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Abstract: Recent evaluations of counter-based periodic testing strategies for fault detection in Micro-
processor (µP) have shown that only a small set of counters is needed to provide complete coverage
of severe faults. Severe faults are defined as faults that leak sensitive information, e.g., an encryption
key on the output of a serial port. Alternatively, fault detection can be accomplished by executing
instructions that periodically test the control and functional units of the µP. In this paper, we propose
a fault detection method that utilizes an ’engineered’ executable program combined with a small
set of strategically placed counters in pursuit of a hardware Periodic Built-In-Self-Test (PBIST). We
analyze two distinct methods for generating such a binary; the first uses an Automatic Test Generation
Pattern (ATPG)-based methodology, and the second uses a process whereby existing counter-based
node-monitoring infrastructure is utilized. We show that complete fault coverage of all leakage faults
is possible using relatively small binaries with low latency to fault detection and by utilizing only a
few strategically placed counters in the µP.

Keywords: fault emulation; RISC-V; FPGA; ATPG; fault analysis; fault detection; DFT; information
leakage; cryptography

1. Introduction

Information leakage in µPs, a security vulnerability that occurs when sensitive informa-
tion is accessed or transmitted without proper authorization while executing applications
such as cryptographic algorithms, has become a hotbed for research over the last couple
of years [1,2]. The challenges associated with providing leakage-safe implementations are
numerous and stem from the existence of countless vectors that lead to these situations.
For example, Electromagnetic Induction (EMI) can cause a µP to enter an unexpected state,
or a physical attack can damage the µP or disrupt its operation. Another common cause
of stuck-at faults is hardware failure, such as a faulty transistor or a damaged electrical
connection. Software bugs can also cause a system stuck-at fault. For example, a bug in
the operating system or a malicious application can cause the µP to enter an infinite loop,
preventing it from servicing other concurrent applications. When these faults occur, it
is important to identify the root cause of the failure, which typically involves examining
hardware components, analyzing software logs, and performing diagnostic tests.

In this paper, we propose a low-overhead method that utilizes already existing DFT
scan chains and a handful of counters in conjunction with a specially designed binary to
achieve low-latency hardware fault detection. We propose two methods of creating the
specially designed binary. In the first method, we use a counter-based leakage detection
method and a processor run-cycle analysis to determine the failure point on the µP caused
by an injected fault and to recreate the processor state at that failure point. In the second
method, a binary is constructed with the assistance of ATPG tools, which coerces ATPG
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vectors into closely matched processor instructions and register file values. The goal is
to create a relatively small binary program that provides high levels of fault coverage.
Experimental results are provided for each method and compared to determine which
process provides the highest coverage when considering binary generation complexity.

The specific contributions of this work include the following:

• The evaluation of fault propagation latency for leakage scenarios when executing a
common cryptography algorithm on an RISC-V processor.

• An analysis and discussion of the process that converts exact processor states, i.e., reg-
ister values, peripheral states, and instruction inputs, into specialized low-instruction-
count binaries targeted at triggering hard-to-reach faults. Given that the binary will
be stored in memory for periodic fault detection, minimizing size, e.g., less than
100 instructions, is an important design goal.

• An analysis of the specialized binary executables and an analysis that compares fault
trigger latencies with the latencies obtained when executing common
cryptography algorithms.

The remainder of this paper is organized as follows. Section 2 discusses additional
related work. Section 3 describes the experimental design and attributes of the binary
generation sequence. Section 4 presents the details of the proposed Periodic Built-In-Self-
Test (PBIST). Section 5 presents the fault coverage and latency results for the generated
binaries. Section 6 presents our conclusions.

2. Related Work

An overview of the different strategies that can be employed to detect faults through
either continuous checkers (also called concurrent) or periodic testing is provided in [3].
The authors describe four general approaches, namely redundant execution, PBIST, dy-
namic verification, and anomaly detection. The periodical specialized binary run described
in this work falls under the periodic built-in self-test category. The method is uniquely
applied here to detect faults before information leakage occurs and is portable to a wide
range of µP architectures and input–output peripherals. The methods described in previous
work have higher overhead and do not address protection against information leakage.

Software-only fault detection methodologies are described in [4–6], which significantly
improve reliability without requiring hardware modifications. This makes software redun-
dancy techniques significantly cheaper and easier to deploy. For example, the authors of [4]
used code transformation and specialized instructions to create fault-resistant binaries,
which require a lengthy processor-specific, fault-agnostic run and do not provide true fault
detection—only fault tolerance under certain circumstances.

The authors of [7] introduced an RISC-V framework for hardware–software codesign
that can aid in the implementation of secure and safe SoCs based on RISC-V. The script-
based framework provides cycle-true verification, ensuring accuracy in the simulation
of hardware and software interactions. The framework’s versatility makes it applicable
in various scenarios, including designing systems resilient against Side-Channel Attacks
(SCAs) and other vulnerability points. Additionally, the authors show that the framework
enables the fast implementation, functional verification, and post-synthesis verification of
projects such as the design of Post-Quantum Cryptography ISA extensions for RISC-V and
cryptographic hardware accelerators for the Advanced Encryption Standard (AES). While
this framework is effective in speeding up the evaluation of software-aware. hardware-
dependent metrics such as performance, power consumption, and area utilization, it has
not been shown to be capable of aiding in the detection of hardware-based information
leakage faults.

The authors of [8] proposed a predominantly software-based fault detection scheme
supplemented by hardware. They utilized a special instruction set, which they coined as
Access-Control Extension (ACE), that interacts with a custom-instrumented, full-scan chain
to test the µP. Unfortunately, the specialized instructions add complexity to the µP and
create a side-channel attack vector. The implementation of their approach is complicated
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because the ACE instructions are privileged to only the ACE firmware. Additionally,
the tree architecture exposes no avenue to target information leakage sites. In contrast,
our proposed periodic testing method introduces only a small set of counters and utilizes
standard instructions, eliminating the need for custom instructions.

Austin [9] proposed a µP with a unique architecture called Dynamic Implementation
Verification Architecture (DIVA), designed to detect both transient and permanent faults.
In DIVA, a checker validates the functional unit result by recomputing it using the instruc-
tion’s input operands and compares this result before permitting the instruction to commit.
Despite the advantage of a simplified checker design due to the leveraging of processor
pipeline decisions, there is considerable overhead in the checker pipeline. This limitation
restricts its practical use to super-scalar architectures. Additionally, the effectiveness of
DIVA relies on the assumption that the register file and memory employ Error-Correcting
Code (ECC) for error detection and correction, serving as a mitigation strategy against
faults related to storage.

In [10], a high-level, symptom-based fault detection technique combining hardware
and software was introduced. This method monitors software execution to identify anoma-
lous behavior. The fault detection process occurs at a high level by observing hardware
traps and utilizing µP performance counters. While the technique demonstrates an ability
to detect 95% of unmasked faults, it comes with a potential drawback of high latency.
Most faults are identified within the first 100,000 instructions, but some may take longer,
extending up to 10 million instructions.

In recent work [11], a high-speed fault emulation platform was developed on an
FPGA to assess the Potato RISC-V µP [12]. A dynamic verification or continuous symptom-
monitoring approach was proposed to evaluate information leakage events introduced
by faults from various classes. The study delved into the effectiveness and latency asso-
ciated with a set of countermeasures based on self-assertions called Self-Assertion-Based
Countermeasures (SABC)s. Self-Assertion-Based Countermeasures (SABC)s perform con-
sistency checks on instruction and datapath values during program execution. The fault
detection results and the associated latency are compared to those provided by a periodic
counter-based countermeasure proposed in [13]. The evaluation of the SABCs includes
assessing the number of severe faults they can detect, the latency associated with these
detections, and the extent of collateral coverage for active faults. The results demonstrated
that SABCs are nearly as effective as the node counter-based CMs in detecting all active
faults and are nearly equivalent in effectiveness for detection of severe faults. Notably,
all severe faults are successfully detected by SABCs, highlighting the effectiveness of the
proposed countermeasures in preventing information leakage during program execution.
The SABCs, however, are expected to scale somewhat poorly to more complex micropro-
cessor architectures, including super-scalar architectures. Integrating them will demand
adjustments and additional resources to navigate the heightened intricacies of the pipeline.
Specifically, this involves synchronizing assertions with out-of-order executed instructions
and managing the complexities associated with branch prediction and execution.

In other recent work [13,14], a counter-based node-monitoring technique and a fault
injection technique were proposed. In this paper, we will expand on previous work to
explore µP information leakage by analyzing internal node fault effects and discuss a
low-overhead fault detection methodology that enables periodic fault detection without
the need for special instructions or to take the µP offline.

3. System Overview

This section describes the RISC-V architecture used in the emulation experiments,
including a special add-on feature referred to as Emulation ROM Side Loading (ERSL),
which enables binary executable loading to be accomplished at run time, as well as the
characteristics of the fault campaign, Fault Injection Manager (FIM) and Fault Emulation
Engine (FE). Also discussed are the CAD tools used in the synthesis and implementation,
the testing process, and details regarding counter-based periodic testing.
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3.1. RISC-V Architecture

The architecture of the Potato µP utilized in this research is shown in Figure 1. Potato
is compliant with the RISC-V v2.0 standard [12] and is classified as a 32-bit RISC-V ISA CPU
core (RV32I). It possesses a complete set of integer instructions with Control and Status
Register (CSR) and exception handling while supporting RISC-V integer (I), multiplication
and division (M), and CSR instruction (Z) extensions (RV32IMZicsr). All instructions except
load and store execute in one clock cycle. Potato utilizes the wishbone B4 standard [15] as
an internal bus.

Figure 1. Block diagram of Potato’s five-stage pipeline [12].

3.2. Fault Campaign Characteristics

A fault campaign refers to the characteristics of the Fault Injection (FI) system [16].
The architecture employed in this research is shown in Figure 2 and has the following features:

• The Potato µP [12] serves as the processor under test, configured with a 32 KB ROM
for application code and a 132 KB BRAM for scratch memory. The netlist for Potato
is generated using an ASIC synthesis and place-and-route computer-aided design
(CAD) tool flow in which 34,110 fault injection circuits are integrated. The netlist is
instrumented with scan chains, which provide access to fault injection circuits and
counters. The instrumented netlist is used as input to an FPGA CAD tool flow to
produce the programming bitstream for the FPGA.

• The Xilinx UltraScale+ Multiprocessor System-On-Chip (MPSoC) FPGA on the ZCU102
development board serves as the emulation platform for the Potato µP.

• The Fault Injection Manager (FIM) is implemented as a C program that runs on an
embedded processor within the FPGA. Similar to the FI architecture proposed in [11],
we leverage two 32-bit high-speed, memory-mapped General-Purpose Input/Output
(GPIO) registers to facilitate fault injection, control, and counter data retrieval between
the Processing System (PS) and Programmable Logic (PL) components.

• The fault injection circuits implement four fault types, namely stuck-at-0 (SA0),
stuck-at-1 (SA1), delay, and inversion, and are configured using the GPIO-connected
scan chains.

• The FE is realized as a set of State-Machines (SM)s designed to collect serial and address
bus data as Potato executes the Advanced Encryption Standard (AES) algorithm [17].
Configured by the FIM, the SMs limit the number of run cycles. When combined with
a binary search routine implemented within the FIM C program, this setup enables
the latency of fault effects to be determined.

• A wishbone-based independent ROM binary side-load architecture is integrated into
the design, which significantly accelerates the testing process.

• The C program running in the PS of the FPGA is used for communication with and
control of the Fault Emulation Engine (FE) and the ROM wide-load module, which
are both implemented in the PL.

• The fault detection capabilities and detection latencies of the countermeasures (CMs)
are assessed offline using data collected from the scan chains.
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Figure 2. Block diagram of the experimental setup with ROM side load for rapid binary loading and
testing. Adapted from [13].

3.3. System Architecture

The emulation hardware platform uses a Xilinx ZCU102 development board [18],
in which both the PS and PL are utilized in a codesign-based system architecture.

3.4. Fault Injection Circuit with Counter (FIC)

The Fault Injection (FI) circuit structure is implemented using three scan chains,
namely scan_in[0], scan_in[1], and scan_in[2]. The first scan chain, with scan_in[0], is used
to selectively enable one of the faults, while scan inputs [1] and [2] are used to select from
one of four fault types. The scan chain consists of 34,110 elements, i.e., one instance of
the FI is added to each of the gate input signals driving the logic gates within an instance
of Potato’s core ASIC design. The term fault injection with counter, or FIC, refers to the
encompassing circuit, which includes both a counter and an FI circuit instance. The scan
chains are extended into the counter circuit, as shown in Figure 3, to enable the count
values to be scanned out after each FI experiment. The counters record the number of rising
and falling transitions that occur on the node during the program’s execution.

In prior work [11], we showed that a substantial proportion of the active faults within
various fault types, including Stuck At 0 (SA0), Stuck At 1 (SA1), delay, and invert fault
classes, can be identified by a relatively small number of counters. In particular, a set of
five counters has been shown to identify a large fraction of all faults. Notably, this identical
set of counters also proves adept at detecting all severe faults, underscoring their efficacy
across all active fault scenarios. However, several severe faults have been shown to have
high latency, with as many as 6 million cycles during program execution.

In this work, we demonstrate that a small number of µPs with carefully crafted
instructions designed to exercise specific nodes and the small subset of counters identified
in previous work, referred to as TopCounters, can be used to detect all faults that lead to
information leakage with very low latency. Therefore, an effective countermeasure can
be constructed with the node-monitoring counters in Figure 3 (without the fault injection
portions) to serve as a part of a Periodic Built-In-Self-Test (PBIST) Counter-Measure (CM)
for the detection of information leakage faults in the Potato RISC-V design.



Cryptography 2024, 8, 16 6 of 16

Figure 3. Schematic of the counter circuit without fault injection signals.

3.5. Testing Process

To initialize each test, the C program uses the The Processor Configuration Access
Port (PCAP) interface to configure the FPGA fabric with the instrumented Potato bitstream.
This bitstream incorporates the default AES binary executable stored in the BRAM-based
emulated ROM of the µP. The ERSL shown in Figure 4 is used to override the boot memory
locations with the executable binary being tested. The fault-free counter values associated
with each designed binary are then computed by executing a fault-free run of Potato at
1024 clock cycle increments for the entirety of the AES algorithm execution, which spans
6,717,440 clock cycles. In subsequent steps of the testing process, faults are injected in a set
of faulty runs of the selected binary to determine the latency to fault detection.

Figure 4. Block diagram of the Wishbone side-load architecture.

4. Fault Trigger Binary Executable (FTBE)

The Fault Trigger Binary Executable (FTBE) is a minimized set of instructions designed
to recreate a processor state that leads to information leakage in the presence of a fault
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with minimal latency. In this section, we describe two methods that can be used to generate
an FTBE and discuss the tradeoffs between the two. The first, which we call the Fault-
Run-Cycle-Based FTBE (RCBE), is created by utilizing the counters already present in
the FE, where we identify the run cycle in which faults are observable while running the
cryptography algorithm encode/decode sequence. The second method, which we call the
ATPG-Based FTBE (ATPGB), is created by using an ATPG flow to create high-coverage test
vectors, which are coerced into µP instructions and represent a sequence of concise stimuli.

4.1. Run Cycle-Based Binary

The process of generating the Fault-Run-Cycle-Based FTBE (RCBE) is visually pre-
sented in Figure 5 and is categorized into three segments. The first segment is called
Incremental Search Fault-Detected Cycle (IFTC) and is color-coded in blue. It involves
determining the specific run cycles during which faults become observable on the node
counters while the AES algorithm is executing. The second set of steps handles the deter-
mination of Microprocessor (µP) state at IFTC, color-coded in purple, is executed once the
IFTC is found and used to determine the state of the Microprocessor (µP) at the identified
fault-observable run cycles. The last segment, color-coded in green, is called binary creation
for fault-triggered state replication. In this step, using the knowledge of the IFTC and µP
state, a binary is crafted to replicate the state of the µP where faults are triggered. Each step
is discussed in greater detail in the following subsections.

Figure 5. Flowchart for the generation of the RCBE.
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4.1.1. Identification of Fault-Observable Run Cycles (IFTCs)

Identifying the IFTC requires generating and searching through node counter values
for over 6 million clock cycles. Carrying out this search in a single-cycle incremental search
would be impractical; therefore, the task is broken down into stages that combine a binary
search and an incremental search to define a solution that has much lower memory and
run-time overhead.

The process for identifying the IFTC is listed as follows:

1. Fault-free counter values for each node while running the AES binary are generated
and stored in increments of 1024 cycles from cycle 0 to cycle 6,717,440.

2. A binary search with an exponentially increasing multiple of 1024 clock cycles is
then performed.

• The binary search concludes when a multiple of 1024 clock cycles is identified
where the fault remains undetected at the lower bound but is detected at the
upper bound.

• Since the search spans from 1024 to 6,717,440 clock cycles in increments of 1024,
each fault necessitates 13 iterations to complete the process.

3. When a fault is detected through the binary search method, the run cycle is stored as
a Binary Search Fault-Detected Cycle (BFTC).
Table 1 shows the BFTCs (severe-fault detect cycles) at 1024 cycle increments for Potato
when running the AES binary. Each run cycle is passed onto the next step in the
process, incremental sweep search, as a starting value for the single-cycle increment
analyses. The highest latency fault triggered is at cycle 6,078,464 and correlates
with delay faults. Detecting these delay faults at much lower latencies is crucial for
this work.

Table 1. AES BFTCs on Potato.

Fault Type Run Cycle Triggered

Stuck-At-0 1024; 552,960; 557,056; 1,728,512

Stuck-At-1 1024; 557,056; 552,960; 1,728,512; 1,478,656

Delay 1024; 552,960; 557,056; 573,440; 1,478,656; 1,728,512; 1,732,608; 6,078,464

Invert 1024; 557,056; 552,960; 1,728,512

4. Perform an incremental sweep strategy.

• The incremental sweep begins at run cycle BFTC − 1024 due to the binary search
being implemented at 1024 clock cycle increments and iterates at single-clock pe-
riod increments. Both the fault-free and faulty tests are executed in this 1024-cycle
incremental run.

• The clock cycle in which the counter values differ is referred to as the Incremental
Search Fault-Detected Cycle (IFTC) and is the exact cycle in which the fault is
first observable by analyzing the node counters.

• A script that takes multiple BFTCs as input arguments and performs the in-
cremental search while iterating through the BFTCs is utilized to automate
this process.

Table 2 shows the IFTCs, (severe-fault detect cycles)at single-cycle increments for Potato
when running the AES binary. Each run cycle is passed onto the next step as a stop cycle
for the simulation run.
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Table 2. AES IFTCs on Potato.

Fault-Type Run Cycle Triggered

Stuck-At-0 184; 641; 553,064; 550,800; 1,728,272

Stuck-At-1 184; 641; 550,800; 553,064; 553,320; 1,728,272; 1,477,576

Delay 184; 641; 553,064; 553,320; 550,800; 569,576; 1,477,576; 1,728,272; 1,728,696;
1,729,024; 1,728,512; 6,076,072

Invert 184; 641; 550,800; 553,064; 1,728,272

4.1.2. Determination of Microprocessor (µP) State at the IFTC

The µP state at the IFTC is extracted with a SystemVerilog test bench, which instantiates
a clean, non-instrumented version of Potato loaded with the same AES executable as
the instrumented Potato. This ensures that, in a fault-free run, both the simulated and
emulated Potato would be in the same state, including register values, peripheral states,
and instruction inputs. The test bench starts at run cycle 0 and simulates Potato to the
IFTC; it then stores the values of each general-purpose register, as well as the previous
10 instructions before that point. The test bench also stores the values read from and
written-to-execution memory and the Wishbone interconnect bus for that time frame.

4.1.3. Binary Creation for Fault-Triggered State Replication

With the µP state values at the IFTC extracted, the FTBE is created with the follow-
ing steps:

1. First, register states are recreated. This is accomplished by utilizing Load upper
immediate (LUI) and ADD Immediate (ADDI) instructions (Note that Potato does not
implement the Load Word Immediate (LWI) instruction and that LWI should be used
for processors that do implement the instruction).

2. Second, memory locations that are accessed by the binary executable are reconstructed
by storing the values read by the µP in the simulation in the addresses from which
the binary executable will later be read.

Combining these into a binary program, with the memory and peripheral state re-
construction instructions executed first, followed by the register load instructions, creates
an executable that mimics the processor state at the IFTC. Figure 6 shows a system-level
view for generating the RCBE from node counter values and which device is utilized.
The counter values are extracted from the Potato core by the PL, the fault trigger cycles are
analyzed by the PS, the processor state values are determined by a simulation running on
the host, and the binary is then constructed. Finally, the binary is loaded into the Potato
core for testing using the ERSL.

Figure 6. Block diagram of the Fault-Run-Cycle-Based FTBE (RCBE).
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4.2. ATPG-Based Binary

Creating an ATPG-Based FTBE (ATPGB) requires the generation of ATPG test vectors
and conversion of those normally serial test vectors into binaries that correlate with high
fault coverage of the ATPG test vectors. Figure 7 shows a flowchart for the ATPGB
generation process. The first step is to modify the Potato RTL so that the values of the
instruction memory and general-purpose registers are observable on output ports at the
top level. This is done to make extracting the µP state values easier following synthesis and
to ensure minimal impact on the generated test patterns. Next, an open-source Design For
Testing (DFT) solution, AUCOHL-Fault (Fault) [19], is utilized to automatically generate
test patterns. The test patterns are then converted into an FTBE.

Figure 7. Flowchart for generating the ATPG FTBE.

To create the ATPG test vectors, the Potato module is synthesized and mapped to
the osu035_stdcells library [20] by calling the Fault synth command. This initiates a
Yosys [21]-based synthesis script and generates a flattened netlist. The netlist is then cut
using the fault cut command, which eliminates the flip-flops in the netlist, converting it
into a pure combinational netlist, which is utilized in conjunction with the original netlist
to generate the test vectors. Lastly, test vectors are generated with the AUCOHL-Faults
built-in PODEM [22] test pattern algorithm. Patterns are generated with default values of
100 test vectors and an expected minimum of 95% coverage. The generated test vectors for
Potato offer 82% fault coverage of the design.

Figure 8 shows a diagram of the conversion process from ATPG test vectors to the
FTBE, which is described as follows:
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1. The DFT scan-inserted Potato µP is simulated in test_mode, i.e., scan_en asserted,
with the ATPG vectors as a stimulus in the scan_in port.

2. During the simulation, instruction memory values, as well as the general-purpose
registers, are captured from the signal exported to the top-level ports and stored for
each test vector.

3. Processor state values are parsed to extract only those that contain valid instruction
memory inputs and within valid address ranges. The processor state values extracted
from the ATPG vectors differ from the RCBE in that preceding instructions are not
available due to the non-contiguous nature of ATPG vectors. As a result, the binary
program conversion process is slightly different.

4. An RISCV assembler [23] is used to convert the instructions into the RV32I [24] set
that Potato supports.

5. The set of instructions is used to heuristically construct a coherent binary program
while avoiding endless loops and other unwanted processor states.

Figure 8. Block diagram of the ATPG-based FTBE.

5. Experimental Results

The primary goal of the FTBE fault coverage experiment is to determine the fault
detection capabilities of each binary executable and to identify the minimum latency in
which they trigger those faults. In this section, we focus on identifying the designed binary
programs that provide the smallest possible severe fault trigger latency and compare the
results with the latencies of other binary executables. The analysis in this section is carried
out on the faults in the SevereFaults [14] class only and the five counters discussed earlier
in Section 3.4 that are determined to provide the highest fault coverage.

For each test run, the ERSL is utilized to override the initial binary that Potato is
synthesized with, saving hours of bitstream generation time by avoiding the need to re-
synthesize Potato each time a new binary is tested. To avoid running Potato while the
instruction memory is changing, the ERSL loads the binary under test to the emulated
ROM module using a secondary clock while ensuring that the clock is de-asserted to the
rest of Potato.

A fault-free run is then performed with each binary to obtain fault-free counter values
at 1024 increments. Next, Potato is run with faults introduced for SA0, SA1, invert, and de-
lay severe faults while examining the TopCounters values. Figure 9 plots the fault trigger
results for each binary program on faults in the SevereFaultsclass as percentages of the
total number of faults in the class. Each binary is assigned a unique color to differentiate it
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from others. The size of each binary in kilobits is presented along the x-axis. The fraction
of SevereFaults detected by each binary is presented along the y-axis. Each point repre-
sents the fraction of SevereFaults detected by each binary in comparison to the binary size.
The results for each tested binary program are summarized below.

• For the Fault-Run-Cycle-Based FTBE methodology, the optimal number of binaries
needed to satisfy requirements is determined to be three; B0, B1, and B2 are generated
from IFTC 6,076,072, 1,728,512, and 550,800, respectively. Each binary targets specific
faults that are triggered at the IFTC from which it is derived.

- B0 triggers nine faults;
- B1 triggers one-hundred and thirteen faults;
- B3 triggers the remaining one-hundred and twenty-two faults.

• The ATPG binary requires fewer instructions in total, which directly correlates with
the memory overhead needed to store the target binary; however, it also detects fewer
SevereFaults than the previous binaries, at 188.

• The Coremarks algorithm requires the most instructions in total and triggers 191 faults
in the SevereFaults class throughout a full program run.

• The hello world program, included in the analysis for surety, requires the smallest
amount of instructions but only triggers one fault in the SevereFaults class.

We surmise from this analysis that while the ATPGB provides adequate coverage, it
is likely limited by the test vector coverage achieved by the pattern generator, as well as
the complexities of converting disjointed ATPG test vectors into effective coherent binary
programs. A possible better utilization of ATPG principles in this research track could be
the creation of a special five-node scan chain that is made up of the TopCounter nodes. This
concept is discussed fully in Section 5.3.

Figure 9. Binary size-to-effectiveness comparison for both FTBEs and several other general binaries.

Additionally, RCBEs are shown to be effective in detecting the specific faults observed
at the IFTCs they are generated from but are not guaranteed to detect any other faults,
even though they often do. Also, their modular nature means that multiple binaries or a
larger contiguous binary would have to be stored to fully utilize this method. Combining
multiple RCBEs in one is a relatively simple process, consisting of overwriting registers
that differ between binary programs, then updating instructions. Overall, we believe the
RCBE method provides a combination of binary size and low latency for the achievement
of 100% information leakage fault coverage.

5.1. Latency Analysis

The objective of latency analysis is to determine whether the FTBEs can detect the
presence of faults well before the AES algorithm, thereby justifying the area overhead that
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their storage incurs. This goal is addressed for the FTBEs by evaluating latency for each
designed binary, then comparing them to other generic binaries. For this analysis, only
faults in the SevereFaults class are considered. First, fault-free runs are executed for each
binary to acquire fault-free counter values. Then, fault-injected runs are performed for each
binary and fault type at 4096 cycle increments from clock periods 0 to 1,024,000. The latency
results are presented as a cumulative fault detection graph in Figure 10, where the number
of clock cycles that Potato is run for is plotted along the x-axis and the cumulative number
of detected faults is plotted along the y-axis. Each binary program is assigned a different
color for differentiation, and a color guide is provided to the right. Both FTBEs demonstrate
much better performance in terms of latency when compared to other standard binaries.
The RCBE detects all SevereFaults by 4096 run clock cycles, while the ATPGB triggers
188 faults by the 4096 run clock cycle index.

Figure 10. Subset of fault trigger latencies for select binaries.

5.2. Overhead Analysis

In this section, a comparative analysis is undertaken to evaluate the performance and
area overhead of the proposed counter-based Counter-Measure (CM), along with the FTBE,
in contrast to previous works. Because our primary focus is detecting leakage-sensitive
faults, comparing the overhead of our technique with previous methodologies that aim
for complete fault coverage is not a clear comparison, as they essentially address different
problems. Leakage-sensitive faults have inherent latency and sequence dependencies,
while generic faults might not; this discrepancy is likely to lead to differences in overhead
costs of the detection techniques. Additionally, techniques such as continuous symptom
monitoring (CSM) and PBIST also have unique complexities that must be taken into account
when making comparisons.

The counter circuit, consisting of two 24-bit counters, is analyzed for area overhead
using the Synopsys Design Compiler and the ASAP7 standard cell library. The synthesis
report indicates an area of 339 µm² per counter, and deploying five counters results in
an overhead of 1695 µm². In contrast, the Potato core has a larger area of 28,510 µm².
The fractional area overhead is approximately 5.9%. The performance overhead is estimated
using a checkpoint interval of 100 million instructions, akin to the ACE technique reported
above. Notably, unlike the ACE methodology, the number of scan clock cycles is minimal
(120 with 5 24-bit counters), and the vast majority of self-test time is attributed to program
execution. Leveraging the full runtime required to reach maximum fault detection of the
generated FTBEs’ 1350 clock cycles for the RCBE and 1072 clock cycles for the ATPGB,
the performance overhead is estimated at (1350, 1072)÷ 100 million ≈ (0.0035%, 0.00107%)
for the RCBE and the ATPGB, respectively. Thus, our proposed counter-based CM + FTBE
methodology incurs minimal overhead compared to existing methods.
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It is assumed that the FTBE will be stored in non-volatile memory, which is tightly
coupled with the µP, perhaps on chip at some offset from the bootloader. This presents
another overhead that must be considered and analyzed. Using an area of 0.52 µm²
per memory bit, we estimate the total area of each FTBE. We calculate area overhead
by taking into account the total number of bits per binary and the total area of Potato,
namely ((6300, 4800)× 0.52 µm2) ÷ 28,510) ≈ (11.4%, 8.7%) , respectively. Table 3 shows
the area overhead comparison of our two generated binaries with the closest equivalent
in the literature [8]. While the FTBEs require more overhead area than existing works,
the Potato µP analyzed in this work is a much smaller core than the OpenSPARC T1 µP
used in [8]. A comparison with the Rocket µP analyzed in [13], which has an overall
area of 112,224 µm², yields better overhead results, at 2.9% and 2.2% for RCBE and ATPGB
respectively. Our prior analysis of both Potato and Rocket [11,13] implies that the number of
counters necessary to detect all severe faults is common in most µP architectures; therefore,
we have reason to believe that the counter-based periodic testing methodology will scale
well with larger processor systems.

Table 3. Memory allocation per Counter-Measure.

Method Memory Allocation (KBits) Area Overhead (%)

RCBE 6.3 11.4

ATPGB 4.8 8.7

ACE 32 18.7

ACE Hybrid 32 5.8

5.3. Next Steps

The output of the Fault Trigger Binary Executable (FTBE) is a counter value that could
be stored in memory and later compared to the fault-free counter value also stored in
memory. Additional efforts would be needed to create a test controller software binary that
works in conjunction with hardware timers to periodically run the Fault Trigger Binary
Executable (FTBE). This test controller would need to have special rights if running on an
operating system, and analysis would be performed to determine what test frequencies
would be ideal when PBIST-induced downtime is considered.

The ATPG-Based FTBE performs poorly compared to the Fault-Run-Cycle-Based FTBE.
This is largely because ATPG vectors do not take into account sequential operations and
transitions in the internal states of the circuit, which are typically associated with clock
cycles or other triggering events. When bypassing state transitions, the objective is to
directly set or reach a particular state without going through the intermediate states that
would occur in normal circuit operation. This can be useful in certain testing scenarios
where the primary goal is to reach a specific state quickly for fault detection or analysis.
However, replicating these optimizations in a standalone binary and achieving the same
levels of efficiency is difficult, as discussed in Section 5. A minimized scan chain consisting
of only the TopCounter nodes could offer the precision of ATPG vectors without the need
to serially scanin data to the over 34,000 nodes in Potato. Future work could investigate the
process of mixing and chaining the TopCounter nodes into a “mini-scan-chain”, as well as
implementing a specialized BIST controller [25] that serially scans in the test vector and
inspects the serial data output. These test vectors would likely be much shorter than those
described in this work, while the BIST controller would likely consume minimal overhead
due to only interacting with a handful of nodes.

In addition, the final goal for this track of research is to demonstrate the counter-based
PBIST in a manufactured processor on a viable technology node. Future research could tape
out the Potato µP with the counter-based countermeasures inserted at the five TopCounter
nodes, with the FTBE and fault-free values stored in memory with a program set to run it
periodically. This instrumented µP could then be inserted into a high-radiation environment
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and tested for fault countermeasures. The insights gained from these experiments could be
invaluable in accessing failure probability for both temporary and permanent faults and
comparing theoretical countermeasure performance to actualized performance.

6. Conclusions

This paper investigates the generation of specially designed executable binary pro-
grams for a counter-based periodic BIST intended for the detection of faults in the Potato
RISC-V microprocessor using an FPGA emulation platform. The specially designed binary
programs are generated using two different methods, with varying success. The detection
and latency capabilities of the designed binaries using the counter-based approach are
evaluated on a subset of the active faults referred to as severe faults, which are defined
as faults that leak sensitive information, e.g., a portion of the plain text and/or encryp-
tion key, through the serial port output. The designed binary programs, when utilized
in combination with a small set of strategically placed counters, are shown to achieve
high fault coverage and low latency while adding little overhead when compared to
competing approaches.
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