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Abstract: The traditional golden jackal optimization algorithm (GJO) has slow convergence speed,
insufficient accuracy, and weakened optimization ability in the process of finding the optimal solution.
At the same time, it is easy to fall into local extremes and other limitations. In this paper, a novel
golden jackal optimization algorithm (SCMGJO) combining sine–cosine and Cauchy mutation is
proposed. On one hand, tent mapping reverse learning is introduced in population initialization,
and sine and cosine strategies are introduced in the update of prey positions, which enhances the
global exploration ability of the algorithm. On the other hand, the introduction of Cauchy mutation
for perturbation and update of the optimal solution effectively improves the algorithm’s ability to
obtain the optimal solution. Through the optimization experiment of 23 benchmark test functions,
the results show that the SCMGJO algorithm performs well in convergence speed and accuracy. In
addition, the stretching/compression spring design problem, three-bar truss design problem, and
unmanned aerial vehicle path planning problem are introduced for verification. The experimental
results prove that the SCMGJO algorithm has superior performance compared with other intelligent
optimization algorithms and verify its application ability in engineering applications.

Keywords: golden jackal algorithm; tent map; sine–cosine algorithm; Cauchy mutation; UAV
path planning

1. Introduction

With the rapid development of artificial intelligence and industrial technology, the
demand for algorithm performance is increasing day by day. Traditional optimization
algorithms have found it difficult to meet the needs of the rapid progress of society [1]. In
response to the challenges faced by mathematical optimization algorithms in dealing with
large-scale and highly complex problems, a series of metaheuristic optimization algorithms
have emerged [2,3]. These algorithms are deeply inspired by the laws of nature, species
evolution, and the behavior of biological populations. In particular, swarm intelligence
algorithms have attracted much attention from the academic community because of their
simulation of the intelligent behavior among biological populations [4–6].

The application of swarm intelligence algorithms has widely permeated many fields
such as medicine, e-commerce, unmanned aerial vehicle technology, and mobile robots [7,8].
The advancement of science and technology has driven the development of numerous
swarm intelligence algorithms, including genetic algorithms (GAs), particle swarm op-
timization (PSO) [9], whale optimization algorithms (WOAs) [10], and sparrow search
algorithm (SSAs) [11]. These algorithms have drawn the attention of numerous scholars
due to their practicality, ease of use, and high efficiency, giving rise to many emerging opti-
mization algorithms. For instance, Wang et al. proposed the monarch butterfly optimization
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(MBO) by observing the migration and adaptation behaviors of monarch butterflies [12].
Wang et al. derived the wolf pack search algorithm (WPA) from the hunting and survival
behaviors of wolves [13]. Xue et al. proposed the sparrow search algorithm (SSA) by
simulating the predation and anti-predation mechanisms of sparrows [14]. Faramarzi et al.
were inspired by the behavior of predators in the ocean to develop the marine predators
algorithm (MPA) [15], while Meng et al. proposed the chicken swarm optimization algo-
rithm (CSO) by simulating the hierarchical system and foraging behavior within a chicken
flock [16]. The GJO algorithm is a heuristic intelligence algorithm proposed by Chopra et al.
in 2022, which emulates the cooperative foraging behavior of golden jackals and the use of
multiple hunting strategies [17]. The GJO algorithm exhibits characteristics such as fewer
parameters, a simple structure, and a certain search capability, thus receiving widespread
attention [18,19]. However, the theoretical system of the GJO algorithm is not yet complete,
and there are issues such as a slow convergence rate, low solution accuracy, a tendency to
fall into local optima, and sensitivity to parameter settings [20].

Given the shortcomings of the GJO algorithm, it is of particular significance to enhance
and improve it to boost its performance. To overcome the limitations of the GJO algorithm,
this paper presents the sine–cosine and Cauchy mutation golden jackal optimization
algorithm (SCMGJO), which integrates the sine–cosine algorithm and the Cauchy mutation.
The main improvement strategies include introducing the reverse learning of the tent
mapping to initialize the population, applying the sine–cosine strategy in the update
of the prey position within the algorithm to enhance the diversity of the population in
later iterations, avoiding premature convergence, improving the accuracy of optimization,
and accelerating convergence; simultaneously, the Cauchy mutation strategy is utilized
to assist the algorithm in escaping local optima and further accelerating convergence.
Through comparisons with 23 classical benchmark functions and various performance test
indicators alongside basic intelligent algorithms, as well as combined with the verification
of engineering optimization design problems, the effectiveness and superiority of the
SCMGJO algorithm are fully demonstrated.

2. Related Work

The main idea of swarm intelligence optimization algorithms is to simulate the for-
aging, reproduction, and other behaviors of some social species in nature, abstract these
behaviors into various mathematical models, and select appropriate evaluation functions
for evaluation. Since the proposal of the golden jackal optimization algorithm, it has at-
tracted widespread attention from researchers, and many researchers in this field have
devoted themselves to the study of the golden jackal optimization algorithm [21]. Some
researchers are committed to researching the application of the golden jackal optimization
algorithm in different fields, such as engineering optimization and intelligent control, and
have achieved certain results. At present, the research on the golden jackal optimization
algorithm at home and abroad can be divided into three parts: the improvement research
on the golden jackal optimization algorithm itself, the algorithm research on the fusion
of the golden jackal optimization algorithm and other optimization algorithms, and the
engineering application of the golden jackal optimization algorithm in different fields [22].

With the continuous development of unmanned flight technology, unmanned aerial
vehicles (UAVs) have attracted much attention due to their potential to work in complex
and dangerous environments [23]. Path planning and design is an important part of the
UAV mission system, which requires obtaining a safe, feasible, and smooth flight path
from the starting position to the destination position under specific constraints [24,25].
Therefore, the problem of UAV path planning can be regarded as a complex optimization
problem that requires effective algorithms to solve. For the problem of UAV path planning,
researchers have proposed many methods to solve it, such as traditional methods such as
the artificial potential field algorithm [26], Rapidly-exploring Random Tree (RRT) [27], and
neural network algorithms [28], as well as emerging reinforcement learning algorithms
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such as the Q-learning algorithm [29]. However, these methods require a large amount of
computing time and resources.

Swarm intelligence optimization algorithms are intelligent algorithms inspired by
natural behaviors. As an effective method to solve complex optimization problems, more
and more researchers apply meta-heuristic algorithms to solve the problem of UAV path
planning. Liu et al. proposed three improved sparrow search algorithms, which enabled
UAVs to obtain high-quality flight paths [30]. Zhu et al. proposed a cooperative evolution
spider monkey optimization algorithm for the path planning and obstacle avoidance of
unmanned combat vehicles [31]. These meta-heuristic algorithms have more advantages
in solving path planning problems in complex environments. PSO algorithms and GWO
algorithms are widely used to solve the problem of UAV path planning. Xu et al. proposes
a Rotating Particle Swarm Optimization (RPSO) algorithm that rotates to search for targets
in high-dimensional space and a new double-layer coding (DLC) model, which can always
generate feasible trajectories in complex environments [32]. Liu et al. proposed an improved
adaptive grey wolf optimization (AGWO) algorithm to solve the three-dimensional path
planning problem of UAVs in complex environments [33]. Chen et al. proposed a hybrid
SSA to implement the optimal 3D deployment of multi-UAV base stations, and the proposed
method outperforms the traditional methods in terms of the sum log-rate utility and
throughput [34].

Although algorithms such as the PSO algorithm, the GWO algorithm, and the sparrow
search algorithm (SSA) can be used to solve the problem of UAV path planning, there are
still problems such as slow convergence speed, poor stability, and it is easy to fall into
local optima. To improve these problems, this paper proposes a golden jackal optimization
algorithm combining the sine–cosine algorithm and the Cauchy mutation, referred to
as the SCMGJO compound algorithm, for the path planning of UAVs in complex and
dangerous environments. It mainly uses the introduction of the tent mapping reverse
learning to initialize the population, and it applies the sine–cosine strategy to the update of
the prey position in the algorithm to enhance the diversity of the population in the later
iterations, avoid premature convergence, and improve the accuracy of optimization and
the convergence speed; at the same time, the Cauchy mutation strategy is used to help the
algorithm jump out of local optima and further accelerate the convergence. This smooths
the flight path and generates a path that is more suitable for the flight of the UAV, thereby
further saving the energy consumption of the UAV and the shortest flight path.

3. Golden Jackal Optimization Algorithm (GJO)

Golden jackals, medium-sized canids, are chiefly distributed in Africa and Asia. Their
diet mainly consists of small mammals, birds, insects, and so on, and they typically employ
hunting and predation to obtain food [35]. During foraging, golden jackals search for food
resources within a certain area of their familiar territory. Golden jackals frequently forage
in the form of golden jackal pairs, with male jackals doing the hunting while the female
jackals follow, and they usually forage in groups. Multiple golden jackals will collaborate to
hunt, increasing the success rate [36]. When foraging, golden jackals will adjust their search
strategies based on the abundance of food and the location of other competitors to acquire
more food resources [37]. The algorithm mainly comprises three stages: searching for prey
and moving towards it; surrounding and stimulating the prey until it stops moving; and
pouncing on the prey [38].

(1) Initialization phase

The mathematical formula for the initialization process of the golden jackal population
is expressed as follows:

Y0 = Ymin + rand(Ymax − Ymin) (1)

In the formula, Ymin denotes the lower limit of Y0, and Ymax denotes the upper limit of
Y0, while rand denotes a uniformly distributed random value within (0, 1).
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The initial prey matrix is as follows:

Prey =


Y1,1 Y1,2 · · · Y1,d
Y2,1 Y2,2 · · · Y2,d

...
...

...
Yn,1 Yn,2 · · · Yn,d

 (2)

In the formula, n denotes the number of the population, and d denotes the dimension
of the population.

(2) Search phase

Golden jackal pairs search for prey within their territory and gradually move towards
the prey. During the process of searching for prey, the male golden jackal leads and the
female golden jackal follows. The calculation method of the relative position between the
golden jackal and the prey is as follows:

Y1(t) = YM(t)− E ∗ |YM(t)− rl ∗ Prey(t)| (3)

Y2(t) = YF(t)− E ∗ |YF(t)− rl ∗ Prey(t)| (4)

In the formula, t denotes the current number of iterations, YM(t) denotes the position
of the male golden jackal after t iterations, YF(t) denotes the position of the female golden
jackal after t iterations, Prey(t) denotes the position vector of the prey, rl represents an
arbitrary vector based on the Levy distribution, Y1(t) denotes the position of the male
golden jackal corresponding to the prey after update, and Y2(t) denotes the position of the
female golden jackal corresponding to the prey after update. E denotes the energy during
the prey’s escape process, and the calculation formula is as follows:

E = E1 ∗ E0 (5)

In the formula, E1 denotes the decrease in the energy of the prey, and E0 denotes the
initial energy of the prey. The calculation formula of E0 is as follows:

E0 = 2 ∗ r − 1 (6)

In the formula, r denotes a uniformly distributed random value within [0, 1]. The
calculation formula of E1 is as follows:

E1 = c1 ∗
(

1 − t
T

)
(7)

In the formula, c1 is a constant, and c1 = 1.5; T denotes the maximum number of
iterations. During the iteration, E1 decreases linearly from 1.5 to 0. The calculation formula
of rl is as follows:

rl = 0.05 ∗ Levy(y) (8)

The Levy flight function is the following:

Levy(y) = 0.01 ∗ µ ∗ σ

v
1
β

(9)

In the formula, σ =
T(1+β)sin

(
π∗β

2

) 1
β

T
(

1+β
2

)
∗2

β−1
2

; β = 1.5; µ and v both denote uniformly dis-

tributed random values in [0, 1]; and the golden jackal update formula is calculated as
the following:

Y(t + 1) =
Y1(t) + Y2(t)

2
(10)
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(3) Siege phase

When the prey is disturbed by the golden jackal, its escape energy will gradually
decrease, and then the golden jackal will tightly surround the prey. Once the prey is
successfully surrounded by the golden jackal, they will launch an attack. In this stage, the
position updates of the male and female golden jackals can be calculated as the following:

Y1(t) = YM(t)− E ∗ |rl ∗ YM(t)− Prey(t)| (11)

Y2(t) = YF(t)− E ∗ |rl ∗ YF(t)− Prey(t)| (12)

In the formula, t denotes the current number of iterations, YM(t) denotes the position
of the male golden jackal after t iterations, YF(t) denotes the position of the female golden
jackal after t iterations, Prey(t) denotes the position of the prey after the t iteration, Y1(t)
denotes the position corresponding to the prey after the male golden jackal is updated
in the t iteration, and Y2(t) denotes the position corresponding to the prey after the male
golden jackal is updated in the t iteration.

(4) Conversion of global search and local search

The parameter E denotes the energy of the prey’s escape. In the process of the golden
jackal’s foraging, the condition for the golden jackal to switch from the prey search stage to
the prey besieging stage is determined by E. When |E| ≥ 1, the golden jackal conducts a
global search to find the position of the prey; when |E| < 1, the golden jackal conducts a
local search to besiege the prey.

4. Sine–Cosine and Cauchy Mutation of Golden Jackal Optimization
Algorithm (SCMGJO)
4.1. Tent Mapping Reverse Learning

Tent mapping, also known as the tent map, is a special form of mapping in the field of
mathematics, with the characteristic of piecewise linearity. Its functional image is named
after its unique tent shape and has a wide range of application values in multiple fields [39].
The core feature of this mapping lies in its piecewise linear property, which allows it to
perform mapping operations according to different slopes in different numerical intervals,
thus exhibiting a rich and diverse dynamic behavior.

In swarm intelligence optimization algorithms, population initialization is an ex-
tremely crucial step. It aims to provide sufficient initial conditions and high-quality search
spaces for the optimization process of individuals, ensuring that the population distribu-
tion has a high density, thereby accelerating the optimization speed of the algorithm [40].
Because tent mapping has significant advantages over other mapping methods in terms of
uniformity and ergodicity, this paper chooses to use tent mapping to initialize the golden
jackal population. In addition, in order to further improve the quality of the initial popula-
tion, this paper also introduces the reverse learning strategy. By screening and refining the
initial population, more excellent golden jackal individuals are selected, thus providing a
more favorable environmental condition for the optimization process of the algorithm and
then improving the convergence speed of the algorithm.

The expression of the tent mapping is the following:

Xn+1 =

{
2Xn, 0 ≤ Xn ≤ 1

2
2(1 − Xn), 1

2 ≤ Xn ≤ 1
(13)
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Assuming that a set of feasible solutions in a D-dimensional golden jackal population
is {X1, X2, X3, · · · XD}, X ∈ [lb, ub], then its reverse solution is X′ =

{
X′

1, X′
2, X′

3, · · · X′
D
}

,
X′ = lb + ub − Xi. The total initialization of the golden jackal population with the reverse
learning of the tent mapping is divided into three steps:

Step 1. Use the tent mapping to initialize the position of the golden jackal
xij(i = 1, 2 · · · D, j = 1, 2 · · · N), where N represents the population size.

Step 2. Generate reverse individual positions xij based on the definition of the reverse
solution, for the initial population position of the golden jackal.

Step 3. Sort the individual positions generated by the two methods according to the
fitness level and select the one with the highest fitness as the male golden jackal and the
one with the second highest fitness as the female golden jackal.

4.2. Sine–Cosine Algorithm

In the process of golden jackal hunting, the position of the prey is particularly crucial,
which profoundly affects the forward trajectory of the entire golden jackal population [41].
However, due to the different positions of the prey, when the food searched by the male
golden jackal happens to be at the local optimum, this may lead to the convergence of the
population, that is, a large number of golden jackals tend to the same position. In this case,
the golden jackal population will come to a standstill, the diversity of population positions
will be compromised, and the risk of falling into local extreme values will increase [42].

To address this phenomenon, this paper introduces the sine–cosine algorithm (SCA) in
the position update process of the golden jackal in the GJO algorithm. The position update
formula of the SCA is as follows [43]:

Xt+1
i =

{
Xt

i + r1 ∗ sin(r2) ∗
∣∣r3Pt

i − Xt
i

∣∣, r4 < 0.5
Xt

i + r1 ∗ cos(r2) ∗
∣∣r3Pt

i − Xt
i

∣∣, r4 ≥ 0.5
(14)

SCA can enhance the global search ability of the GJO algorithm and more effectively
avoid falling into local optimal solutions. By using SCA to dynamically adjust the posi-
tion of the male golden jackal, the search efficiency and accuracy of the algorithm can be
improved while maintaining the diversity of the population. In the formula, r2 denotes
a uniformly distributed random value in [0, 2π], r3 denotes a uniformly distributed ran-
dom value in [−2, 2], and r4 denotes a uniformly distributed random value in [0, 1]. The
calculation formula of r1 is as follows [44]:

r1 = a − t × a
T

(15)

In the formula, a is a constant, t denotes the number of iterations, and T denotes the
maximum number of iterations.

When |E| ≥ 1, a global search is required using Equations (16) and (17) to find the prey;

Y′(t)
M =

{
YM(t) + r1 ∗ sin(r2) ∗ E ∗ |r3 ∗ rl ∗ Prey(t)− YM(t)|, r4 < 0.5
YM(t) + r1 ∗ cos(r2) ∗ E ∗ |r3 ∗ rl ∗ Prey(t)− YM(t)|, r4 ≥ 0.5

(16)

Y′(t)
F =

{
YF(t) + r1 ∗ sin(r2) ∗ E ∗ |r3 ∗ rl ∗ Prey(t)− YF(t)|, r4 < 0.5
YF(t) + r1 ∗ cos(r2) ∗ E ∗ |r3 ∗ rl ∗ Prey(t)− YF(t)|, r4 ≥ 0.5

(17)

And when |E| < 1, local search needs to be carried out using Equations (18) and (19)
to encircle the prey.

Y
′′(t)
M =

{
YM(t) + r1 ∗ sin(r2) ∗ E ∗ |r3 ∗ Prey(t)− rl ∗ YM(t)|, r4 < 0.5
YM(t) + r1 ∗ cos(r2) ∗ E ∗ |r3 ∗ Prey(t)− rl ∗ YM(t)|, r4 ≥ 0.5

(18)

Y
′′(t)
F =

{
YF(t) + r1 ∗ sin(r2) ∗ E ∗ |r3 ∗ Prey(t)− rl ∗ YF(t)|, r4 < 0.5
YF(t) + r1 ∗ cos(r2) ∗ E ∗ |r3 ∗ Prey(t)− rl ∗ YF(t)|, r4 ≥ 0.5

(19)
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4.3. Cauchy Mutation

A clear collaborative pattern is obtained from the foraging process of the golden
jackals: in the search phase, it is mainly dominated by the male golden jackal with the
best fitness in the current golden jackal population, while the female golden jackal plays
the role of a follower, foraging closely around the optimal solution. In order to prevent
the algorithm from falling into the predicament of a local optimum, we introduce the
Cauchy mutation strategy into the position update formula of the golden jackal, aiming
to enhance the global optimization ability of the algorithm. After the application of the
Cauchy mutation strategy, the position update formula of the golden jackal is optimized,
and the position update formula is the following:

YM(t) = Y1(t) + Y1(t) ∗ Cauchy(0, 1) (20)

In the formula, Cauchy(0, 1) is the standard Cauchy distribution function; the one-
dimensional Cauchy mutation function with the origin as the center is as follows:

f (x) =
1
π

(
1

x2 + 1

)
,−∞ < x < ∞ (21)

The Cauchy distribution, as a continuous probability distribution, has a similar shape
to the standard normal distribution. However, it has unique characteristics: the value at
the origin is relatively small, while at the two ends of the distribution, it presents a flatter
shape, which makes the rate of approaching zero of the Cauchy distribution slower. Due to
this characteristic, the Cauchy distribution often has a more significant perturbation effect
compared to the normal distribution.

Given this advantage of the Cauchy distribution, it is applied to the process of updating
the position of the male golden jackal, and the individuals are perturbed using Cauchy
mutation to expand the search scope of the SCMGJO. In this way, the algorithm can better
explore the solution space, thereby enhancing its ability to jump out of local optimal
solutions and further enhancing the global search performance of the algorithm.

4.4. Novel Update Rules

The flowchart of the SCMGJO algorithm is shown in Figure 1. At the same time, the
algorithm flow includes eight steps.

Step 1: Initialize the position of the golden jackal population using the reverse learning
of the tent mapping and initialize the position of the prey and the number of iterations.

Step 2: Calculate the fitness of each golden jackal individual.
Step 3: Select the optimal solution as the position information of the male golden

jackal YM(t) and the secondary optimal solution as the position information of the female
golden jackal YF(t).

Step 4: Calculate the escape energy E according to Equations (5)–(7).
Step 5: If |E| ≥ 1, update the position using Equations (16), (17) and (20); otherwise

|E| < 1, update the position using Equations (18)–(20).
Step 6: Determine whether the maximum number of iterations has been reached. If

the maximum number of iterations has not been reached, return to Step 2 to continue;
otherwise, end the program.
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Figure 1. The flowchart of the SCMGJO algorithm.

5. Experiment Results and Analysis
5.1. Experimental Setup

In order to fully verify the effectiveness of the SCMGJO algorithm designed in this
study in solving optimization problems, a series of experiments were conducted in this
study. All algorithms were run on the experimental platform of Windows 11, 16GB memory,
and a 64-bit system, and experiments were conducted using Matlab2022a. This paper
selects the whale optimization algorithm (WOA) [45], ant colony optimization algorithm
(ACO) [46], ant lion optimization algorithm (ALO) [47], gray wolf optimization algorithm
(GWO) [48], golden jackal optimization algorithm (GJO), and the sine–cosine golden jackal
optimization algorithm (SCGJO) [39] for comparison.

5.2. Function Testing and Performance Indicators

When conducting in-depth research on the CEC test function set, we selected 23 classi-
cal benchmark functions and conducted detailed simulation experimental analyses. These
functions are not only used to comprehensively evaluate the global optimization perfor-
mance of the algorithm but also to measure its convergence efficiency. Table 1 details
the expressions, dimensions, domain, and theoretical optimal values of these benchmark
functions. Among them, F1 to F13 are multidimensional test functions, while F14 to F23 are
fixed-dimensional test functions.
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Table 1. The benchmark functions.

Function Name Dim Range Best

F1 Sphere 10/30/50 [−100, 100] 0
F2 Schwefel 2.22 10/30/50 [−10, 10] 0
F3 Schwefel 1.2 10/30/50 [−100, 100] 0
F4 Schwefel 2.21 10/30/50 [−100, 100] 0
F5 Rosenbrock 10/30/50 [−30, 30] 0
F6 Step 10/30/50 [−100, 100] 0
F7 Quartic with noise 10/30/50 [−1.28, 1.28] 0
F8 Schwefel 2.26 10/30/50 [−500, 500] −12,569.5
F9 Rastrigin 10/30/50 [−5.12, 5.12] 0

F10 Ackley 10/30/50 [−32, 32] 0
F11 Griewank 10/30/50 [−600, 600] 0
F12 Penalized1 10/30/50 [−50, 50] 0
F13 Penalized2 10/30/50 [−50, 50] 0
F14 Shekel’s Foxholes 2 [−65.536, 65.536] 1
F15 Kowalik 4 [−5, 5] 0.000308
F16 Six-Hump Camel Back 2 [−5, 5] −1.0316
F17 Branin 2 [−5, 10], [0, 15] 0.398
F18 Goldstein-Price 2 [−2, 2] 3
F19 Hartman’s Family 1 3 [0, 1] −3.86
F20 Hartman’s Family2 6 [0, 1] −3.32
F21 Shekel’s Family1 4 [0, 10] −10.15
F22 Shekel’s Family2 4 [0, 10] −10.4
F23 Shekel’s Family3 4 [0, 10] −10.536

In order to ensure the fairness of the comparison between different algorithms, we
uniformly set the experimental parameters: the population size of the six algorithms is 50,
and the maximum number of iterations is 500. For the multidimensional test functions
F1 to F13, we set the dimensions to 10, 30, and 50, while F14 to F23 were tested under a
fixed dimension. Each algorithm was run independently 100 times, and we selected the
optimal value, average value, and standard deviation as the key evaluation indicators. The
better the performance of the algorithm, the closer the optimal value is to the theoretical
minimum value, and the smaller the average value and standard deviation.

After a large number of tests and data analysis, we obtained the data in Tables 2–5.
Among them, Table 2 presents the comparative data of each algorithm for F1 to F13 in
10 dimensions; Table 3 shows the comparison in 30 dimensions; Table 4 shows the data
in 50 dimensions; Table 5 shows the data in 100 dimensions; and Table 6 reflects the
comparative results of each algorithm for F14 to F23 under a fixed dimension. These
data clearly reflect the excellent performance of the SCMGJO on the multidimensional
test functions F1 to F13. Compared with the GJO, the SCMGJO, which fuses sine and
cosine and Cauchy mutation, has significantly improved in solution accuracy, and the
optimization performance is more stable. Compared with other algorithms, the SCMGJO
shows a significant advantage in the optimization effect.

Table 2. The optimal fitness of each algorithm (Dim = 10).

Function Item WOA ACO ALO GWO GJO SCGJO SCMGJO

F1
min 2.67 × 10−87 3.34 × 10−15 2.98 × 10−9 3.76 × 10−73 5.58 × 10−129 1.41 × 10−160 0.00 × 100

mean −6.67 × 10−45 5.58 × 10−9 −1.57 × 10−7 3.85 × 10−38 −5.07 × 10−66 1.53 × 10−81 5.70 × 10−164

std 1.57 × 10−44 1.83 × 10−8 1.82 × 10−5 2.00 × 10−37 2.43 × 10−65 3.62 × 10−81 2.71 × 10−1

F2
min 8.94 × 10−61 4.34 × 10−7 1.75 × 102 2.39 × 10−39 1.53 × 10−69 1.49 × 10−83 0.00 × 100

mean −8.71 × 10−62 1.91 × 10−8 1.43 × 101 −5.38 × 10−41 −7.22 × 10−71 −7.91 × 10−85 0.00 × 100

std 1.03 × 10−61 4.79 × 10−8 3.20 × 101 2.47 × 10−40 1.44 × 10−70 1.75 × 10−84 3.06 × 10−1
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Table 2. Cont.

Function Item WOA ACO ALO GWO GJO SCGJO SCMGJO

F3
min 1.00 × 102 3.50 × 100 1.09 × 10−5 2.58 × 10−33 1.82 × 10−73 9.56 × 10−122 0.00 × 100

mean 3.38 × 10−1 −9.77 × 10−2 −1.31 × 10−4 −1.55 × 10−18 −1.30 × 10−38 −1.41 × 10−62 −1.49 × 10−163

std 5.87 × 100 8.06 × 10−1 1.89 × 10−3 2.96 × 10−17 2.31 × 10−37 1.52 × 10−61 3.36 × 10−1

F4
min 2.03 × 10−3 7.44 × 10−4 4.29 × 10−4 1.40 × 10−24 1.18 × 10−48 4.13 × 10−73 0.00 × 100

mean −2.65 × 10−5 −1.60 × 10−4 −5.92 × 10−5 2.79 × 10−25 −4.67 × 10−49 −3.33 × 10−74 0.00 × 100

std 1.44 × 10−3 4.52 × 10−4 4.01 × 10−4 1.44 × 10−24 1.14 × 10−48 3.26 × 10−73 2.82 × 10−1

F5
min 6.89 × 100 6.62 × 100 8.14 × 100 7.18 × 100 8.05 × 100 8.09 × 100 8.10 × 100

mean 1.80 × 10−1 1.68 × 10−1 5.48 × 10−2 1.37 × 10−1 6.83 × 10−2 6.49 × 10−2 6.43 × 10−2

std 2.63 × 10−1 2.64 × 10−1 1.03 × 10−1 2.42 × 10−1 1.46 × 10−1 1.47 × 10−1 3.45 × 10−1

F6
min 3.31 × 10−5 8.49 × 10−15 5.01 × 10−9 3.17 × 10−6 2.62 × 10−5 7.54 × 10−1 4.77 × 10−1

mean −5.00 × 10−1 −5.00 × 10−1 −5.00 × 10−1 −5.00 × 10−1 −5.00 × 10−1 −3.41 × 10−1 −4.50 × 10−1

std 1.92 × 10−3 3.04 × 10−8 2.34 × 10−5 5.46 × 10−4 1.70 × 10−3 2.36 × 10−1 3.22 × 10−1

F7
min 6.11 × 10−4 6.19 × 10−3 4.68 × 10−3 5.34 × 10−4 3.82 × 10−4 2.85 × 10−5 1.02 × 10−5

mean 7.47 × 10−3 −1.23 × 10−2 2.64 × 10−2 1.09 × 10−2 −2.91 × 10−3 5.35 × 10−4 1.44 × 10−4

std 5.05 × 10−2 6.75 × 10−2 7.67 × 10−2 4.77 × 10−2 3.77 × 10−2 6.16 × 10−3 2.99 × 10−1

F8
min −6.36 × 102 −5.09 × 102 −5.44 × 102 −5.48 × 102 −4.01 × 102 −3.91 × 102 −5.57 × 102

mean 6.55 × 101 −6.85 × 101 −1.00 × 102 3.07 × 101 2.07 × 101 −3.08 × 101 −6.61 × 101

std 1.18 × 10−2 2.17 × 101 0.00 × 100 5.96 × 101 5.57 × 101 6.74 × 101 2.88 × 10−1

F9
min 0.00 × 100 3.71 × 101 1.69 × 101 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

mean −2.08 × 10−12 5.90 × 10−2 9.95 × 10−2 −7.17 × 10−10 −1.42 × 10−9 1.97 × 10−10 9.77 × 10−10

std 2.72 × 10−9 9.91 × 10−1 1.36 × 100 3.47 × 10−9 2.00 × 10−9 2.78 × 10−9 2.55 × 10−1

F10
min 4.00 × 10−15 2.05 × 101 1.16 × 100 2.02 × 101 4.00 × 10−15 4.44 × 10−16 4.44 × 10−16

mean −3.06 × 10−17 8.13 × 101 −8.72 × 10−2 −1.11 × 100 3.40 × 10−16 −9.87 × 10−17 −3.79 × 10−17

std 1.14 × 10−15 4.87 × 102 2.76 × 10−1 7.85 × 101 1.23 × 10−15 2.70 × 10−16 2.83 × 10−1

F11
min 0.00 × 100 5.27 × 10−1 4.78 × 10−1 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

mean −7.13 × 10−9 3.66 × 10−1 1.62 × 100 −1.11 × 10−11 4.96 × 10−9 −2.96 × 10−10 1.12 × 10−9

std 6.74 × 10−9 7.58 × 100 1.45 × 101 1.29 × 10−8 1.32 × 10−8 1.57 × 10−8 2.84 × 10−1

F12
min 1.02 × 10−4 5.42 × 10−15 1.79 × 10−9 9.97 × 10−7 5.75 × 10−6 1.97 × 10−1 5.89 × 10−2

mean −9.98 × 10−1 −1.00 × 100 −1.00 × 100 −1.00 × 100 −1.00 × 100 −5.05 × 10−1 −5.93 × 10−1

std 2.39 × 10−2 1.49 × 10−7 1.00 × 10−4 2.12 × 10−3 5.09 × 10−3 5.32 × 10−1 4.06 × 10−1

F13
min 6.14 × 10−4 4.12 × 10−14 8.88 × 10−9 2.41 × 10−6 9.76 × 10−2 5.35 × 10−1 8.01 × 10−1

mean 9.96 × 10−1 1.00 × 100 1.00 × 100 1.00 × 100 9.04 × 10−1 5.10 × 10−1 4.99 × 10−1

std 2.54 × 10−2 1.78 × 10−7 9.60 × 10−5 1.63 × 10−3 3.05 × 10−1 5.64 × 10−1 4.22 × 10−1

Table 3. The optimal fitness of each algorithm (Dim = 30).

Function Item WOA ACO ALO GWO GJO SCGJO SCMGJO

F1
min 2.17 × 10−86 4.06 × 103 2.17 × 10−4 1.34 × 10−33 4.32 × 10−63 7.17 × 10−111 0.00 × 100

mean −9.99 × 10−46 4.67 × 10−1 1.47 × 10−5 1.94 × 10−18 2.07 × 10−33 −8.80 × 10−57 −2.44 × 10−164

std 2.73 × 10−44 1.18 × 101 2.74 × 10−3 6.52 × 10−18 1.20 × 10−32 1.29 × 10−56 0.00 × 100

F2
min 1.75 × 10−57 7.58 × 103 6.77 × 102 8.64 × 10−19 4.15 × 10−36 1.22 × 10−55 0.00 × 100

mean 2.66 × 10−59 6.74 × 100 1.76 × 101 6.33 × 10−21 −8.66 × 10−39 5.25 × 10−58 0.00 × 100

std 1.10 × 10−58 1.03 × 102 3.28 × 101 2.89 × 10−20 1.45 × 10−37 5.16 × 10−57 0.00 × 100

F3
min 1.98 × 104 1.38 × 105 2.08 × 103 2.56 × 10−10 3.37 × 10−24 1.52 × 10−78 0.00 × 100

mean 5.77 × 10−1 1.89 × 100 −1.90 × 10−1 −6.53 × 10−8 −1.17 × 10−14 −7.13 × 10−43 −1.95 × 10−164

std 2.93 × 101 7.82 × 101 1.48 × 101 4.99 × 10−6 5.26 × 10−13 3.35 × 10−40 0.00 × 100

F4
min 1.56 × 101 8.56 × 101 1.46 × 101 5.45 × 10−9 1.04 × 10−18 2.65 × 10−46 0.00 × 100

mean −1.15 × 100 −7.37 × 100 −7.28 × 10−2 1.37 × 10−9 −8.97 × 10−20 6.19 × 10−48 0.00 × 100

std 9.63 × 100 5.23 × 101 1.23 × 101 5.20 × 10−9 9.39 × 10−19 1.67 × 10−46 0.00 × 100

F5
min 2.78 × 101 2.01 × 103 3.85 × 103 2.79 × 101 2.62 × 101 2.81 × 101 2.89 × 101

mean 3.24 × 10−2 −3.09 × 101 6.08 × 10−1 2.70 × 10−2 7.39 × 10−2 2.20 × 10−2 3.06 × 10−3

std 8.34 × 10−2 1.82 × 102 1.29 × 100 8.62 × 10−2 2.08 × 10−1 8.96 × 10−2 4.68 × 10−3
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Table 3. Cont.

Function Item WOA ACO ALO GWO GJO SCGJO SCMGJO

F6
min 6.84 × 10−2 4.62 × 103 2.46 × 10−4 3.76 × 10−5 2.26 × 100 5.02 × 100 4.74 × 100

mean −4.95 × 10−1 −1.85 × 100 −5.00 × 10−1 −5.00 × 10−1 −3.50 × 10−1 −1.77 × 10−1 −2.00 × 10−1

std 4.83 × 10−2 1.25 × 101 2.91 × 10−3 1.13 × 10−3 2.33 × 10−1 2.54 × 10−1 2.50 × 10−1

F7
min 6.73 × 10−4 4.68 × 10−1 1.31 × 10−1 5.65 × 10−4 1.78 × 10−4 3.19 × 10−5 2.03 × 10−5

mean 1.27 × 10−3 7.05 × 10−1 −1.07 × 10−2 −9.84 × 10−4 −3.86 × 10−5 −7.60 × 10−5 −1.13 × 10−4

std 3.07 × 10−2 2.72 × 10−1 1.48 × 10−1 2.21 × 10−2 1.73 × 10−2 1.22 × 10−3 2.85 × 10−4

F8
min −1.87 × 103 −1.83 × 103 −1.63 × 103 −1.17 × 103 −9.83 × 102 −8.19 × 102 −1.53 × 103

mean 6.25 × 101 −6.16 × 101 −1.00 × 102 1.12 × 101 5.44 × 100 −9.29 × 100 5.09 × 101

std 1.67 × 101 3.38 × 101 0.00 × 100 5.73 × 101 5.45 × 101 5.90 × 101 3.68 × 101

F9
min 0.00 × 100 3.25 × 101 9.65 × 101 5.68 × 10−14 0.00 × 100 0.00 × 100 0.00 × 100

mean −2.33 × 10−9 −2.18 × 100 −3.32 × 10−2 1.26 × 10−9 −2.52 × 10−10 5.14 × 10−10 9.02 × 10−11

std 2.47 × 10−9 9.82 × 100 1.82 × 100 5.89 × 10−9 3.62 × 10−9 3.14 × 10−9 2.65 × 10−10

F10
min 4.44 × 10−16 2.10 × 101 2.81 × 100 2.09 × 101 2.08 × 101 4.00 × 10−15 4.44 × 10−16

mean −5.81 × 10−17 6.10 × 101 1.28 × 10−1 9.32 × 100 6.12 × 100 −3.01 × 10−16 4.98 × 10−18

std 1.21 × 10−16 8.24 × 101 7.42 × 10−1 5.79 × 101 6.46 × 101 1.25 × 10−15 1.31 × 10−16

F11
min 0.00 × 100 1.89 × 100 1.07 × 10−2 1.14 × 10−2 0.00 × 100 0.00 × 100 0.00 × 100

mean −2.25 × 10−9 −1.88 × 100 2.84 × 10−1 −2.87 × 10−1 −1.14 × 10−9 1.27 × 10−9 8.92 × 10−10

std 1.49 × 10−8 1.09 × 101 1.13 × 100 1.13 × 100 1.61 × 10−8 7.64 × 10−9 3.39 × 10−9

F12
min 2.78 × 10−2 1.20 × 10−2 1.17 × 101 6.89 × 10−6 3.00 × 10−1 7.42 × 10−1 6.32 × 10−1

mean −8.51 × 10−1 1.45 × 100 −8.05 × 10−1 −1.00 × 100 −4.93 × 10−1 −2.47 × 10−1 −3.62 × 10−1

std 3.22 × 10−1 2.74 × 101 7.28 × 100 5.91 × 10−3 5.07 × 10−1 4.47 × 10−1 4.81 × 10−1

F13
min 2.28 × 10−1 3.49 × 10−1 7.75 × 100 6.30 × 10−1 1.64 × 100 2.57 × 100 2.90 × 100

mean 9.44 × 10−1 7.66 × 100 1.06 × 100 7.76 × 10−1 4.50 × 10−1 1.87 × 10−1 5.72 × 10−2

std 2.55 × 10−1 2.86 × 101 1.62 × 100 4.07 × 10−1 4.97 × 10−1 4.29 × 10−1 2.16 × 10−1

Table 4. The optimal fitness of each algorithm (Dim = 50).

Function Item WOA ACO ALO GWO GJO SCGJO SCMGJO

F1
min 9.21 × 10−93 1.12 × 10−5 4.62 × 10−2 8.92 × 10−24 1.35 × 10−45 4.33 × 10−89 0.00 × 100

mean 1.68 × 10−48 −1.12 × 101 −5.18 × 10−4 −2.45 × 10−14 −1.67 × 10−24 −1.62 × 10−47 6.06 × 10−165

std 1.36 × 10−47 4.65 × 101 3.07 × 10−2 4.26 × 10−13 4.98 × 10−24 9.40 × 10−46 0.00 × 100

F2
min 5.46 × 10−52 1.55 × 102 9.75 × 102 2.55 × 10−13 5.42 × 10−27 5.37 × 10−49 0.00 × 100

mean 1.09 × 10−53 1.57 × 101 1.73 × 101 −7.99 × 10−16 3.60 × 10−29 8.17 × 10−52 0.00 × 100

std 5.26 × 10−53 7.68 × 101 3.21 × 101 5.17 × 10−15 1.09 × 10−28 1.39 × 10−50 0.00 × 100

F3
min 1.38 × 105 3.86 × 105 7.56 × 103 8.00 × 10−3 5.97 × 10−11 3.79 × 10−67 0.00 × 100

mean −1.11 × 100 7.50 × 10−1 −7.97 × 10−3 1.84 × 10−4 −2.43 × 10−8 −7.99 × 10−37 −1.49 × 10−165

std 3.43 × 101 5.46 × 101 2.03 × 101 1.98 × 10−2 1.54 × 10−6 1.10 × 10−34 0.00 × 100

F4
min 7.71 × 10−1 9.08 × 101 2.63 × 101 2.28 × 10−5 1.15 × 10−11 7.25 × 10−36 0.00 × 100

mean −1.49 × 10−1 6.20 × 10−1 −5.90 × 10−1 −1.61 × 10−6 −2.22 × 10−12 1.08 × 10−36 0.00 × 100

std 3.24 × 10−1 5.80 × 101 1.95 × 101 2.07 × 10−5 9.06 × 10−12 3.36 × 10−36 0.00 × 100

F5
min 4.84 × 101 6.03 × 1010 1.34 × 103 4.93 × 101 4.63 × 101 4.89 × 101 4.87 × 101

mean 1.19 × 10−2 8.20 × 100 2.95 × 10−1 1.20 × 10−2 4.45 × 10−2 2.56 × 10−3 5.16 × 10−3

std 2.11 × 10−2 5.06 × 101 1.12 × 100 1.57 × 10−1 1.62 × 10−1 4.61 × 10−3 2.29 × 10−2

F6
min 2.88 × 10−1 1.26 × 105 8.88 × 10−2 2.51 × 100 6.70 × 100 1.00 × 101 8.78 × 100

mean −4.88 × 10−1 −7.08 × 100 −4.99 × 10−1 −3.99 × 10−1 −2.30 × 10−1 −9.77 × 10−2 −1.48 × 10−1

std 7.58 × 10−2 5.03 × 101 4.26 × 10−2 2.02 × 10−1 2.50 × 10−1 1.98 × 10−01 2.30 × 10−1

F7
min 2.86 × 10−3 1.18 × 103 4.07 × 102 1.73 × 10−3 2.64 × 10−4 4.25 × 10−5 1.81 × 10−4

mean −6.91 × 10−3 −8.43 × 10−1 4.39 × 10−4 −2.37 × 10−3 −1.55 × 10−3 3.81 × 10−4 −1.58 × 10−4

std 3.12 × 10−2 4.70 × 101 8.93 × 10−1 2.82 × 10−2 1.35 × 10−2 4.49 × 10−3 8.75 × 10−4

F8
min −3.18 × 103 −6.59 × 103 −2.72 × 103 −1.68 × 103 −1.16 × 103 −6.98 × 102 −2.39 × 103

mean 6.55 × 101 1.57 × 102 −1.00 × 102 8.97 × 100 −9.61 × 100 −7.22 × 100 5.18 × 101

std 7.53 × 10−2 1.11 × 101 0.00 × 100 5.16 × 101 4.89 × 101 5.38 × 101 3.78 × 101
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Table 4. Cont.

Function Item WOA ACO ALO GWO GJO SCGJO SCMGJO

F9
min 0.00 × 100 9.80 × 104 3.48 × 102 2.17 × 100 0.00 × 100 0.00 × 100 0.00 × 100

mean −5.84 × 10−10 6.28 × 100 2.99 × 10−1 −3.86 × 10−2 −5.42 × 10−10 5.62 × 10−10 4.69 × 10−11

std 3.07 × 10−9 4.42 × 101 2.63 × 100 1.97 × 10−1 3.62 × 10−9 3.01 × 10−9 6.70 × 10−10

F10
min 7.55 × 10−15 2.11 × 101 4.44 × 10−16 2.11 × 101 2.07 × 101 4.00 × 10−15 4.44 × 10−16

mean 7.69 × 10−17 9.50 × 101 0.00 × 100 1.31 × 101 −7.46 × 10−2 3.77 × 10−16 5.08 × 10−18

std 2.24 × 10−15 1.23 × 103 0.00 × 100 6.34 × 101 3.55 × 101 1.30 × 10−15 4.47 × 10−17

F11
min 0.00 × 100 2.95 × 101 1.71 × 10−1 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

mean 2.40 × 10−10 −7.16 × 100 3.50 × 10−2 −2.05 × 10−9 −2.63 × 10−9 1.76 × 10−9 −3.33 × 10−11

std 8.27 × 10−9 4.77 × 101 1.13 × 100 2.95 × 10−8 2.28 × 10−8 8.27 × 10−9 3.75 × 10−9

F12
min 1.84 × 10−2 3.28 × 101 4.18 × 101 5.73 × 10−2 3.69 × 10−1 8.52 × 10−1 7.44 × 10−1

mean −9.12 × 10−1 3.61 × 100 −3.26 × 10−1 −6.99 × 10−1 −4.53 × 10−1 −1.65 × 10−1 −2.04 × 10−1

std 2.87 × 10−1 4.97 × 101 8.85 × 100 4.53 × 10−1 4.90 × 10−1 3.79 × 10−1 4.08 × 10−1

F13
min 2.26 × 10−1 4.40 × 101 1.41 × 102 1.30 × 100 3.45 × 100 4.47 × 100 4.80 × 100

mean 9.70 × 10−1 6.18 × 100 1.18 × 10−2 7.17 × 10−1 3.04 × 10−1 1.29 × 10−1 4.04 × 10−2

std 1.99 × 10−1 4.89 × 101 4.75 × 100 4.26 × 10−1 4.46 × 10−1 3.48 × 10−1 1.98 × 10−1

Table 5. The optimal fitness of each algorithm (Dim = 100).

Function Item WOA ACO ALO GWO GJO SCGJO SCMGJO

F1
min 4.80 × 10−87 7.33 × 102 8.38 × 102 1.19 × 10−15 9.01 × 10−32 3.81 × 10−76 0.00 × 100

mean −3.35 × 10−46 −6.82 × 10−4 −1.04 × 10−2 −4.28 × 10−10 −2.60 × 10−18 7.97 × 10−41 −2.05 × 10−164

std 6.95 × 10−45 2.72 × 100 2.91 × 100 3.44 × 10−9 3.00 × 10−17 1.96 × 10−39 0.00 × 100

F2
min 7.70 × 10−54 4.13 × 10−3 2.13 × 10−106 1.64 × 10−8 8.38 × 10−19 1.32 × 10−40 0.00 × 100

mean 6.14 × 10−56 −7.10 × 100 1.41 × 100 2.80 × 10−12 −1.25 × 10−22 −1.60 × 10−43 0.00 × 100

std 2.31 × 10−55 5.05 × 101 4.14 × 101 1.69 × 10−10 9.15 × 10−21 1.74 × 10−42 0.00 × 100

F3
min 9.97 × 105 3.11 × 104 6.21 × 104 6.70 × 100 5.93 × 10−6 6.86 × 10−60 0.00 × 100

mean 1.22 × 100 −2.60 × 10−1 −4.93 × 10−1 −6.05 × 10−4 −1.24 × 10−6 −5.35 × 10−33 −5.41 × 10−165

std 4.97 × 101 2.31 × 101 2.89 × 101 3.12 × 10−1 3.19 × 10−4 2.20 × 10−31 0.00 × 100

F4
min 9.06 × 101 2.87 × 101 2.79 × 101 1.01 × 10−1 1.75 × 10−3 1.84 × 10−22 0.00 × 100

mean −1.24 × 100 −3.46 × 100 3.52 × 10−1 9.72 × 10−3 7.33 × 10−5 1.39 × 10−23 0.00 × 100

std 5.26 × 101 1.81 × 101 1.96 × 101 7.73 × 10−2 1.21 × 10−3 7.75 × 10−23 0.00 × 100

F5
min 9.73 × 101 7.47 × 103 1.11 × 103 9.76 × 101 9.86 × 101 9.81 × 101 9.81 × 101

mean 1.54 × 10−2 6.62 × 10−1 3.64 × 10−1 1.07 × 10−2 3.87 × 10−3 6.38 × 10−3 1.99 × 10−3

std 5.11 × 10−2 6.18 × 100 5.55 × 100 4.80 × 10−2 4.89 × 10−3 4.84 × 10−2 4.01 × 10−3

F6
min 2.93 × 100 7.63 × 102 2.20 × 103 8.42 × 100 1.66 × 101 2.18 × 101 1.94 × 101

mean −4.41 × 10−1 −4.94 × 10−1 −5.21 × 10−1 −3.31 × 10−1 −1.66 × 10−1 −6.83 × 10−2 −9.60 × 10−2

std 1.62 × 10−1 2.78 × 100 4.72 × 100 2.37 × 10−1 2.34 × 10−1 1.78 × 10−1 1.99 × 10−1

F7
min 7.38 × 10−4 2.06 × 106 4.33 × 106 6.02 × 10−3 1.19 × 10−3 4.02 × 10−5 7.92 × 10−5

mean −4.88 × 10−3 −8.64 × 10−2 3.31 × 10−1 5.03 × 10−4 1.02 × 10−3 −5.53 × 10−5 1.22 × 10−6

std 1.65 × 10−2 5.27 × 100 6.25 × 100 2.79 × 10−2 1.27 × 10−2 6.10 × 10−4 1.90 × 10−5

F8
min −6.36 × 103 −5.44 × 103 −5.44 × 103 −2.89 × 103 −2.26 × 103 −1.17 × 103 −3.56 × 103

mean 6.55 × 101 −1.00 × 102 −1.00 × 102 4.11 × 100 6.50 × 10−2 −2.25 × 100 3.72 × 101

std 4.19 × 10−1 0.00 × 100 0.00 × 100 4.78 × 101 4.76 × 101 7.16 × 101 5.39 × 101

F9
min 0.00 × 100 4.30 × 103 2.92 × 103 4.29 × 100 0.00 × 100 0.00 × 100 0.00 × 100

mean −9.59 × 10−10 −2.09 × 10−1 −3.60 × 10−1 9.63 × 10−3 −1.38 × 10−11 2.99 × 10−11 −1.43 × 10−10

std 1.77 × 10−9 6.52 × 100 5.32 × 100 1.73 × 10−1 3.25 × 10−9 2.53 × 10−9 7.83 × 10−10

F10
min 4.44 × 10−16 7.11 × 100 4.44 × 10−16 2.13 × 101 2.12 × 101 4.00 × 10−15 4.44 × 10−16

mean 5.08 × 10−17 3.53 × 10−1 0.00 × 100 5.04 × 10−2 8.10 × 100 −6.96 × 10−17 9.77 × 10−19

std 8.73 × 10−17 2.05 × 100 0.00 × 100 5.49 × 101 5.49 × 101 1.37 × 10−15 1.20 × 10−17

F11
min 0.00 × 100 1.24 × 100 1.16 × 100 6.66 × 10−16 0.00 × 100 0.00 × 100 0.00 × 100

mean −8.22 × 10−10 2.44 × 10−2 −1.76 × 10−3 −3.44 × 10−9 −2.70 × 10−10 −2.22 × 10−9 5.50 × 10−10

std 1.04 × 10−8 3.09 × 100 2.56 × 100 5.09 × 10−8 2.49 × 10−8 1.50 × 10−8 5.65 × 10−9
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Table 5. Cont.

Function Item WOA ACO ALO GWO GJO SCGJO SCMGJO

F12
min 2.78 × 10−2 6.55 × 103 1.63 × 105 1.93 × 10−1 6.21 × 10−1 1.03 × 100 7.75 × 10−1

mean −9.17 × 10−1 1.85 × 10−2 −7.93 × 10−1 −5.65 × 10−1 −3.74 × 10−1 −1.55 × 10−1 −1.22 × 10−1

std 3.19 × 10−1 9.44 × 100 1.04 × 101 4.92 × 10−1 4.73 × 10−1 3.77 × 10−1 3.29 × 10−1

F13
min 1.56 × 100 2.78 × 105 3.59 × 105 6.05 × 100 8.06 × 100 9.70 × 100 9.70 × 100

mean 8.66 × 10−1 −1.11 × 10−1 −1.56 × 10−1 3.72 × 10−1 1.91 × 10−1 3.00 × 10−2 2.98 × 10−2

std 3.39 × 10−1 6.58 × 100 6.77 × 100 4.47 × 10−1 3.72 × 10−1 1.71 × 10−1 1.70 × 10−1

Table 6. The optimal fitness of each algorithm (fixed-dimensional).

Function Item WOA ACO ALO GWO GJO SCGJO SCMGJO

F14
min 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1

mean −3.20 × 101 −3.20 × 101 −3.20 × 101 −3.20 × 101 −3.20 × 101 −3.20 × 101 −3.20 × 101

std 8.60 × 10−3 1.26 × 10−2 1.33 × 10−2 2.22 × 10−2 1.55 × 10−2 1.28 × 10−1 4.69 × 10−3

F15
min 9.19 × 10−4 1.23 × 10−3 1.04 × 10−3 9.21 × 10−4 1.19 × 10−3 5.21 × 10−4 9.79 × 10−4

mean 1.22 × 101 −2.25 × 103 −3.90 × 101 1.28 × 101 −1.52 × 101 9.29 × 10−2 1.54 × 10−1

std 1.82 × 101 2.91 × 103 4.18 × 101 1.94 × 101 5.47 × 101 9.21 × 10−2 3.42 × 10−2

F16
min −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100

mean 3.11 × 10−1 −3.11 × 10−1 −3.11 × 10−1 3.11 × 10−1 3.11 × 10−1 −3.12 × 10−1 3.13 × 10−1

std 5.67 × 10−1 5.67 × 10−1 5.67 × 10−1 5.67 × 10−1 5.67 × 10−1 5.66 × 10−1 5.62 × 10−1

F17
min 3.98 × 10−1 4.04 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.99 × 10−1

mean 2.77 × 101 5.94 × 100 1.15 × 101 4.57 × 100 4.57 × 100 2.72 × 100 2.71 × 100

std 8.12 × 100 4.96 × 100 2.96 × 101 1.09 × 101 1.09 × 101 6.10 × 10−1 6.00 × 10−1

F18
min 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100

mean −5.01 × 10−1 −5.00 × 10−1 −5.00 × 10−1 −5.00 × 10−1 −5.00 × 10−1 −5.00 × 10−1 −5.00 × 10−1

std 7.07 × 10−1 7.07 × 10−1 7.07 × 10−1 7.07 × 10−1 7.07 × 10−1 7.07 × 10−1 7.07 × 10−1

F19
min −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.85 × 100 −3.86 × 100 −3.85 × 100 −3.86 × 100

mean 5.07 × 10−1 5.08 × 10−1 5.08 × 10−1 4.67 × 10−1 5.00 × 10−1 4.67 × 10−1 4.69 × 10−1

std 3.73 × 10−1 3.71 × 10−1 3.71 × 10−1 4.37 × 10−1 3.84 × 10−1 4.32 × 10−1 4.33 × 10−1

F20
min 0.00 × 100 0.00 × 100 0.00 × 100 −3.07 × 100 −3.32 × 100 −2.64 × 100 −1.92 × 100

mean 1.26 × 101 2.06 × 101 −2.02 × 101 3.31 × 10−1 3.45 × 10−1 2.85 × 10−1 2.34 × 10−1

std 5.92 × 101 6.65 × 101 5.79 × 101 3.56 × 10−1 1.90 × 10−1 2.57 × 10−1 2.49 × 10−1

F21
min −5.10 × 100 −1.03 × 101 −1.03 × 101 −1.03 × 101 −1.03 × 101 −5.10 × 100 −1.03 × 101

mean 1.00 × 100 4.00 × 100 4.00 × 100 4.00 × 100 4.00 × 100 9.96 × 10−1 4.00 × 100

std 2.31 × 10−4 1.05 × 10−9 1.08 × 10−5 1.58 × 10−3 4.12 × 10−3 7.19 × 10−3 2.21 × 10−2

F22
min −1.06 × 101 −1.06 × 101 −1.06 × 101 −5.34 × 100 −5.34 × 100 −5.31 × 100 −1.05 × 101

mean 4.00 × 100 4.00 × 100 4.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 3.99 × 100

std 7.03 × 10−4 6.73 × 10−10 7.83 × 10−6 8.32 × 10−4 1.53 × 10−3 1.94 × 10−2 1.85 × 10−2

F23
min −1.07 × 101 −5.19 × 100 −1.07 × 101 −5.19 × 100 −5.19 × 100 −5.32 × 100 −1.02 × 101

mean 4.00 × 100 6.00 × 100 4.00 × 100 6.00 × 100 6.00 × 100 9.98 × 10−1 4.01 × 100

std 2.01 × 10−3 1.22 × 10−9 9.56 × 10−6 1.10 × 10−3 9.11 × 10−3 2.23 × 10−2 2.86 × 10−2

In addition, we also obtained the convergence curves of 100 independent runs. Figure 2
shows the 23 convergence curves of functions F1 to F13 in 30 dimensions and F14 to F23 in a
fixed dimension. For the test functions F1, F2, F3, F4, F5, F7, F9, F10, F11, F15, F16, and F19,
the optimization results of the SCMGJO algorithm reached the theoretical optimal value,
which further verifies the effectiveness of the sine–cosine strategy and Cauchy mutation in
escaping local optima and rapid searching and also indicates that the SCMGJO algorithm
has strong optimization ability and convergence speed.
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To sum up, through this detailed simulation experiment analysis, we can conclude that
the SCMGJO demonstrates excellent global optimization ability and convergence speed on
multidimensional test functions, especially in the outstanding performance on single-peak
benchmark functions. At the same time, its stability and robustness are also superior to
other comparative algorithms, providing strong support and reference for solving practical
optimization problems.
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5.3. Tension Compression Spring Design Problem

In order to further verify the ability of the SCMGJO algorithm in practical engineering
applications, the tension compression spring design problem is introduced. The tension
compression spring design problem is to select the design variables that minimize the mass
of the spring while satisfying a set of given constraints, where the design variables include
the wire diameter d(x1), the average diameter of the spring coils D(x2), and the number
of effective coils of the spring P(x3). Figure 3 shows the structural diagram of the tension
compression spring, and the cost function of this problem is as follows:

min f (x) = (x3 + 2)x2x2
1 (22)
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The constraint conditions are as follows:

g1(x) = 1 −
x3x3

2
71785x4

1
≤ 0 (23)

g2(x) =
4x2

2 − x1x2

12566
(

x2x3
1 − x4

1
) +

1
5108x2

1
− 1 ≤ 0 (24)

g3(x) = 1 − 140.45x1

x3x2
2

≤ 0 (25)

g4(x) =
x1 + x2

1.5
− 1 ≤ 0 (26)

The boundary constraint conditions are shown as follows:
0.05 ≤ x1 ≤ 2

0.25 ≤ x2 ≤ 1.3
2 ≤ x3 ≤ 15

(27)

We apply the SCMGJO proposed in this paper to the design of tension compression
springs and conduct comparative simulation experiments with five other algorithms,
setting the number of iterations to 100 and 300, respectively.

Figures 4 and 5 show the 100-iteration and 300-iteration diagrams of the comparison
of different algorithms in solving the tension/compression spring design problem, respec-
tively. Tables 7 and 8 show the objective function values of different algorithms in solving
the tension/compression spring design problem under 100 iterations and 300 iterations,
respectively. From Tables 6 and 7, it can be seen that the objective function value obtained
by the SCMGJO is the smallest, which is better than the objective function values of the
WOA, ACO, ALO, GWO, and GJO, indicating that the improved SCMGJO can minimize
the manufacturing cost of this project compared to other algorithms, overcome multiple
interference factors, and demonstrate the superior ability of the SCMGJO in solving the
tension/compression spring design problem in this paper.
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Table 7. Comparison of different algorithms for solving the design problem of tension compression
springs (100 iterations).

Algorithm d D P Cost

WOA 0.057197 0.50426 5.9959 0.01319
ACO 0.058969 0.55289 5.2814 0.013999
ALO 0.062969 0.68714 3.4902 0.014959
GWO 0.05 0.317381 14.0454 0.012731
GJO 0.055832 0.45237 7.5607 0.013482

SCGJO 0.05 0.316472 14.3817 0.012961
SCMGJO 0.052355 0.37238 10.4605 0.012719

Table 8. Comparison of different algorithms for solving the design problem of tension compression
springs (300 iterations).

Algorithm d D P Cost

WOA 0.0500839 0.313818 14.6824 0.013132
ACO 0.053635 0.40164 9.283 0.013036
ALO 0.063608 0.717 3.1884 0.015051
GWO 0.05 0.315994 14.2685 0.012852
GJO 0.055007 0.44144 7.6696 0.012916

SCGJO 0.0510244 0.340295 12.4931 0.01284
SCMGJO 0.0500092 0.317531 14.0302 0.01273

5.4. Three-Bar Truss Design Problem

The core objective of the three-bar truss design problem is to minimize the volume
of the entire three-bar truss by adjusting the cross-sectional areas x1 and x2. During this
process, each truss component is subject to specific stress σ limitations. This optimization
problem not only involves a nonlinear fitness function but also three nonlinear inequality
constraints, and it also needs to handle two continuous decision variables. Figure 6 shows
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the structural diagram of the three-bar truss, and the specific form of the objective function
is as follows:

min f (x) =
(

2
√

2x1 + x2

)
· L (28)
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The constraint conditions are as follows:

g1(x) =
2
√

2x1 + x2√
2x2

1 + 2x1x2
P − σ ≤ 0 (29)

g2(x) =
x2√

2x2
1 + 2x1x2

P − σ ≤ 0 (30)

g3(x) =
1

x1 +
√

2x2
P − σ ≤ 0 (31)

The boundary constraint conditions are shown as follows:{
0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1

(32)

The SCMGJO proposed in this paper is applied to the design of the three-bar truss
design problem, and comparative simulation experiments are carried out with the other
five algorithms, with the iteration times set to 100 times and 500 times, respectively.

Figures 7 and 8 show the 100-iteration and 500-iteration diagrams of the compar-
ison of different algorithms in solving the three-bar truss design problem, respectively.
Tables 9 and 10 show the objective function values of different algorithms in solving the
three-bar truss design problem under 100 iterations and 500 iterations, respectively. From
Tables 8 and 9, it can be seen that the objective function value obtained by the SCMGJO
is the smallest in both 100 iterations and 300 iterations, which is better than the objective
function values of the WOA, ACO, ALO, GWO, and GJO, indicating that the improved
SCMGJO can minimize the volume of the three-bar truss in this project compared to other
algorithms, effectively avoiding local optima, and demonstrating the superior ability of the
SCMGJO in solving the three-bar truss design problem in this project.

Table 9. Comparison of different algorithms for solving the design problem of the three-bar truss
(100 iterations).

Algorithm x1 x2 Cost

WOA 0.78141 0.4292 263.9359
ACO 0.78153 0.42885 263.9344
ALO 0.88575 0.1855 269.0788
GWO 0.79052 0.40315 263.9088
GJO 0.78294 0.4257 264.0194

SCGJO 0.83404 0.29328 265.2301
SCMGJO 0.78981 0.40517 263.9087
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Table 10. Comparison of different algorithms for solving the design problem of the three-bar truss
(500 iterations).

Algorithm x1 x2 Cost

WOA 0.79165 0.39989 263.903
ACO 0.78623 0.41531 263.9108
ALO 0.75445 0.51481 264.8722
GWO 0.78221 0.42687 263.9285
GJO 0.79267 0.39706 263.9086

SCGJO 0.77453 0.45173 264.2439
SCMGJO 0.78634 0.41488 263.8999

5.5. Unmanned Aerial Vehicle (UAV) Path Planning

When applying the SCMGJO to handle the path planning problem of unmanned aerial
vehicles, the fitness value of an individual is calculated through the cost function. The
cost function is jointly determined by the path length cost, vertical height cost, smoothing
processing cost, and safety cost, and the optimal solution is found in each iteration process to
achieve the selection of the route with the minimum flight path cost. When solving the path
planning with the SCMGJO, the cost function and constraint conditions of the unmanned
vehicle path planning problem are first determined, and the SCMGJO is initialized; then,
a certain number of individuals are generated for the population using the tent chaos
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mapping, the fitness value of the individuals in the population is calculated, and the
optimal solution and the suboptimal solution are selected as the positions of the male and
female golden leopards of the SCMGJO for the iterative search of the SCMGJO. In each
iteration, the position is updated using the sine–cosine strategy and the Cauchy mutation
strategy until the algorithm termination condition is met. The lowest cost map of the output
path and the path planning map of the unmanned machine are output.

To verify the effectiveness of the SCMGJO proposed in this paper in the unmanned
aerial vehicle path planning problem, this experiment sets up two different scenarios for
simulation experiments. The flight space size is 1000 m × 1000 m × 400 m, the number of
selected populations is 100, and the number of iterations is 10. The whale optimization al-
gorithm (WOA), ant colony optimization algorithm (ACO), ant lion optimization algorithm
(ALO), gray wolf optimization algorithm (GWO), golden jaguar optimization algorithm
(GJO), and the sine–cosine and Cauchy mutation golden jackal optimization algorithm
(SCMGJO) are selected for comparison. The unmanned aerial vehicle needs to fly from the
starting point to the end point and bypass the threat source. The cost function is used to
measure the performance of the algorithm in the unmanned aerial vehicle path planning.
The lower the cost, the better the performance. In this experiment, two different scenarios
are used in the simulation to test the performance of each algorithm in the unmanned aerial
vehicle path planning.

Scene 1: There are six threat sources in this scene, and Table 11 shows the threat source
information. The starting position of the unmanned vehicle is (200, 100, 150), and the
ending position is (800, 800, 150). Figure 9 shows the three-dimensional scene after setting
the parameters.

Table 11. Parameters of the threat source (Scene 1).

Number Coordinates Height Radius

1 (400, 600, 0) 100 80
2 (600, 250, 0) 150 70
3 (500, 450, 0) 100 80
4 (350, 300, 0) 100 70
5 (700, 450, 0) 100 70
6 (650, 660, 0) 100 80
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In Scene 1, the top views and three-dimensional simulations of the unmanned aerial
vehicle path planning for each algorithm are shown in Figures 10 and 11, respectively.
From these figures, it can be seen that SCMGJO outperforms other algorithms in both top
views and three-dimensional coordinates. The GJO does not avoid the last threat source
and flies straight through it, while SCMGJO has a significant performance improvement
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compared to the GJO. The WOA’s planned path can be clearly seen in both the top view
and three-dimensional view, which is inferior to SCMGJO. Although the GWO does not fly
through the threat source like the GJO, it has a detour behavior. The ALO and the ACO are
similar to the SCMGJO in the top view, but in the three-dimensional coordinates, it can be
clearly seen that the ALO and the ACO have multiple fluctuations in the vertical height,
which affects the overall cost. Figure 12 shows the iterative cost curve of each algorithm.
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Scene 2: There are nine threat sources in this scene, and Table 12 shows the threat
source information. The starting position of the unmanned vehicle is (200, 100, 150), and
the ending position is (800, 800, 150). Figure 13 shows the three-dimensional scene after
setting the parameters.
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Table 12. Parameters of the threat source (Scene 2).

Number Coordinates Height Radius

1 (400, 600, 0) 150 80
2 (600, 200, 0) 150 90
3 (500, 420, 0) 150 80
4 (300, 350, 0) 150 100
5 (700, 450, 0) 150 70
6 (150, 500, 0) 150 80
7 (350, 750, 0) 150 60
8 (800, 300, 0) 150 90
9 (600, 600, 0) 150 90
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speed, insufficient accuracy, weakened optimization ability in the later stage, and the ten-
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vehicle path planning simulation experiment verifies that the SCMGJO algorithm has the 
ability to perform path planning in both simple and complex environments and has better 
performance and a shorter execution time. 
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In Scene 2, the top views and three-dimensional simulations of the unmanned aerial
vehicle path planning for each algorithm are shown in Figures 14 and 15, respectively.
From these figures, it can be seen that when the number of threat sources is increased,
making Scene 2 more complex than Scene 1, the SCMGJO algorithm still maintains superior
performance. The traditional GJO algorithm makes the same mistake as in Scene 1, failing to
avoid the threat sources and flying straight through them. The GWO algorithm makes the
same mistake as the GJO algorithm, indicating that the performance of the GWO algorithm
needs to be improved in this scenario. The WOA and the ACO algorithm take a detour
when passing through the last threat source, increasing the length of the path and affecting
the overall cost. The ALO algorithm shows the same phenomenon as in Scene 1, with
multiple fluctuations in the vertical height, increasing the cost of path planning. Figure 16
shows the iterative cost curve of each algorithm in Scene 2.

To sum up, the improved SCMGJO addresses the problems of slow convergence
speed, insufficient accuracy, weakened optimization ability in the later stage, and the
tendency to fall into local extremum that exist in the traditional GJO. This unmanned aerial
vehicle path planning simulation experiment verifies that the SCMGJO algorithm has the
ability to perform path planning in both simple and complex environments and has better
performance and a shorter execution time.
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6. Conclusions 
This study introduces a sine–cosine and Cauchy mutation golden jackal optimization 

algorithm (SCMGJO), which combines sine–cosine and Cauchy mutations to overcome the 
shortcomings of the GJO algorithm. In the algorithm design, the tent mapping reverse learn-
ing strategy is used to initialize the golden leopard population. The introduction of sine–
cosine and Cauchy mutations significantly improves the global and local search capabilities 
of the algorithm. To verify the performance of the SCMGJO algorithm, 23 benchmark test 
functions were selected and in-depth simulation experiments were conducted. The experi-
mental results show that compared with the traditional GJO algorithm, SCMGJO has signif-
icant advantages in solution accuracy and convergence speed. In addition, compared with 
other algorithms, SCMGJO shows a significant improvement in the optimization capabili-
ties of multidimensional single-peak and multi-peak functions. Furthermore, engineering 
application simulations are introduced. The simulation results show that SCMGJO outper-
forms the traditional GJO and other compared algorithms in terms of solution accuracy and 
convergence speed. From a large amount of experimental data, it can be concluded that 
SCMGJO has significantly improved the optimization capabilities of multidimensional 
functions, but it still requires continuous optimization for fixed-dimensional functions. 

Looking to the future, we will continue to conduct in-depth research to optimize the 
SCMGJO algorithm, enhance the algorithm’s optimization capabilities in fixed low-dimen-
sional spaces, and expand the application of the SCMGJO algorithm in more engineering 
fields. We will continuously improve the algorithm’s universality and robustness to better 
solve various practical optimization problems. Through continuous exploration and im-
provement, the SCMGJO algorithm will play a greater role in the field of optimization. 
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6. Conclusions

This study introduces a sine–cosine and Cauchy mutation golden jackal optimization
algorithm (SCMGJO), which combines sine–cosine and Cauchy mutations to overcome
the shortcomings of the GJO algorithm. In the algorithm design, the tent mapping reverse
learning strategy is used to initialize the golden leopard population. The introduction of
sine–cosine and Cauchy mutations significantly improves the global and local search capa-
bilities of the algorithm. To verify the performance of the SCMGJO algorithm, 23 benchmark
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test functions were selected and in-depth simulation experiments were conducted. The
experimental results show that compared with the traditional GJO algorithm, SCMGJO has
significant advantages in solution accuracy and convergence speed. In addition, compared
with other algorithms, SCMGJO shows a significant improvement in the optimization
capabilities of multidimensional single-peak and multi-peak functions. Furthermore, engi-
neering application simulations are introduced. The simulation results show that SCMGJO
outperforms the traditional GJO and other compared algorithms in terms of solution accu-
racy and convergence speed. From a large amount of experimental data, it can be concluded
that SCMGJO has significantly improved the optimization capabilities of multidimensional
functions, but it still requires continuous optimization for fixed-dimensional functions.

Looking to the future, we will continue to conduct in-depth research to optimize
the SCMGJO algorithm, enhance the algorithm’s optimization capabilities in fixed low-
dimensional spaces, and expand the application of the SCMGJO algorithm in more engi-
neering fields. We will continuously improve the algorithm’s universality and robustness to
better solve various practical optimization problems. Through continuous exploration and
improvement, the SCMGJO algorithm will play a greater role in the field of optimization.
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