symbols “E” to “L” depict the vehicle’s
lateral positions and longitudinal ranges, with detailed explanations provided in Table 2.
To comprehend the symbol assignment process, consider the speed threshold values. If the
current vehicle speed is below the breakpoint β1 = 20.56, then the symbol “I” is assigned
to all corresponding values. Conversely, if the speed is between 20.56, 71.29, and 87.38,
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symbols “J”, “K”, and “L” are assigned, respectively. This principle is extended to all
postural and vehicle parameters.

Figure 6. Symbols’ assignment to the yawning motifs (left) and nodding and head-shaking motifs (right).
The symbols “A to D” represent the variations in the MTs from low to high, respectively.

Figure 7. Symbols’ assignment to the vehicle features. Lateral (RWA) at (left), and longitudinal (speed)
at (right). The symbols “E to H” represent a lateral behavior. The symbols “I” to “L” show the vehicle
speed behavior.

4.4. Validation Using EEG

To validate the faSAX algorithm and assess fatigue using MTs, the faSAX symbols
were compared with cognitive fatigue measured by EEG. Among the 34 participants, the
mental state of three subjects was concurrently measured using both MTs and EEG systems,
as illustrated in Figure 2. We followed the approach outlined by Min et al. [24], where
information from the brain’s prefrontal region (Fz, Cz) was utilized to extract the temporal
mental fatigue state. In this study, the Fz and Cz EEG channels were recorded using a
32-channel Quick-cap (Compumedics-Neuroscan) at a 256 Hz sampling frequency through
the Grael 4 K EEG amplifier, with the electrode impedance set under 5 kΩ. The data were
processed by removing the dc offset and detrended to eliminate the straight-fit line by
subtracting the polynomial trend from the respective channel’s elements using the Matlab
function “detrend” based on Equation (1), where Y and Y′ are the EEG signals without dc
offset and with dc offset, respectively, and N is the total length of the EEG signal [23].

Y = Y′ − ΣN
i=1Y′/N (1)

Figure 8 illustrates the spectrogram of a test subject, where the temporal pattern of
mental fatigue is detected in EEG channels (Fz, Cz), manifested by high power (dB) in
high frequencies for short intervals. The elevated power observed at frequencies around
75 Hz indicates artifacts such as yawning, head movement, and eye blinking. Additionally,
the heightened power near 50 Hz corresponds to the driver’s alert state, where the brain
responds to simulated driving feedback. These ground truths, represented through Fz and
Cz EEG channels, were recorded by visualizing and comparing them with body posture
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movements in MVN Studio simultaneously. The fatigue patterns or artifacts aligned with
the frequency patterns reported in [24].

Figure 8. EEG channels (Fz—left) and (Cz—right). The high power (yellow lines) in high frequencies
represents the mental fatigue at different time intervals.

Figure 9 depicts the validation of mental fatigue detection against EEG channels.
Examples of alertness, yawning, nodding, and head shaking were compared against EEG
channels (Fz, Cz). It is evident that yawning artifacts occurred simultaneously, and fatigue
patterns (nodding and head shaking) were also detected concurrently in both body posture
and EEG systems.

The faSAX algorithm dynamically segmented the data and assigns the necessary
symbols to the temporal test events, as illustrated in Figure 9. By combining the 9D
symbols, a nine-letter word can be generated, representing the linguistic meaning of the
driver’s posture. For instance, CCC CCC DCC signifies a yawning or high-breathing event
for a 7.2 s dynamically segmented window, while DDC DDD DDD indicates a nodding
event for a 2.6 s duration segmented by faSAX. In our experiments, we assumed that if
there were more than five “C”s in the driver’s posture word, a report would be generated
indicating that the driver was yawning. Similarly, if a driving word consisted of at least
six D’s, the report would be that the driver was fatigued; otherwise, all the remaining
words were categorized under an alert state.

4.5. NLP

To generate a semantic and elemental linguistic meaning of the driver and vehicle
status, the symbols from the hybrid dataset, returned by faSAX, were combined to form
an 11-letter word. As discussed in the previous subsection, the linguistic report for driver
posture was generated based on the degree of similar symbols present in the driver posture
word. However, it is important to note that the symbols of different features can represent
different meanings depending on the nature of the data and the application. In contrast,
the set of driving words is intermittent and requires a linguistic or semantic interpretation.
Table 2 provides a description of all the symbols deployed in this study.

The temporal hybrid words of the dataset returned by faSAX were then utilized to
generate a hybrid report or document that depicted the status of the driver and vehicle.
Subsequently, these documents were analyzed by the supervised sequence-to-label BiLSTM
text classifier to provide a situation awareness classification. Nine classes were devised
based on human expert knowledge, as shown in Table 3. It is important to note that the
situation awareness classes are customizable. The primary contribution of this study lies in
generating a hybrid status report or document that can be interpreted differently based on
the expertise of different experts.
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Fz Channel
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(yawning)
Fatigue
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CCC 
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Figure 9. Driver posture acceleration (α) variations’ validation against EEG channels (Fz, Cz) data.
The symbols acquired using the faSAX algorithm form a driving word that indicated the linguistic
meaning of driver status.
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Table 2. Symbols’ representation.

Number faSAX Symbols Description

1 A Low acceleration (variation) in either head/neck/sternum
postures (focused on road, relaxed).

2 B Medium variations in body posture (head inclination,
looking for surrounding).

3 C High variations (yawning, high breathing rate).

4 D Severe variations (nodding, head shaking, high breathing
due to sleep).

5 E Sharp left turn (Vehicle front wheel steering angle).

6 F Slight left maneuver.

7 G Slight right maneuver.

8 H Sharp right maneuver/turn.

9 I Slow speed (<20 kmph).

10 J Moderate speed.

11 K High speed.

12 L Very high speed.

Table 3. Reports and situation awareness classes.

faSAX Words Reports Situation Awareness Classes

AAAAABAABGI Driver is active, and vehicle is turning
slight right at slow speed Safe Situation

AABCBBBBBEL Driver is active, and vehicle is taking
sharp left at fast speed Vigilant and Aggressive Situation

AAABABBBCHJ Driver is yawning, and vehicle is
taking sharp right at moderate speed Tackle-able Sleepy Situation

CCBCBCCDCEL Driver is yawning, and vehicle is
taking sharp left at fast speed Sleepy and Jeopardize Situation

BBCBBCCCCFL Driver is yawning, and vehicle is
taking slight left at fast speed Sleepy and Rushing Situation

DDCCDCDCDEJ
Driver is fatigued, and vehicle is
taking sharp left turn at moderate
speed

Fatigue with Dangerous Turning

DDDCBDDBCHL Driver is fatigued, and vehicle is
taking sharp right turn at fast speed Fatigue and Jeopardize

CCDCDDDCDFI Driver is fatigued, and vehicle is
taking slight left at slow speed Driver under Fatigue

DDDCDDCDCGK Driver is fatigued, and vehicle is
taking a short right at high speed Fatigue and Speeding Situation

Table 4. Performance evaluation of BiLSTM text analyzer.

Classifier Training
Rate (70%) Sensitivity Precision F1 Score Validation

(15%)
Testing
(15%)

BiLSTM 99.97% 98.23% 98.17% 98.73% 99.6% 99.6%

SVM 95.63% 91.58% 91.06% 91.81% 95.44% 95.44%
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The hybrid experimental dataset of 34 subjects included several documents related to
the classes of “Safe Situation” and “Tackle-able Sleepy Situation”, while the documents related
to fatigued driving were relatively fewer. To adequately train the BiLSTM text analyzer
network, the hybrid semantic documents were truncated and padded, as illustrated in
Figure 10. Using Algorithm 3, the BiLSTM text analyzer was trained with 70% of the
hybrid reports from the dataset, and the performance was validated and tested with 15%
of the remaining dataset. Table 4 presents the performance evaluation of the BiLSTM
text analyzer compared to a support vector machine (SVM)-based text analyzer. The
proposed methodology was evaluated using eight-second test signals shown in Figure 9,
as demonstrated in Table 5. Furthermore, Table 6 provides a comparison of the proposed
methodology against existing state-of-the-art methods, revealing that the proposed hybrid
system offers a more accurate linguistic-based detection of underload driver mental fatigue
in a long monotonous highway scenario.

Figure 10. Reports’ frequency with respect to the customized classes.

Table 5. Proposed methodology performance.

faSAX Word Window Size
(Samples)

Temporal
Duration (s) Documents (Reports) Situation Awareness Class

CCCCCCBBBFK 23 0.38 Driver is yawning, and vehicle is
taking slight left at high speed.

Sleepy and Rushing
Situation

CCDCCCCCCFL 56 0.93 Driver is yawning, and vehicle is
taking slight left at fast speed.

Sleepy and Rushing
Situation

DDDDDDCCDEI 70 1.17 Driver is nodding, and vehicle is
taking sharp left at slow speed.

Fatigue with Dangerous
Turning

CCCCCCCCCEI 50 0.83 Driver is yawning, and vehicle is
taking sharp left at slow speed. Tackle-able Sleepy Situation

BBBBBBBBAEJ 53 0.88 Driver is active, and vehicle is
taking sharp left at moderate speed. Safe Situation

CCCCCCBCCFK 24 0.4 Driver is yawning, and vehicle is
taking slight left at high speed.

Sleepy and Rushing
Situation

DDDDDDDCDGL 65 1.08 Driver is shaking, Head and vehicle
is taking a short right at fast speed.

Fatigue and Speeding
Situation

CCCCCCCCCHI 39 0.65 Driver is yawning, and vehicle is
taking a sudden right at slow speed. Tackle-able Sleepy Situation

CCCCCCBCCHJ 93 1.55
Driver is yawning, and vehicle is
taking a sudden right at
moderate speed.

Tackle-able Sleepy Situation
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Table 6. Comparison of proposed methodology against state-of-art systems.

System Method Prediction Merits Demerits

Camera [13] Facial features 98% Real-time, nonintrusive
Lighting problems, unaware of
vehicle information,
nontemporal tracking.

Hybrid [34] EEG + gyroscope + facial
features 93.91% Real-time, temporal tracking. Unaware of vehicle

information.

Hybrid [33] Heart rate + facial
features 94.75% Real-time, temporal tracking. Unknown of vehicle situation.

Proposed
Hybrid
system

Body posture + Vehicle
information 99.6%

Real-time, temporal tracking,
sequence prediction, situation
analyses, customizable linguistic
or semantic dictionary

Intrusive, requires sensors
attached to body, processing
delay time.

5. Conclusions

This paper introduced an innovative methodology for detecting underload mental
fatigue in drivers on long monotonous highways, employing a hybrid approach. The
method incorporated the monitoring of both the driver’s body postural information and
vehicle behavior to capture temporal variations during driving. A novel version of time-
series symbolic representation, referred to as faSAX, was developed to adaptively segment
postural variations and vehicle situations. The research provides valuable insights into
tracking sudden variations in body posture, such as nodding and head shaking, and their
immediate impact on vehicle situations for brief durations. The semantic driving patterns
generated by the proposed faSAX algorithm were then utilized to generate semantic driving
reports. These reports were subsequently analyzed by a deep learning text analyzer
to derive driving awareness situations. This study marks a significant advancement
in the implementation of linguistically based temporal detection of driver and vehicle
features. The semantic meanings obtained can be further applied in shared-access vehicle
execution systems.

In conclusion, although our study introduces a novel methodology for detecting driver
mental fatigue on long monotonous highways using a hybrid approach, it is crucial to
acknowledge the inherent limitations. The use of a low-fidelity driving simulator and a
small sample size, along with the inclusion of complex road intersections [47], presents
challenges to generalization. Looking ahead, future studies with larger and more diverse
participant groups, as well as higher-fidelity driving simulators that include challenging
and complex roads, roundabouts, and junctions, are imperative to validate and enhance the
robustness of our proposed methodology. These considerations will contribute to a more
comprehensive understanding of the practical implications and potential applications of
the approach in real-world driving scenarios.

Furthermore, our conclusions underscore the intrusive nature of the motion-capture-
system-based wearable, which requires sensors to be affixed to the driver’s body. To
overcome this limitation, we suggest investigating nonintrusive alternatives, such as inte-
grating sensors into wearable clothing or embedding them within the driving seat. This
adaptation would improve the feasibility of real-time fatigue monitoring during driving.
Additionally, our study discusses the potential of camera-based methods to complement
fatigue detection by capturing postural behaviors, such as head nodding and shaking. We
acknowledge the need for further exploration in this area, particularly in extending the
detection domain from facial features to encompass a broader range of postural cues.

Additionally, the study employed only a four-symbol representation of vehicle longi-
tudinal and lateral behavior for tracking passive driver fatigue. It is worth considering the
assignment of additional symbols to vehicle features by capturing information in diverse
driving scenarios, including urban roads and roundabouts.
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