
Citation: Baghdadi, M.; Elwarraki, E.;

Ait Ayad, I. FPGA-Based

Hardware-in-the-Loop (HIL)

Emulation of Power Electronics

Circuit Using Device-Level

Behavioral Modeling. Designs 2023, 7,

115. https://doi.org/10.3390/

designs7050115

Academic Editors: Danial Karimi,

Yuanmao Ye, Mohsin Jamil and

Tomasz Pajchrowski

Received: 7 April 2023

Revised: 13 July 2023

Accepted: 8 August 2023

Published: 5 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

FPGA-Based Hardware-in-the-Loop (HIL) Emulation of Power
Electronics Circuit Using Device-Level Behavioral Modeling
Mohamed Baghdadi * , Elmostafa Elwarraki and Imane Ait Ayad

Laboratory of Electrical Systems, Energy Efficiency and Telecommunications, Department of Physics,
Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech 40000, Morocco;
m.elwarraki@uca.ma (E.E.); imane.aitayad@ced.uca.ma (I.A.A.)
* Correspondence: baghdadimohamed93@gmail.com

Abstract: Accurate models of power electronic converters can greatly enhance the accuracy of
hardware-in-the-loop (HIL) simulators. This can result in faster and more cost-effective design cycles
in industrial applications. This paper presents a detailed hardware model of the IGBT and power
diode at the device level suggested for emulating power electronic converters on a field programmable
gate array (FPGA). The static visualization of the IGBT component involves an arrangement of
equivalent models for both the MOSFET and bipolar transistor in a cascading configuration. The
dynamic aspect is represented by inter-electrode nonlinear capacitances. In an effort to expedite the
development process while still producing reliable results, the algorithm for the simulation system
was built utilizing FPGA-based rapid prototyping via the HDL Coder in MATLAB software (R2019b).
Essentially, the HDL Coder transforms the Simulink blocks of these devices within MATLAB into
a hardware description language (HDL) suitable for implementation on an FPGA. To evaluate the
suggested IGBT hardware model and the nonlinear circuit simulation technique, a chopper circuit is
replicated, and an FPGA-in-the-loop simulation is carried out to compare the efficacy and accuracy
of the model with both offline simulation results and real-time simulation results using MATLAB
Simulink software and the Altera FPGA Cyclone IV GX development board.

Keywords: field-programmable gate arrays (FPGAs); power electronic circuit simulation; insulated
gate bipolar transistor (IGBT); power diode; HDL coder; hardware-in-the-loop (HIL)

1. Introduction

Among different simulation models used, HIL simulation has become increasingly
significant as a tool for evaluating and prototyping novel power electronic systems. Power
electronic system development and testing can be costly and dangerous, particularly for
high-power systems. To mitigate these risks, engineers often use HIL simulation to emulate
a portion of a system in real time. Using this approach, they combine a computational device
or simulator with physical components of the system for real-time simulation. Engineers
can examine how a system design interacts with its physical components securely and
cost-effectively without needing a physical prototype. The literature containing numerous
examples of power electronic systems using HIL and real-time simulation applications
can be found in [1–3]. However, integrating high frequency, Silicon Carbide (Sic) based
switching converters in current power electronic systems poses a challenge because to
accurately depict their nonlinear dynamics, short real-time simulation time steps are
required. These short time increments place strong constraints on the computing hardware
used for the simulation. As a result, there has been a shift towards using FPGAs and
Digital Signal Processors (DSPs), which have the ability to perform real-time computation
in smaller time steps.

The use of HIL simulation on FPGAs for power electronics converters has become
popular as it effectively addresses the difficulties [4–7] related to the complicated topology

Designs 2023, 7, 115. https://doi.org/10.3390/designs7050115 https://www.mdpi.com/journal/designs

https://doi.org/10.3390/designs7050115
https://doi.org/10.3390/designs7050115
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/designs
https://www.mdpi.com
https://orcid.org/0000-0003-1017-6184
https://doi.org/10.3390/designs7050115
https://www.mdpi.com/journal/designs
https://www.mdpi.com/article/10.3390/designs7050115?type=check_update&version=1

Designs 2023, 7, 115 2 of 16

of these converters and enables higher switching frequencies [8–12]. However, modeling
power electronics converters using this technique can be difficult due to the circuit’s
constantly changing topology [13–15].

The detailed modeling of complex power system equipment has been successfully
achieved using FPGAs, as demonstrated in the literature [16–21]. Despite the existence
of nonlinear IGBT and diode models for some time, they have rarely been used in the
hardware emulation of power converters due to their complexity. Instead, simpler switch
models are more commonly used. The two-node architecture, which includes a current
source in parallel with resistance [22], has proven to be efficient in two-level voltage-
sourced converters. Additionally, in other circuit simulations, the ideal switch model is
often used. However, these IGBT and diode models only represent the on and off-state
properties and are unable to provide additional data for converter testing. The Look-Up
Table (LUT) approach and curve-fitting-based linear switch models [23,24] are used in these
models to record the typical switching transients. However, the accuracy of this model
is limited by the exclusion of non-linearities, and both models lack adaptability since the
electromagnetic environment, along with the stored waveform shapes in the FPGA ROM,
cannot be altered, which is typically the case in the gate driver circuit. This highlights the
need for adaptable models.

Furthermore, FPGA programming requires specialized knowledge of hardware descrip-
tion language (HDL), making it a demanding and time-consuming task. The HDL Coder
tool provided in Matlab/Simulink can be used to generate automated HDL code from a
model-based Simulink design, hence providing a faster alternative to hand coding (Figure 1).
This allows the engineers/developers to spend more time during the detailed design phase for
creating higher-quality fixed-point algorithms. Reducing the need for extensive knowledge of
HDL helps in speeding up the FPGA development process considerably [25–28].

Designs 2023, 7, x FOR PEER REVIEW 2 of 16

of these converters and enables higher switching frequencies [8–12]. However, modeling
power electronics converters using this technique can be difficult due to the circuit’s con-
stantly changing topology [13–15].

The detailed modeling of complex power system equipment has been successfully
achieved using FPGAs, as demonstrated in the literature [16–21]. Despite the existence of
nonlinear IGBT and diode models for some time, they have rarely been used in the hard-
ware emulation of power converters due to their complexity. Instead, simpler switch mod-
els are more commonly used. The two-node architecture, which includes a current source
in parallel with resistance [22], has proven to be efficient in two-level voltage-sourced con-
verters. Additionally, in other circuit simulations, the ideal switch model is often used.
However, these IGBT and diode models only represent the on and off-state properties and
are unable to provide additional data for converter testing. The Look-Up Table (LUT) ap-
proach and curve-fitting-based linear switch models [23,24] are used in these models to
record the typical switching transients. However, the accuracy of this model is limited by
the exclusion of non-linearities, and both models lack adaptability since the electromag-
netic environment, along with the stored waveform shapes in the FPGA ROM, cannot be
altered, which is typically the case in the gate driver circuit. This highlights the need for
adaptable models.

Furthermore, FPGA programming requires specialized knowledge of hardware de-
scription language (HDL), making it a demanding and time-consuming task. The HDL
Coder tool provided in Matlab/Simulink can be used to generate automated HDL code
from a model-based Simulink design, hence providing a faster alternative to hand coding
(Figure 1). This allows the engineers/developers to spend more time during the detailed
design phase for creating higher-quality fixed-point algorithms. Reducing the need for
extensive knowledge of HDL helps in speeding up the FPGA development process con-
siderably [25–28].

The central contribution of this paper is to introduce a novel power diode and IGBT
behavioral models for FPGA. These models are specifically designed for the real-time sim-
ulation of rapid transients in power electronics circuits, addressing the aforementioned
problems in the models previously used. For automated HDL code generation, the HDL
coder tool from Matlab/Simulink is used in this model.

The aim of this research is to propose a methodology and workflow for the hardware
emulation of power converters based on FPGA, which includes nonlinear behavioral
switch models. The emulation is conducted using the HDL Coder tool provided in
Matlab/Simulink. The organization of the paper is outlined accordingly. Section 2 de-
scribes the nonlinear behavioral device models. Section 3 demonstrates the Methodology
for power electronics using Matlab/Simulink to implement the two models in hardware.
Two case studies focusing on the basic device-level simulation of a single IGBT and power
diode to verify their hardware are elucidated in Section 4. The conclusion is presented in
Section 5.

10

10

20

20

5

15

33

5

15

10

12

2

5

5

0 20 40 60 80 100

Manual HDL Coding

Model-based Design

Schedule time (%)Requirements Phase Functional Design
Detailed Design HDL Creation
HDL Verification Hardware Iteration
Final ASIC Implementation

2nd FPGA
Prototype

1st FPGA
Prototype

1st FPGA
Prototype

Figure 1. Comparison of model-based design and manual workflow timelines for FPGA prototyping [25].

The central contribution of this paper is to introduce a novel power diode and IGBT
behavioral models for FPGA. These models are specifically designed for the real-time
simulation of rapid transients in power electronics circuits, addressing the aforementioned
problems in the models previously used. For automated HDL code generation, the HDL
coder tool from Matlab/Simulink is used in this model.

The aim of this research is to propose a methodology and workflow for the hard-
ware emulation of power converters based on FPGA, which includes nonlinear behavioral
switch models. The emulation is conducted using the HDL Coder tool provided in Mat-
lab/Simulink. The organization of the paper is outlined accordingly. Section 2 describes the
nonlinear behavioral device models. Section 3 demonstrates the Methodology for power
electronics using Matlab/Simulink to implement the two models in hardware. Two case

Designs 2023, 7, 115 3 of 16

studies focusing on the basic device-level simulation of a single IGBT and power diode to
verify their hardware are elucidated in Section 4. The conclusion is presented in Section 5.

2. Non-Linear Behavioral Device Model
2.1. Power Diode Non-Linear Behavioral Model

In the literature, a diode pin can be modeled as an equivalent circuit in Figure 2.
Reverse-biased diodes behave similarly to variable capacitors, which are modeled by
voltage-controlled current sources with RL and L [29]; ROFF models the steady state of
the diode during this period. RON represents the on-state resistance, while the voltage at
the diode conduction threshold is denoted by VTH. The forward recovery current IF is
established with a time constant imposed by the CR capacitor. Notably, when the remaining
charge is removed by the reverse current during the reverse recovery phase, the same
capacitor interferes, generating oscillations of both current and voltage.

Designs 2023, 7, x FOR PEER REVIEW 3 of 16

Figure 1. Comparison of model-based design and manual workflow timelines for FPGA prototyp-
ing [25].

2. Non-Linear Behavioral Device Model
2.1. Power Diode Non-Linear Behavioral Model

In the literature, a diode pin can be modeled as an equivalent circuit in Figure 2. Re-
verse-biased diodes behave similarly to variable capacitors, which are modeled by volt-
age-controlled current sources with RL and L [29]; ROFF models the steady state of the
diode during this period. RON represents the on-state resistance, while the voltage at the
diode conduction threshold is denoted by VTH. The forward recovery current IF is estab-
lished with a time constant imposed by the CR capacitor. Notably, when the remaining
charge is removed by the reverse current during the reverse recovery phase, the same
capacitor interferes, generating oscillations of both current and voltage.

Figure 2. Structure of pin diode behavioral model.

The expression for the reverse current during charge extraction by recombination is
defined using the following: 𝑖 (𝑡) = − 𝑑𝐼𝑑𝑡 𝑡 + 𝑑𝐼𝑑𝑡 𝑡 (1)

where t0 represents the time when the reverse current reached zero.
At the moment of the second discharge, the representation of the reverse current var-

iation is expressed as follows: 𝑖 (𝑡) = −𝐼 𝑒 (2)

where 𝜏 = L/RL is the time constant, and t1 is the moment the current crosses IRRM.
A development of (1) and (2), together with the formula for the softness factor s,

yields Equation (3) for the maximum reverse current IRRM, as well as Formulas (4) and (5)
for tL and the transconductance of the voltage-controlled current source.

𝐼 = 2𝑆 + 1 . 𝑄 . 𝑑𝐼𝑑𝑡 (3)

𝜏 = 1𝑙𝑛 (10) 2𝑠𝑠 + 1 𝑄𝑑𝐼𝑑𝑡 (4)

Figure 2. Structure of pin diode behavioral model.

The expression for the reverse current during charge extraction by recombination is
defined using the following:

iAK(t) = −
dIF
dt

t +
dIF
dt

t0 (1)

where t0 represents the time when the reverse current reached zero.
At the moment of the second discharge, the representation of the reverse current

variation is expressed as follows:

iAk(t) = −IRRMe
t−t1
τL (2)

where τL= L/RL is the time constant, and t1 is the moment the current crosses IRRM.
A development of (1) and (2), together with the formula for the softness factor s, yields

Equation (3) for the maximum reverse current IRRM, as well as Formulas (4) and (5) for tL
and the transconductance of the voltage-controlled current source.

IRRM =

√
2

S + 1
.QRR.

dIF
dt

(3)

τL =
1

ln(10)

√√√√ 2s2

s + 1
QRR
dIF
dt

(4)

Designs 2023, 7, 115 4 of 16

G =
1
L

√
2

s + 1
QRR
dIF
dt

(5)

G is calculable from [30]:

G =
RON .CF

L
(6)

For the L inductor to remain unaffected by conduction, the CF capacitor’s energy must
be larger than the L inductor’s energy.

1
2
·L·I2

F �
1
2
·RON

2·CF·I2
F (7)

Therefore, the inductance L needs to check the following:

L� RON
2·CF (8)

Manufacturers offer essential data, which may be utilized to identify all parameters
using the equations presented in this section. These characteristics are derived from
standard circumstances.

2.2. IGBT Behavioral Model

IGBTs have become a popular switching device in many power electronics applications
due to their low conduction losses and high switching speeds. An accurate model of an
IGBT is essential for analyzing and predicting various device and circuit characteristics,
such as transients and power loss. Hefner’s physics-based model [31,32], widely regarded
as one of the most comprehensive analytical IGBT models, has been adopted [33] in well-
known circuit-level simulators like Saber and PSpice.

This work builds on the model developed in [34,35]; the modeling of IGBT under
MATLAB/SIMULINK is based on behavioral analysis. This type of modeling consists of
replacing the power component with an electrical network composed of elements such as
inductances, resistors, capacities, current and voltage generators, etc. Each element or set
of elements in this network reflects a physical phenomenon. This type of model is simpler
than analytical and numerical models, as its purpose is not to replicate the various physical
phenomena of the semiconductor component. The electric model adapted was examined
under the simulators of PSPICE and SABER in previous studies [36]. The proposed model
considers the IGBT’s static function as well as its transient behavior resulting from the
impact of nonlinear inter-electrode capacities.

According to [34], the electric IGBT model is a hybrid transistor that incorporates
the advantages of both a Metal Oxide Semiconductor Field Effect Transistor (MOSFET) at
its input and a BJT at its output. This results in the IGBT having high voltage-handling
capabilities, low conduction losses of the BJT, and low power control advantages of the
MOSFET. The developed model can predict both the static and dynamic behavior of the
IGBT. Furthermore, the parameterization of the IGBT can be carried out easily using
manufacturer data. This model represents the optimal balance between accuracy and
simulation complexity.

2.2.1. Static IGBT Model

The following components make up the static MOSFET model:

• Jmos: The controlled current source (Imos) represents the drain current.
• VTH: DC voltage source represents the threshold voltage.
• RGE: Resistance of the Leakage gate-emitter.
• RDN: The resistive characteristic of the MOSFET channel, characterized by drain resistance.
• DG: Diode permits the transition from the off to the on state.

Designs 2023, 7, 115 5 of 16

• DDC: An anti-parallel body diode is represented by a binary resistance RONDC/ROFFDC.
It permits the transition from the linear to the saturated zone.

• According to three scenarios, the VGE voltage controls the MOSFET current:
• VGE < VTH: The transistor is off,
• VGE + VCE0 − VTH > VCE is expressed below.

Imos = Kp
(V GE −VTH) ∗ (V CE −VCE0)−

(V CE−VCE0)2

2
(1 + θ(V GE −VTH))

(9)

• VGE + VCE0 − VTH < VCE is expressed below.

Imos =
Kp

2
(V GE −VTH)

2

(1 + θ(V GE −VTH))
(10)

where θ is the correction factor that accounts for the transverse field in the MOSFET channel,
and Kp is the transconductance.

The static BJT model for the bipolar component consists of the following:

• VCE0 is the voltage threshold for the conduction of the base-emitter junction;
• DP and DE represent base-collector junctions and the base-emitter, respectively;
• β is the bipolar gain;
• JPNP is a controlled current source that indicates the bipolar transistor’s current gain.

2.2.2. Dynamic IGBT Model

The static model is expanded with additional components to describe the dynamic
behavior of the IGBT. These components include voltage-controlled current sources and
non-linear terminal capacitances, representing the load responsible for the tail current (IC)
during the turn-off state of the IGBT.

By removing one or two capacitors, constructors offer measuring capacitors between
two terminals. The following Equation (11) may be used to calculate the values of the
inter-electrode capacitances CGE, CCE, and CGC using the reverse transfer capacitance (CRE),
the input capacitance (CIE), and output capacitance (COE).

CIE = CGE + CGC
COE = CCE + CGC

CRE = CGC

⇒

CGE = CIE − CRE
CCE = COE − CRE

CGC = CRE

(11)

The curve of the CGE, CCE, and CGC capacitances is shown in Figure 3. Figure 4 depicts
the modified model for these nonlinear capacitances.

Designs 2023, 7, x FOR PEER REVIEW 5 of 16

• DG: Diode permits the transition from the off to the on state.
• DDC: An anti-parallel body diode is represented by a binary resistance RONDC/ROFFDC.

It permits the transition from the linear to the saturated zone.
• According to three scenarios, the VGE voltage controls the MOSFET current:
• VGE < VTH: The transistor is off,
• VGE + VCE0 − VTH > VCE is expressed below.

 𝐼 = 𝐾 (𝑉 − 𝑉) ∗ (𝑉 − 𝑉) − (𝑉 − 𝑉)2(1 + 𝜃(𝑉 − 𝑉)) (9)

• VGE + VCE0 − VTH < VCE is expressed below.

𝐼 = 𝐾2 (𝑉 − 𝑉)(1 + 𝜃(𝑉 − 𝑉)) (10)

where θ is the correction factor that accounts for the transverse field in the MOSFET chan-
nel, and Kp is the transconductance.

The static BJT model for the bipolar component consists of the following:
• VCE0 is the voltage threshold for the conduction of the base-emitter junction;
• DP and DE represent base-collector junctions and the base-emitter, respectively;
• β is the bipolar gain;
• JPNP is a controlled current source that indicates the bipolar transistor’s current gain.

2.2.2. Dynamic IGBT Model
The static model is expanded with additional components to describe the dynamic

behavior of the IGBT. These components include voltage-controlled current sources and
non-linear terminal capacitances, representing the load responsible for the tail current (IC)
during the turn-off state of the IGBT.

By removing one or two capacitors, constructors offer measuring capacitors between
two terminals. The following Equation (11) may be used to calculate the values of the in-
ter-electrode capacitances CGE, CCE, and CGC using the reverse transfer capacitance (CRE),
the input capacitance (CIE), and output capacitance (COE). 𝐶 = 𝐶 + 𝐶𝐶 = 𝐶 + 𝐶𝐶 = 𝐶 ⇒ 𝐶 = 𝐶 − 𝐶𝐶 = 𝐶 − 𝐶𝐶 = 𝐶 (11)

The curve of the CGE, CCE, and CGC capacitances is shown in Figure 3. Figure 4 depicts
the modified model for these nonlinear capacitances.

Figure 3. Curves of capacitances between terminals for the commercial IGBT IRGBC20U. Figure 3. Curves of capacitances between terminals for the commercial IGBT IRGBC20U.

Designs 2023, 7, 115 6 of 16

Designs 2023, 7, x FOR PEER REVIEW 6 of 16

The following equations are used to determine the coupling coefficients GGC and GCE: 𝐺 = 𝑅 𝐶𝐿 (12)

𝐺 = 𝑅 𝐶𝐿 (13)

The following equations are used to calculate the CGC capacity parameters: 𝑅 ≫ 𝑉 𝐶 𝑑𝑉 𝑑𝑡 (14)

𝑅 ≫ 𝑉 (𝐶 − 𝐶) 𝑑𝑉 𝑑𝑡 (15)

𝐿 ≪ 𝑅 𝐶 (16)

The CCE parameters are calculated using Equations (6)–(8).
The bipolar component is approximated by a controlled current source Gt (Figure 4),

where Equation (17) provides the coupling coefficient Gt: 𝐺 = 𝑅 · 𝐶𝐿 (17)

where CBE denotes the bipolar component that stores charges, CBERonDE = toff. toff is deter-
mined using device datasheets.

Figure 4 depicts the investigated IGBT model.

Figure 4. IGBT electrical model. Figure 4. IGBT electrical model.

The following equations are used to determine the coupling coefficients GGC and GCE:

GGC =
RonGC CGCmax

LGC
(12)

GCE =
RonGC CCEmax

LGC
(13)

The following equations are used to calculate the CGC capacity parameters:

RONGC �
VCES

CGCmax
dVCGC

dt

(14)

ROFFGC �
VCES

(C GCmin − CGC)
dVCGC

dt

(15)

LGC � R2
ONGCCGCmax (16)

The CCE parameters are calculated using Equations (6)–(8).
The bipolar component is approximated by a controlled current source Gt (Figure 4),

where Equation (17) provides the coupling coefficient Gt:

Gt =
RonDE·CBE

LBE
(17)

where CBE denotes the bipolar component that stores charges, CBERonDE = toff. toff is
determined using device datasheets.

Figure 4 depicts the investigated IGBT model.

Designs 2023, 7, 115 7 of 16

The parameters for the model under investigation are obtained from technical specifica-
tions, established mathematical formulas, and then fine-tuned using a stochastic algorithm
within Matlab [34].

3. Design Methodology for Power Electronics

FPGAs are programmable logic devices composed of numerous simple logic elements
(LEs). A high-speed Hardware Description Language (VHDL) can be used to program
these LEs. The VHDL code is used to form logical functions by connecting individual LEs.
Signal propagation delays and the number of LEs used are the main constraints of FPGA
technology, but advancements in FPGAs have reduced propagation latency and increased
the number of LEs available. The current market leaders in FPGA technology are AMD
and Altera, offering various FPGA boards and kits.

Simscape HDL Workflow Advisor and HDL Coder are able to generate HDL code
from the Simscape model for deploying on FPGA hardware. The Advisor translates the
Simscape model to a Simulink implementation model that HDL Coder uses to generate
HDL code.

Converting the Simscape model to HDL code enables the following:

• Leverage the physical system modeling capabilities of Simscape;
• Rapidly prototype models using the configuration and parallelism capabilities of

the FPGA;
• Simulate the HDL implementation in real time with hardware-in-the-loop (HIL).

Before executing the Simscape HDL Workflow Advisor, the network must be config-
ured to rule out delays and execution parameters that are enabled.

The complex physical systems can be modeled and deployed in Simscape while
converting the models into HDL code. Figure 5 shows the workflow diagram of the
functionalities at various stages:

Designs 2023, 7, x FOR PEER REVIEW 7 of 16

The parameters for the model under investigation are obtained from technical speci-
fications, established mathematical formulas, and then fine-tuned using a stochastic algo-
rithm within Matlab [34].

3. Design Methodology for Power Electronics
FPGAs are programmable logic devices composed of numerous simple logic ele-

ments (LEs). A high-speed Hardware Description Language (VHDL) can be used to pro-
gram these LEs. The VHDL code is used to form logical functions by connecting individ-
ual LEs. Signal propagation delays and the number of LEs used are the main constraints
of FPGA technology, but advancements in FPGAs have reduced propagation latency and
increased the number of LEs available. The current market leaders in FPGA technology
are AMD and Altera, offering various FPGA boards and kits.

Simscape HDL Workflow Advisor and HDL Coder are able to generate HDL code
from the Simscape model for deploying on FPGA hardware. The Advisor translates the
Simscape model to a Simulink implementation model that HDL Coder uses to generate
HDL code.

Converting the Simscape model to HDL code enables the following:
• Leverage the physical system modeling capabilities of Simscape;
• Rapidly prototype models using the configuration and parallelism capabilities of the

FPGA;
• Simulate the HDL implementation in real time with hardware-in-the-loop (HIL).

Before executing the Simscape HDL Workflow Advisor, the network must be config-
ured to rule out delays and execution parameters that are enabled.

The complex physical systems can be modeled and deployed in Simscape while con-
verting the models into HDL code. Figure 5 shows the workflow diagram of the function-
alities at various stages:

Figure 5. Simscape hardware-in-the-loop workflow.

Each module must leverage the physical models in the Simscape library to guarantee
the generation of HDL code for FPGA calls. While building the model, non-nonlinear
modules cannot be used. The backward Euler method is adopted using the numerical in-
tegration algorithm.

3.1. State Space Model Generation
Before translating the Simscape model to an HDL low-level model, simulation veri-

fication must be performed after its successful development. The conversion of the phys-
ical model to a corresponding state-space model can be achieved by enabling HDL Work-
flow Advisor by typing “sschdladvisor(gcs)” on the MATLAB command. The configura-
tion of the Configuration Solver must be examined to determine whether the Simscape
model contains nonlinear modules or not. The same flow chart in Figure 6 illustrates the
conversion procedure. The state space equation is then extracted and discretized. Once
the discrete state space model is constructed, the program identifies the number of valid
modes in the Simscape model and its input and output states.

Figure 5. Simscape hardware-in-the-loop workflow.

Each module must leverage the physical models in the Simscape library to guarantee
the generation of HDL code for FPGA calls. While building the model, non-nonlinear
modules cannot be used. The backward Euler method is adopted using the numerical
integration algorithm.

3.1. State Space Model Generation

Before translating the Simscape model to an HDL low-level model, simulation verifi-
cation must be performed after its successful development. The conversion of the physical
model to a corresponding state-space model can be achieved by enabling HDL Workflow
Advisor by typing “sschdladvisor(gcs)” on the MATLAB command. The configuration of
the Configuration Solver must be examined to determine whether the Simscape model con-
tains nonlinear modules or not. The same flow chart in Figure 6 illustrates the conversion
procedure. The state space equation is then extracted and discretized. Once the discrete
state space model is constructed, the program identifies the number of valid modes in the
Simscape model and its input and output states.

Designs 2023, 7, 115 8 of 16Designs 2023, 7, x FOR PEER REVIEW 8 of 16

Figure 6. Model generation flow chart.

Once the HDL algorithm is validated, comparing the functionality of the HDL imple-
mentation model to the original Simscape algorithm, then HDL code can be generated for
the implementation model. Using makehdl (‘gmStateSpaceHDL_current_model/HDL
Subsystem’) MATLAB command prompt.

3.2. FPGA in the Loop Model Generation
Researchers widely use simulation tools that give the ideal tools to simulate any sys-

tem without the risk of damage. The simulation is carried out via electronic design auto-
mation (EDA). The EDA simulator link presents a verification interface between the HDL
simulator (and FPGA board) and Simulink (Matlab) tools. Using co-simulation, the veri-
fication operation between the Verilog HDL design and the Matlab/Simulink model is
achieved. Using the EDA simulator link allows researchers to implement hardware veri-
fication on the FPGA board using FPGA in the loop (FIL) simulation. The Matlab/Simulink
environment provides the toolbox and functions for HDL and FIL.

FIL has both hardware and software benefits and their approach. The FIL utilized the
capabilities of Matlab/Simulink during co-simulation processing. The algorithm runs in
real time when loaded on the FPGA board using FIL. During FIL processing, system com-
ponents like power electronics, sensors, and other electrical elements are simulated on
Matlab/Simulink.

HDL describes electronic circuits in terms of the circuit’s operation, design, and tests
to verify its operation using simulation. At the first step of the code conversion process,
the new design ideas and algorithms are represented in terms of mathematical models
and are tested in MA TLAB/Simulink floating point data types. The real HDL code gener-
ation process starts by modeling the model in MATLAB Simulink using an HDL Coder
library. The components and blockset supported in HDL Coder can be found by typing
hdllib in the command window. Figure 7 shows the code conversion and verification pro-
cess in MATLAB Simulink HDL Coder.

Once the Simulink model is created, HDL Workflow Advisor guides in a step-by-step
process to generate code from the model. Moreover, it helps to check various other pa-
rameters and setting that is required for optimal code generation and verification.

The following steps in the HDL Workflow Advisor are essential and should be per-
formed with caution [37].

Figure 6. Model generation flow chart.

Once the HDL algorithm is validated, comparing the functionality of the HDL im-
plementation model to the original Simscape algorithm, then HDL code can be generated
for the implementation model. Using makehdl (‘gmStateSpaceHDL_current_model/HDL
Subsystem’) MATLAB command prompt.

3.2. FPGA in the Loop Model Generation

Researchers widely use simulation tools that give the ideal tools to simulate any system
without the risk of damage. The simulation is carried out via electronic design automation
(EDA). The EDA simulator link presents a verification interface between the HDL simulator
(and FPGA board) and Simulink (Matlab) tools. Using co-simulation, the verification
operation between the Verilog HDL design and the Matlab/Simulink model is achieved.
Using the EDA simulator link allows researchers to implement hardware verification on the
FPGA board using FPGA in the loop (FIL) simulation. The Matlab/Simulink environment
provides the toolbox and functions for HDL and FIL.

FIL has both hardware and software benefits and their approach. The FIL utilized
the capabilities of Matlab/Simulink during co-simulation processing. The algorithm runs
in real time when loaded on the FPGA board using FIL. During FIL processing, system
components like power electronics, sensors, and other electrical elements are simulated on
Matlab/Simulink.

HDL describes electronic circuits in terms of the circuit’s operation, design, and tests
to verify its operation using simulation. At the first step of the code conversion process,
the new design ideas and algorithms are represented in terms of mathematical models and
are tested in MA TLAB/Simulink floating point data types. The real HDL code generation
process starts by modeling the model in MATLAB Simulink using an HDL Coder library.
The components and blockset supported in HDL Coder can be found by typing hdllib in
the command window. Figure 7 shows the code conversion and verification process in
MATLAB Simulink HDL Coder.

Designs 2023, 7, 115 9 of 16

Designs 2023, 7, x FOR PEER REVIEW 9 of 16

 Set Target Device and Synthesis Tool: You must select the correct target platform for
your project. If you are using a custom board that is not supported by the Matlab
Add-Ons, you must first install a custom board definition before you can proceed.

 Set Target frequency: You need to choose the clock frequency that will be used in the
code that will be generated for the FPGA. This frequency can usually be set to the
highest sampling frequency used in the code, which is the time it takes the FPGA to
sample a signal.

 Prepare Model for HDL Code Generation: Follow the steps and accept the changes
that are proposed. An error called “Abnormal exit” may occur during these steps.
This problem is related to the Scope, and it can be resolved by erasing the Scope.

 Check Block Compatibility: If delay balancing is enabled globally, this task does not
require any user input. However, if delay balancing is disabled globally and only
enabled locally, a warning will be generated during this step. To avoid the verifica-
tion from being blocked, the “Ignore warnings” option must be set.

 FPGA-in-the-loop Implementation: This section allows you to customize the FPGA-
in-the-loop process. You can add additional files to the table below, such as HDL
Coder black-box source code, custom FPGA design tool scripts, and/or constraint
files. The last step of the process is to build the FPGA-in-the-loop code. This step can
sometimes fail, even if all of the previous steps were successful. The most common
problems are VHDL syntax errors, insufficient disk space, or insufficient permissions
to write to the folder.

 Program Target Device: This step facilitates the loading of the bitstream onto the
FPGA. The loading process can be accomplished either using a JTAG connection or
by employing a network connection to the host computer via the “Download” op-
tion.
The generated HDL code is implemented on the FPGA. The Simulink reference

model simultaneously sends input signals to the FPGA, and its output signals are re-
turned from the FPGA. The board must be properly connected to the computer. Connec-
tions can be made using a JTAG-USB cable, Ethernet cable, or PCI-Express, depending on
the board. The output signals from the FPGA are feedback to Simulink. This involves gen-
erating the input signals to the FPGA and analyzing its output signals in Simulink. With
the FPGA in the loop, you can compare the implementation in the FPGA with the Sim-
ulink reference model. The HDL Workflow Advisor enables you to choose the board and
create the system in Simulink. You can select one of the supported boards or customize
the board you want to use. This technique provides the advantage of testing the system
on the FPGA without the need for oscilloscopes or logic analyzers.

Figure 7. Flowchart of FIL processing.

Once the Simulink model is created, HDL Workflow Advisor guides in a step-by-
step process to generate code from the model. Moreover, it helps to check various other
parameters and setting that is required for optimal code generation and verification.

The following steps in the HDL Workflow Advisor are essential and should be per-
formed with caution [37].

â Set Target Device and Synthesis Tool: You must select the correct target platform for
your project. If you are using a custom board that is not supported by the Matlab
Add-Ons, you must first install a custom board definition before you can proceed.

â Set Target frequency: You need to choose the clock frequency that will be used in the
code that will be generated for the FPGA. This frequency can usually be set to the
highest sampling frequency used in the code, which is the time it takes the FPGA to
sample a signal.

â Prepare Model for HDL Code Generation: Follow the steps and accept the changes
that are proposed. An error called “Abnormal exit” may occur during these steps.
This problem is related to the Scope, and it can be resolved by erasing the Scope.

â Check Block Compatibility: If delay balancing is enabled globally, this task does not
require any user input. However, if delay balancing is disabled globally and only
enabled locally, a warning will be generated during this step. To avoid the verification
from being blocked, the “Ignore warnings” option must be set.

â FPGA-in-the-loop Implementation: This section allows you to customize the FPGA-
in-the-loop process. You can add additional files to the table below, such as HDL
Coder black-box source code, custom FPGA design tool scripts, and/or constraint
files. The last step of the process is to build the FPGA-in-the-loop code. This step can
sometimes fail, even if all of the previous steps were successful. The most common
problems are VHDL syntax errors, insufficient disk space, or insufficient permissions
to write to the folder.

â Program Target Device: This step facilitates the loading of the bitstream onto the
FPGA. The loading process can be accomplished either using a JTAG connection or
by employing a network connection to the host computer via the “Download” option.

The generated HDL code is implemented on the FPGA. The Simulink reference model
simultaneously sends input signals to the FPGA, and its output signals are returned from
the FPGA. The board must be properly connected to the computer. Connections can be
made using a JTAG-USB cable, Ethernet cable, or PCI-Express, depending on the board.
The output signals from the FPGA are feedback to Simulink. This involves generating the
input signals to the FPGA and analyzing its output signals in Simulink. With the FPGA in
the loop, you can compare the implementation in the FPGA with the Simulink reference
model. The HDL Workflow Advisor enables you to choose the board and create the system

Designs 2023, 7, 115 10 of 16

in Simulink. You can select one of the supported boards or customize the board you want
to use. This technique provides the advantage of testing the system on the FPGA without
the need for oscilloscopes or logic analyzers.

4. Case Study and Validation

To validate the VHDL code of this case study, we use the DE1-SoC board from Altera.
A combination of necessary technical details was compiled using the User Manual [38].
Once the code is generated and loaded onto Fpga, it is time to test it by running the
simulation (Figure 8).

Designs 2023, 7, x FOR PEER REVIEW 10 of 16

Figure 7. Flowchart of FIL processing.

4. Case Study and Validation
To validate the VHDL code of this case study, we use the DE1-SoC board from Altera.

A combination of necessary technical details was compiled using the User Manual [38].
Once the code is generated and loaded onto Fpga, it is time to test it by running the sim-
ulation (Figure 8).

Figure 8. FIL Test.

4.1. Single Diode
As illustrated in Figure 9, the diode turn-on and turn-off transient characteristics as

well as the DC mode behaviors are achieved using a resistance load and a square wave
voltage source. The test circuit and diode parameters are shown in Table 1. Actually, the
diode utilized in this circuit is already illustrated in Figure 2. The board resource usage of
the circuit implementation is listed in Table 2.

Figure 9. Test circuit for diode.

Table 1. Test circuit and diode parameters.

Test Circuit Parameters
Vpulse = ±1 V, (f = 2.5 kHz, width = 200 µs, period = 400 µs), Rg = 5 Ω

Diode Parameters
RON = 6.57 × 10−3 Ω, ROFF = 1 × 108 Ω, VS = 1.18 V, G = 1.317 × 103 Ω−1, RL =1.85 × 10−3 Ω, L = 10−10 H, CR
= 100 pF

Table 2. Diode Test Circuit Hardware Resources utilization.

Multipliers 17
Adders/Subtractors 274
Registers 1545
Total 1-Bit Registers 14,373
RAMs 0
Multiplexers 2423
I/O Bits 100

Figure 8. FIL Test.

4.1. Single Diode

As illustrated in Figure 9, the diode turn-on and turn-off transient characteristics as
well as the DC mode behaviors are achieved using a resistance load and a square wave
voltage source. The test circuit and diode parameters are shown in Table 1. Actually, the
diode utilized in this circuit is already illustrated in Figure 2. The board resource usage of
the circuit implementation is listed in Table 2.

Designs 2023, 7, x FOR PEER REVIEW 10 of 16

Figure 7. Flowchart of FIL processing.

4. Case Study and Validation
To validate the VHDL code of this case study, we use the DE1-SoC board from Altera.

A combination of necessary technical details was compiled using the User Manual [38].
Once the code is generated and loaded onto Fpga, it is time to test it by running the sim-
ulation (Figure 8).

Figure 8. FIL Test.

4.1. Single Diode
As illustrated in Figure 9, the diode turn-on and turn-off transient characteristics as

well as the DC mode behaviors are achieved using a resistance load and a square wave
voltage source. The test circuit and diode parameters are shown in Table 1. Actually, the
diode utilized in this circuit is already illustrated in Figure 2. The board resource usage of
the circuit implementation is listed in Table 2.

Figure 9. Test circuit for diode.

Table 1. Test circuit and diode parameters.

Test Circuit Parameters
Vpulse = ±1 V, (f = 2.5 kHz, width = 200 µs, period = 400 µs), Rg = 5 Ω

Diode Parameters
RON = 6.57 × 10−3 Ω, ROFF = 1 × 108 Ω, VS = 1.18 V, G = 1.317 × 103 Ω−1, RL =1.85 × 10−3 Ω, L = 10−10 H, CR
= 100 pF

Table 2. Diode Test Circuit Hardware Resources utilization.

Multipliers 17
Adders/Subtractors 274
Registers 1545
Total 1-Bit Registers 14,373
RAMs 0
Multiplexers 2423
I/O Bits 100

Figure 9. Test circuit for diode.

Table 1. Test circuit and diode parameters.

Test Circuit Parameters

Vpulse = ±1 V, (f = 2.5 kHz, width = 200 µs, period = 400 µs), Rg = 5 Ω

Diode Parameters

RON = 6.57 × 10−3 Ω, ROFF = 1 × 108 Ω, VS = 1.18 V, G = 1.317 × 103 Ω−1, RL =1.85 × 10−3 Ω,
L = 10−10 H, CR = 100 pF

The steady-state results and transient-state results using Matlab toolbox and FIL are
shown in Figures 10 and 11. The current and voltage diode results using the FIL are the
same as the results using the Matlab toolbox. In addition, diode transient-state results
acquired are compared to those of Simulink. As seen, the FPGA-based loop simulation
results are similar to the outputs of the Simulink simulation.

Designs 2023, 7, 115 11 of 16

Table 2. Diode Test Circuit Hardware Resources utilization.

Multipliers 17

Adders/Subtractors 274

Registers 1545

Total 1-Bit Registers 14,373

RAMs 0

Multiplexers 2423

I/O Bits 100

Static Shift operators 0

Dynamic Shift operators 34

Designs 2023, 7, x FOR PEER REVIEW 11 of 16

Static Shift operators 0
Dynamic Shift operators 34

The steady-state results and transient-state results using Matlab toolbox and FIL are
shown in Figures 10 and 11. The current and voltage diode results using the FIL are the
same as the results using the Matlab toolbox. In addition, diode transient-state results ac-
quired are compared to those of Simulink. As seen, the FPGA-based loop simulation re-
sults are similar to the outputs of the Simulink simulation.

Figure 10. Steady-state off-line simulation Matlab/Simulink: diode voltage and current at the on and
off mode.

Figure 10. Steady-state off-line simulation Matlab/Simulink: diode voltage and current at the on and
off mode.

Designs 2023, 7, x FOR PEER REVIEW 11 of 16

Static Shift operators 0
Dynamic Shift operators 34

The steady-state results and transient-state results using Matlab toolbox and FIL are
shown in Figures 10 and 11. The current and voltage diode results using the FIL are the
same as the results using the Matlab toolbox. In addition, diode transient-state results ac-
quired are compared to those of Simulink. As seen, the FPGA-based loop simulation re-
sults are similar to the outputs of the Simulink simulation.

Figure 10. Steady-state off-line simulation Matlab/Simulink: diode voltage and current at the on and
off mode.

Designs 2023, 7, x FOR PEER REVIEW 12 of 16

Figure 11. Steady-state FIL simulation results: diode voltage and current at the on and off mode.

4.2. Single IGBT
This case study focuses on the basic device-level simulation of an IGBT to validate its

hardware model. As shown in Figure 12, with a resistance load, a square wave voltage
source at the gate, and a DC voltage source in the test circuit, the IGBT steady-state be-
haviors as well as the turn-on and turn-off transient characteristics can be observed. The
IGBT device selected in this circuit is the IRGBC20U (Figure 4). The test circuit and diode
parameters are shown in Table 3. The board resource usage of the circuit implementation
is listed in Table 4.

Figure 12. Test circuit for IGBT.

Table 3. Test circuit and IGBT parameters.

Test Circuit Parameters
Vpulse = ±15 V, (f = 2.5 kHz, width = 200 µs, period = 400 µs), R = 30 Ω; Rg = 30 Ω; VDC = 100 V

IGBT Parameters
VCE0 = 1.6119 V, VTH = 5.3 V, θ = 8.10 × 10−2, KP = 1.6166, βPNP = 1.349 × 10−1, RDN = 2.0 × 10−3 Ω, Gp =
3.830, RONDE = 8.04 × 10−2 Ω, ROFFDC = 4.690 × 106 Ω, RONDC = 3.893 × 10−1 Ω, ROFFDP = 9.361 × 105 Ω,
RONDP = 8.00 × 10−3 Ω

Table 4. IGBT test circuit hardware Resources utilization.

Multipliers 134
Adders/Subtractors 2175
Registers 20,459
Total 1 Bit Registers 371,253
RAMs 0
Multiplexers 19,297
I/O Bits 260
Static Shift operators 0
Dynamic Shift operators 274

Figure 11. Steady-state FIL simulation results: diode voltage and current at the on and off mode.

Designs 2023, 7, 115 12 of 16

4.2. Single IGBT

This case study focuses on the basic device-level simulation of an IGBT to validate its
hardware model. As shown in Figure 12, with a resistance load, a square wave voltage
source at the gate, and a DC voltage source in the test circuit, the IGBT steady-state
behaviors as well as the turn-on and turn-off transient characteristics can be observed. The
IGBT device selected in this circuit is the IRGBC20U (Figure 4). The test circuit and diode
parameters are shown in Table 3. The board resource usage of the circuit implementation is
listed in Table 4.

Designs 2023, 7, x FOR PEER REVIEW 12 of 16

Figure 11. Steady-state FIL simulation results: diode voltage and current at the on and off mode.

4.2. Single IGBT
This case study focuses on the basic device-level simulation of an IGBT to validate its

hardware model. As shown in Figure 12, with a resistance load, a square wave voltage
source at the gate, and a DC voltage source in the test circuit, the IGBT steady-state be-
haviors as well as the turn-on and turn-off transient characteristics can be observed. The
IGBT device selected in this circuit is the IRGBC20U (Figure 4). The test circuit and diode
parameters are shown in Table 3. The board resource usage of the circuit implementation
is listed in Table 4.

Figure 12. Test circuit for IGBT.

Table 3. Test circuit and IGBT parameters.

Test Circuit Parameters
Vpulse = ±15 V, (f = 2.5 kHz, width = 200 µs, period = 400 µs), R = 30 Ω; Rg = 30 Ω; VDC = 100 V

IGBT Parameters
VCE0 = 1.6119 V, VTH = 5.3 V, θ = 8.10 × 10−2, KP = 1.6166, βPNP = 1.349 × 10−1, RDN = 2.0 × 10−3 Ω, Gp =
3.830, RONDE = 8.04 × 10−2 Ω, ROFFDC = 4.690 × 106 Ω, RONDC = 3.893 × 10−1 Ω, ROFFDP = 9.361 × 105 Ω,
RONDP = 8.00 × 10−3 Ω

Table 4. IGBT test circuit hardware Resources utilization.

Multipliers 134
Adders/Subtractors 2175
Registers 20,459
Total 1 Bit Registers 371,253
RAMs 0
Multiplexers 19,297
I/O Bits 260
Static Shift operators 0
Dynamic Shift operators 274

Figure 12. Test circuit for IGBT.

Table 3. Test circuit and IGBT parameters.

Test Circuit Parameters

Vpulse = ±15 V, (f = 2.5 kHz, width = 200 µs, period = 400 µs), R = 30 Ω; Rg = 30 Ω; VDC = 100 V

IGBT Parameters

VCE0 = 1.6119 V, VTH = 5.3 V, θ = 8.10 × 10−2, KP = 1.6166, βPNP = 1.349 × 10−1,
RDN = 2.0 × 10−3 Ω, Gp = 3.830, RONDE = 8.04 × 10−2 Ω, ROFFDC = 4.690 × 106 Ω,
RONDC = 3.893 × 10−1 Ω, ROFFDP = 9.361 × 105 Ω, RONDP = 8.00 × 10−3 Ω

The steady-state voltage, steady-state collector current, and IGBT instantaneous power
dissipation results using the Matlab toolbox and FIL are shown in Figures 13 and 14. The
transient-state voltages and currents results using the FIL are the same as the results using
the Matlab toolbox. In addition, the transient-state voltages and currents results acquired
are compared to those of Simulink. As seen, the FPGA-based loop simulation results are
similar to the outputs of the Simulink simulation.

Table 4. IGBT test circuit hardware Resources utilization.

Multipliers 134

Adders/Subtractors 2175

Registers 20,459

Total 1 Bit Registers 371,253

RAMs 0

Multiplexers 19,297

I/O Bits 260

Static Shift operators 0

Dynamic Shift operators 274

Designs 2023, 7, 115 13 of 16

Designs 2023, 7, x FOR PEER REVIEW 13 of 16

The steady-state voltage, steady-state collector current, and IGBT instantaneous
power dissipation results using the Matlab toolbox and FIL are shown in Figures 13 and
14. The transient-state voltages and currents results using the FIL are the same as the re-
sults using the Matlab toolbox. In addition, the transient-state voltages and currents re-
sults acquired are compared to those of Simulink. As seen, the FPGA-based loop simula-
tion results are similar to the outputs of the Simulink simulation.

(a)

(b)

P_
IG

BT
 (W

)

Figure 13. Single IGBT device-level offline simulation results in Simulink: (a) steady-state voltage
and collector current; (b) IGBT instantaneous power dissipation.

Designs 2023, 7, 115 14 of 16

Designs 2023, 7, x FOR PEER REVIEW 14 of 16

Figure 13. Single IGBT device-level offline simulation results in Simulink: (a) steady-state voltage
and collector current; (b) IGBT instantaneous power dissipation.

(a)

(b)

Figure 14. Single IGBT device-level FIL simulation results: (a) steady-state voltage and collector cur-
rent; (b) IGBT instantaneous power dissipation.

Figure 14. Single IGBT device-level FIL simulation results: (a) steady-state voltage and collector
current; (b) IGBT instantaneous power dissipation.

Designs 2023, 7, 115 15 of 16

5. Conclusions

In this paper, we presented a method for hardware emulation of a device-level non-
linear behavioral IGBT model and power diode. The proposed method uses the HDL
Workflow Advisor and Simscape tool to convert the HDL Subsystem to an FPGA and
the simulation model to a state space model. This approach reduces development time
and costs, and it also enables FPGA in-loop simulation without the need for a challenging
hardware programming language.

The proposed method was verified via a circuit simulation in Matlab/Simulink. The
results showed that the hardware emulation was in agreement with the simulation results,
and it also had a faster performance on an FPGA compared to an offline computer program.

The proposed method is a valuable tool for the design and optimization of power
electronic circuits. It allows designers to simulate the behavior of the circuit with a high
degree of accuracy, which can help to ensure that the circuit will operate as desired.

The proposed method is also a promising approach for future research on FPGA code
automation and power electronics transient simulation.

Author Contributions: Conceptualization, M.B. and E.E.; methodology, M.B. and E.E.; software,
M.B.; validation, M.B., I.A.A. and E.E.; formal analysis, M.B. and E.E.; data curation, M.B. and E.E.;
writing—original draft preparation, M.B.; writing—review and editing, E.E. and I.A.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bin, L.; Wu, X.; Figueroa, H.; Monti, A. A low-cost real-time hardware in-the-loop testing approach of power electronics controls.

IEEE Trans. Ind. Electron. 2007, 54, 919–931.
2. Yunwei, L.; Vilathgamuwa, D.; Chiang, L.P. Design, analysis, and real-time testing of a controller for multibus microgrid system.

IEEE Trans. Power Electron. 2005, 19, 1195–1204.
3. Ivanović, Z.R.; Adžić, E.M.; Vekić, M.S.; Grabić, S.U.; Čelanović, N.L.; Katić, V.A. HIL evaluation of power flow control strategies for

energy storage connected to smart grid under unbalanced conditions. IEEE Trans. Power Electron. 2012, 27, 4699–4710. [CrossRef]
4. Zhang, B.; Hu, R.; Tu, S.; Zhang, J.; Jin, X.; Guan, Y.; Zhu, J. Modeling of Power System Simulation Based on FRTDS. Energies 2018,

11, 2749. [CrossRef]
5. Leng, F.; Mao, C.; Wang, D.; An, R.; Zhang, Y.; Zhao, Y.; Cai, L.; Tian, J. Applications of Digital-Physical Hybrid Real-Time

Simulation Platform in Power Systems. Energies 2018, 11, 2682. [CrossRef]
6. Zamiri, E.; Sanchez, A.; Yushkova, M.; Martínez-García, M.S.; de Castro, A. Comparison of different design alternatives for

hardware-in-the-loop of power converters. Electronics 2021, 10, 926. [CrossRef]
7. Matar, M.; Iravani, R. FPGA Implementation of the Power Electronic Converter Model for Real-Time Simulation of Electromagnetic

Transients. IEEE Trans. Power Deliv. 2010, 25, 852–860. [CrossRef]
8. Zhang, B.; Wang, Y.; Tu, S.; Jin, Z. FPGA-Based Real-Time Digital Solver for Electro-Mechanical Transient Simulation. Energies

2018, 11, 2650. [CrossRef]
9. Li, J.; Li, X.; Du, L.; Cao, M.; Qian, G. An Intelligent Sensor for the Ultra-High-Frequency Partial Discharge Online Monitoring of

Power Transformers. Energies 2016, 9, 383. [CrossRef]
10. Zhang, B.; Wu, Y.; Jin, Z.; Wang, Y. A Real-Time Digital Solver for Smart Substation Based on Orders. Energies 2017, 10, 1795. [CrossRef]
11. Zhang, B.; Nie, S.; Jin, Z. Electromagnetic Transient-Transient Stability Analysis Hybrid Real-Time Simulation Method of Variable

Area of Interest. Energies 2018, 11, 2620. [CrossRef]
12. Stifter, M.; Cordova, J.; Kazmi, J.; Arghandeh, R. Real-Time Simulation and Hardware-in-the-Loop Testbed for Distribution

Synchrophasor Applications. Energies 2018, 11, 876. [CrossRef]
13. Benhalima, S.; Miloud, R.; Chandra, A. Real-Time Implementation of Robust Control Strategies Based on Sliding Mode Control

for Standalone Microgrids Supplying Non-Linear Loads. Energies 2018, 11, 2590. [CrossRef]
14. Garcia, J.; Garcia, P.; Capponi, F.G.; Donato, G.D. Analysis, Modeling, and Control of Half-Bridge Current-Source Converter for

Energy Management of Supercapacitor Modules in Traction Applications. Energies 2018, 11, 2239. [CrossRef]
15. Priyadarshi, N.; Padmanaban, S.; Lonel, D.M.; Mihet-Popa, L.; Azam, F. Hybrid PV-Wind, Micro-Grid Development Using

Quasi-Z-Source Inverter Modeling and Control—Experimental Investigation. Energies 2018, 11, 2277. [CrossRef]
16. Chen, Y.; Dinavahi, V. Hardware emulation building blocks for large-scale real-time simulation of power grids. IEEE Trans. Ind.

Inf. 2014, 10, 373–381. [CrossRef]

https://doi.org/10.1109/TPEL.2012.2184772
https://doi.org/10.3390/en11102749
https://doi.org/10.3390/en11102682
https://doi.org/10.3390/electronics10080926
https://doi.org/10.1109/TPWRD.2009.2033603
https://doi.org/10.3390/en11102650
https://doi.org/10.3390/en9050383
https://doi.org/10.3390/en10111795
https://doi.org/10.3390/en11102620
https://doi.org/10.3390/en11040876
https://doi.org/10.3390/en11102590
https://doi.org/10.3390/en11092239
https://doi.org/10.3390/en11092277
https://doi.org/10.1109/TII.2013.2243742

Designs 2023, 7, 115 16 of 16

17. Liu, J.; Dinavahi, V. A real-time nonlinear hysteretic transformer transient model on FPGA. IEEE Trans. Ind. Electron. 2014,
61, 3587–3597. [CrossRef]

18. Tavana, N.R.; Dinavahi, V. A general framework for real-time simulation of electrical machines on FPGA for HIL applications.
IEEE Trans. Ind. Electron. 2015, 62, 2041–2053. [CrossRef]

19. Caseiro, L.; Caires, D.; Mendes, A. Prototyping Power Electronics Systems with Zynq-Based Boards Using Matlab/Simulink—A
Complete Methodology. Electronics 2022, 11, 1130. [CrossRef]

20. Liu, J.; Dinavahi, V. Detailed magnetic equivalent circuit based real-time nonlinear power transformer model on FPGA for
electromagnetic transient studies. IEEE Trans. Ind. Electron. 2016, 63, 1191–1202. [CrossRef]

21. Tavana, N.R.; Dinavahi, V. Real-time nonlinear magnetic equivalent circuit model of induction machine on FPGA for hardware-
in-the-loop simulation. IEEE Trans. Energy Convers. 2016, 31, 520–530. [CrossRef]

22. Herrera, L.; Li, C.; Yao, X.; Wang, J. FPGA-based detailed real-time simulation of power converters and electric machines for EV
HIL applications. IEEE Trans. Ind. Appl. 2015, 51, 1702–1712. [CrossRef]

23. Shen, Z.; Dinavahi, V. Real-time device-level transient electrothermal model for modular multilevel converter on FPGA. IEEE
Trans. Power Electron. 2016, 31, 6155–6168. [CrossRef]

24. Wong, C. EMTP modeling of IGBT dynamic performance for power dissipation estimation. IEEE Trans. Ind. Appl. 1997, 33, 64–71. [CrossRef]
25. van Beek, S.; Sharma, S.; Prakash, S. Four Best Practices for Prototyping MATLAB and Simulink Algorithms on FPGAs. Verif.

Horiz. 2012, 8, 6.
26. Versen, M.; Kipfelsberger, S.; Soekmen, F. Model-Based Reference Design Projects with MathWorks’ HDL Workflow Advisor

for Custom-Specific Electronics with the Zedboard. In Proceedings of the ANALOG 2016; 15. ITG/GMM-Symposium, Bremen,
Germany, 12–14 September 2016; pp. 1–4.

27. Siwakoti, Y.P.; Town, G.E. Design of FPGA-controlled Power Electronics and Drives Using MATLAB Simulink. In Proceedings of
the 2013 IEEE ECCE Asia Downunder, Melbourne, VIC, Australia, 3–6 June 2013; pp. 571–577.

28. Sumam, M.; Shiny, G. Rapid Prototyping of High Performance FPGA Controller for an Induction Motor Drive. In Proceedings of the
2018 8th International Conference on Power and Energy Systems (ICPES), Colombo, Sri Lanka, 21–22 December 2018; pp. 76–80.

29. Mijlad, N.; Elwarraki, E.; Elbacha, A. SIMSCAPE electro-thermal modelling of the PIN diode for power circuits simulation. IET
Power Electron. 2016, 9, 1521–1526. [CrossRef]

30. Elwarraki, E.; Sabir, A. Pspice behavior and thermal modeling of the PIN diode: A circuit approach. In Proceedings of the 14th
IEEE International Conference on Electronics, Circuits and Systems, Marrakech, Morocco, 11–14 December 2007; pp. 1031–1034.

31. Hefner, A.R.; Diebolt, D.M. An experimentally verifed IGBT model implemented in the Saber circuit simulator. IEEE Trans. Power
Electron. 1994, 9, 532–542. [CrossRef]

32. Hefner, A.R. Modeling buffer layer IGBTs for circuit simulation. IEEE Trans. Power Electron. 1995, 10, 111–123. [CrossRef]
33. Oziemkiewicz, G.T. Implementation and Development of the NIST IGBT Model in a SPICE-Based Commercial Circuit Simulator.

Ph.D. Thesis, Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA, 1995.
34. Baghdadi, M.; Elwarraki, E.; Mijlad, N.; Ait Ayad, I. SIMSCAPE electrical modelling of the IGBT with parameter optimization

using genetic algorithm. J. Electr. Comput. Eng. 2021, 2021, 6665384. [CrossRef]
35. Mijlad, N.; Elwarraki, E.; Elbacha, A. Implementation of a behavioral IGBT model in SIMULINK. In Proceedings of the International

Conference on Electrical and Information Technologies (ICEIT), Marrakech, Morocco, 25–27 March 2015; pp. 129–133.
36. Elwarraki, E.; Sabir, A. Behavioural and electrothermal modelling of the IGBT for circuits simulation. In Proceedings of the 14th

IEEE International Conference on Electronics, Circuits and Systems, Marrakech, Morocco, 11–14 December 2007; pp. 90–93.
37. Mathworks. Getting Started with Altera FPGA Platform—MATLAB & Simulink. Available online: https://www.mathworks.com/

help/hdlcoder/ug/getting-started-with-hardware-software-codesignworkflow-for-intel-soc (accessed on 10 January 2023.).
38. DE2i-150 FPGA Development Ki. Available online: https://www.terasic.com.tw/cgibin/page/archive.pl?Language=English&

CategoryNo=11&No=529&PartNo=2#contents (accessed on 15 December 2022.).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TIE.2013.2279377
https://doi.org/10.1109/TIE.2014.2361314
https://doi.org/10.3390/electronics11071130
https://doi.org/10.1109/TIE.2015.2477487
https://doi.org/10.1109/TEC.2015.2514099
https://doi.org/10.1109/TIA.2014.2350074
https://doi.org/10.1109/TPEL.2015.2503281
https://doi.org/10.1109/28.567078
https://doi.org/10.1049/iet-pel.2015.0340
https://doi.org/10.1109/63.321038
https://doi.org/10.1109/63.372596
https://doi.org/10.1155/2021/6665384
https://www.mathworks.com/help/hdlcoder/ug/getting-started-with-hardware-software-codesignworkflow-for-intel-soc
https://www.mathworks.com/help/hdlcoder/ug/getting-started-with-hardware-software-codesignworkflow-for-intel-soc
https://www.terasic.com.tw/cgibin/page/archive.pl?Language=English&CategoryNo=11&No=529&PartNo=2#contents
https://www.terasic.com.tw/cgibin/page/archive.pl?Language=English&CategoryNo=11&No=529&PartNo=2#contents

	Introduction
	Non-Linear Behavioral Device Model
	Power Diode Non-Linear Behavioral Model
	IGBT Behavioral Model
	Static IGBT Model
	Dynamic IGBT Model

	Design Methodology for Power Electronics
	State Space Model Generation
	FPGA in the Loop Model Generation

	Case Study and Validation
	Single Diode
	Single IGBT

	Conclusions
	References

