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Abstract: Estimating lung volume capacity is crucial in clinical medicine, especially in disease
diagnostics. However, the existing estimation methods are complex and expensive, which require
experts to handle and consequently are more error-prone and time-consuming. Thus, developing an
automatic measurement system without a human operator that is less prone to human error and, thus,
more accurate has always been a prerequisite. The limitation of radiation dose and various medical
conditions in technologies like computed tomography was also the primary concern in the past.
Although qualitative prediction of lung volume may be a trivial task, designing clinically relevant
and automated methods that effectively incorporate imaging data is a challenging problem. This
paper proposes a novel multi-tasking-based automatic lung volume estimation method using deep
learning that jointly learns segmentation and regression of volume estimation. The two networks,
namely, segmentation and regression networks, are sequentially operated with some shared layers.
The segmentation network segments the X-ray images, whose output is regressed by the regression
network to determine the final lung volume. Besides, the dataset used in the proposed method is
collected from three different secondary sources. The experimental results show that the proposed
multi-tasking approach performs better than the individual networks. Further analysis of the multi-
tasking approach with two different networks, namely, UNet and HRNet, shows that the network
with HRNet performs better than the network with UNet with less volume estimation mean square
error of 0.0010.

Keywords: CT; DRR; HRNet; lung volume; regression; UNet; X-ray

1. Introduction

Anatomical lung volume information is valuable in various medical conditions, in-
cluding chronic obstructive pulmonary disease (COPD), lung volume reduction surgery,
and lung transplantation. This measurement is used to evaluate lung conditions that
include alterations in lung volume [1], e.g., emphysema or chronic allergic asthma can
increase lung size, whereas cystic fibrosis or scleroderma can decrease lung size. In these
medical conditions, lung volume and time are appropriate indicators of disease activity or
development [2].

Typical methods of lung volume estimation include plethysmography [3], helium
dilution [4], spirometry [5], computed tomography (CT) [6], and chest radiography (CXR).
The plethysmography technique determines the contained gas volume, whereas the helium
dilution is based on the equilibration of gas in the lung with a known volume of gas
containing helium. In the spirometry method, the patient is asked to inhale and exhale air
into the spirometer for a certain time with some effort. These methods cannot be performed
with people having recent abdominal or thoracic surgery, viral infection, vomiting, acute
illness, or unstable cardiovascular status [7]. CT can have practical limits and challenges due
to medical conditions, radiation dose, and economic limits. Meanwhile, CXR is a simple,
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inexpensive, and more accessible imaging technique than CT. Most of the approaches using
CXR are based on measuring the cross-sectional area of the left, right, and lateral lungs
of CXR.

Some of the manual approaches to estimating lung volume using CXR include (i) multi-
plication of the lungs’ area on posteroanterior (PA) chest radiographs by the posteroanterior
diameter of the chest, (ii) measuring the chest area by planimeter and multiplying it with
the anteroposterior diameter of the thorax [8], (iii) dividing posteroanterior and lateral
radiographs into slices and summing the volume of each slices [9], and (iv) using the regres-
sion equation derived from planimeter measurement. Note that the manual approaches for
estimating volume from CXR require experts, which may only be available in some areas.
Moreover, manual assessment is operator-dependent; hence, the result could have high
variability and be potentially inconsistent.

Automatic methods for estimating lung volume from CXR are less dependent on
operators, hence more consistent and more feasible. For approximating lung volume using
automatic methods, the CXR must be first segmented, i.e., detecting lung region. Here,
automatic lung field segmentation can be (i) rule-based; (ii) pixel-based; (iii) deformable-
based; and (iv) registration-based methods [10]. The rule-based methods use predefined
anatomical rules to segment lung radiography, which has less success owing to the hetero-
geneity of lung field shapes. Similarly, the pixel-based segmentation labels each pixel as
either lung or non-lung, and the deformable approaches use both image shape and image
appearance for the segmentation. The registration-based approaches use a segmented lung
database to match and enhance lung fields on a given image. Deep convolution neural
networks are recently widely used and are effective methods for object detection and image
segmentation. After recent progress in the graphic processing unit and impressive results in
the ’ImageNet Large Scale Visual Recognition Competition’ in 2012 [11], deep convolutional
neural networks (DCNNs) have increased much attention.

This research explores deep convolution neural networks in two directions: semantic
segmentation to segment lung CXR and directly regressing the lung volume employing
CXR. We claim the following contributions in this paper.

• A new multi-tasking-based automatic lung volume estimation method using deep
learning is proposed to learn segmentation and regression of volume estimation jointly.

• The two networks, namely, segmentation and regression networks, are sequentially
operated with some shared layers wherein the segmentation network segments the
X-ray images, whose output is regressed by the regression network to approximate
the final lung volume.

• The proposed lung volume estimation approach is a low-cost and automated solution
wherein X-ray images are utilized as input data.

2. Literature Review

Historically, there have been numerous efforts to measure lung volume from chest
radiographs. Hurtado and Fray [8] in 1933 used chest radiographs to measure lung volume
capacity. Here, the lung volume was estimated by multiplying the anteroposterior diameter
of the thorax and the chest area, estimated with a planimeter. Barnhard et al. [12] described
the ellipse method for the lung volume capacity. Their study revealed that each lung is ellip-
tical, excluding the section of the heart. The long dimension is anteroposterior, and the short
dimension is transverse. They divided chest radiographs into an infinitely large number of
thin elliptical cross-sections, and volume was calculated using integration. Cobb et al. [13]
used a posteroanterior radiograph to measure the area of lung fields. They determined
total lung volume capacity by volumetric measurement of routine posteroanterior and
lateral chest radiographs. The regression equation was derived by correlating the volume
to total lung capacity determined by spirometry and open circuit method. Spence et al. [9]
aligned the posteroanterior and lateral radiographs using the arch of the aorta as a common
reference point. Then the computer program divides the resulting shape into 200 slices.
The sum of the volume of each slice was used to calculate the total lung volume capacity.
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The volume of the heart, great vessels, subdiaphragmatic region, and spine were subtracted
to determine the volume of the lung. Harris et al. [14] described a more straightforward
planimetric method for total lung capacity. The resulting equation was: 8.5 × S − 1200,
where S is the total surface area of the left lung, right lung, and lateral lung of CXR.

Chul Hwan Park et al. [15] generated the chest radiographs, i.e., posterior-anterior
(P-A) and lateral views from the axial CT images using the thick multiplanar technique.
An electronic caliper was used to measure the lung area of the virtual chest radiograph.
The right lung area of the virtual chest posterior-anterior view (P), left lung area of the
virtual chest P-A view(Q), and lateral lung area on the virtual chest lateral view(R) were
measured. The total sum was calculated, i.e., S = P + Q + R. They used the total area to find
the equation by linear regression analysis that predicts the lung volume, and the equation
was simple (9.6 × S − 1367).

All the above methods estimate the volume from CXR manually. To automate the
volume estimation, CXR must be segmented first. Refs. [16,17] presented segmentation
methods for CXR using deep learning. The method in [16] exploits a semantic pixel-
wise segmentation approach called SegNet, which consists of an encoder network, and a
corresponding decoder network followed by a pixel-wise classification layer.

The deep convolutional neural network (CNN) framework for the segmentation of
lung fields is used in [10], where it is compared with the results of the state-of-the-art
registration-based method.

In [18], a segmentation method based on VGG-16 and dilated convolution is put
forward. The convolutional layers of VGG-16 were changed to dilated convolutions, which
yielded a better result.

The lung segmentation and bone shadow techniques using deep learning to identify
lesions and nodules in lung cancer patients are analyzed in [17].

Ref. [19] used HRNet for feature extraction with the UNet for segmentation. Ref. [20]
uses U-Net architecture for lung nodule segmentation for lung cancer detection. In [21],
different deep learning models were used for segmenting COVID-19 lung tissues, out
of which HRNet achieved high accuracy and dice score. The aforementioned previous
methods [10,16–21] are used to segment the X-ray chest images using Deep learning,
primarily focused on segmenting the image instead of finding lung volume to diagnose
the disease.

Moreover, some deep learning techniques are used for calculating lung volume ca-
pacity. Ecem Sogancioglu et al. [22] proposed an automated method for estimating total
lung volume using CXR and deep learning. They used posteroanterior and lateral view
CXR with five different deep learning architectures: DenseNet121, ResNet34, ResNet50,
VGG-Net19, and six layers CNN. The lowest error was achieved on six layers of CNN
with MAPE of 2.2%. Nozomi Ishihara et al. [23] used CNN, where frontal views ( right
or left-half) and lateral views were separately added to input layers. The correlation be-
tween estimated volume and ground truth volume was 0.79 and 0.60 for the left and right
lungs, respectively.

Kim H et al. [24] also used deep learning methods for calculating total lung capacity
for predicting survival in idiopathic pulmonary fibrosis. The mean absolute difference and
within-subject SD between ground truth and estimated lung volume were 0.69 L and 0.73 L,
respectively. Here, the abovementioned deep learning methods are single-task networks;
however, the multi-tasking-based method can have better results for estimating volume.

Thus, in this study, automatic volume estimation is developed using DCNN. For this,
a novel multi-tasking-based method is implemented to learn segmentation and regression
of volume estimation jointly.

3. Research Methodology

In order to evaluate methods that estimate lung volume from CXRs, we require
validation data, i.e., Ground Truth(GT) CXR images where actual volume is known. Since
the GT volume is unavailable in the CXR dataset, and the lung volume capacity is measured
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from CT images, the proposed method utilizes CT images to learn the volume. The overall
block diagram of the proposed research work is shown in Figure 1. The process starts
with the data collection, followed by other steps. At first, CT images are converted to
X-ray images (DRR), implementing open-source code ITK [25,26]. Then, the X-ray images
are trained on standard deep network architecture for image segmentation. Standard
U-Net architecture and HRNet architecture are used for segmentation. Since the CT
image dataset contains the ground truth volume data, segmented DRR images from the
previous step are then used to train the deep learning regression network to find the lung
volume. The learning of the segmentation network formed from training X-ray images
and DRR images is transferred to test X-ray images. In addition, a novel multi-tasking-
based approach is implemented to learn segmentation and regression of volume estimation
jointly. For the evaluation of the proposed method, a dice score is used to calculate the
segmentation performance, and mean square error is used for volume estimation.

Figure 1. Basic block diagram of the proposed method work flow.

3.1. Data Preparation

Data utilized in this research were collected from various secondary sources. The chest
radiograph was collected from the Department of Health and Human Services, Mont-
gomery County, MD, USA [27]. This dataset consists of 138 frontal chest X-ray images,
out of which 80 are normal cases and 58 are cases with manifestations of TB. Moreover,
the images are in Portable Network Graphics (PNG) format as 12-bit gray-level images,
and the size of each X-ray image is either 4020 × 4892 or 4892 × 4020 pixels. The sample
image, along with its GT segmented image from the chest radiograph dataset, is shown in
Figures 2 and 3. Further, 23 CT images with segmented CT from VESSELS12 Challenge
and 42 CT images with segmented CT from LUNA16 Challenge were downloaded to form
a CT dataset. Then X-ray images (DRR) were simulated from CT images. This simulation
generated both posterior-anterior (P-A) chest radiographs and lateral chest radiographs.
Besides, the lung volume ground truth is available in this dataset, which includes lung
statistics such as lung area and lung volumes. Table 1 shows the data used in our study
with data source and type. In this research, the number of training samples is small, so data
augmentation is performed by rotating, flipping, and scaling the intensity.
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Figure 2. Sample chest radiograph from CXR dataset.

Figure 3. Ground truth segmented image of CXR.

Table 1. Numbers of data used in proposed research with data source and type.

Image Type Data Source Numbers of Image

CXR (2D) Montgomery County 138
CT (3D) Vessels12 grand challenge 23
CT (3D) Luna16 grand challenge 42

3.1.1. Generation of DRR

The DRR is the 2D image generated from the 3D CT image. Ray casting method was
implemented using open source code from ITK [25,26] for DRR generation. In this study,
real CXR does not have GT volume. However, DRR enables us to produce 2D CXR-like
images from CT scans [28–30] with a known volume.

DRR generation methods are similar to the physical process of producing CXR. In this
process, a CT image is used as a patient model. In a CT image, each pixel is assigned
to the number called CT number or Hounsfield unit, which is mean attenuation of the
tissue [31,32]. The CT number ranges from the most attenuating value of +3071 to the least
attenuating value of -1024 on the Hounsfield scale. Thus, in the ray-casting method, each
CT number is converted to its linear attenuation coefficient (LAC) so that outgoing photon
intensity can be calculated from the knowledge of the incoming photon intensity. Here,
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the attenuation coefficient is calculated for the 50 keV spectrum. At the beginning of the
process, the camera parameters are defined, i.e., rotation along different axes. Then, rays are
traced through the patient model (CT) from a virtual X-ray source to a point on the virtual
film for DRR generation. When the ray passes through each voxel, the linear attenuation
coefficient is calculated for every eight corners of the voxel by using the relationship
between Hounsfield unit and linear attenuation coefficient [33] as in (1) and (2). Then,
trilinear interpolation around each corner is computed to get a smooth result.

HU = ((µ − µw)/µw) ∗ 1000 (1)

µ = (HU/1000) ∗ µw + µw, (2)

where HU is the Hounsfield unit, µ is linear attenuation coefficient of voxel and µw is linear
attenuation coefficient of water.

Thus, DRR is calculated by averaging the CT linear attenuation coefficient of the
voxel along a ray from the virtual X-ray source to each pixel in the resultant image. DRR
generation process is shown in Figure 4. However, in the segmented CT, the lung section’s
CT number is 1, and 0 for the other section. Thus, averaging the intensity gives no effective
result. For this, maximum intensity is considered along the ray. The Figures 5 and 6
denote the PA and lateral view of the CT image respectively, and Figures 7 and 8 denote
corresponding segmented DRR.

Figure 4. DRR generation process.

Figure 5. PA view of the DRR image.
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Figure 6. Lateral view of the DRR image.

Figure 7. Posteroanterior(PA) view of the segmented DRR image.

Figure 8. Lateral view of the segmented DRR image.
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3.1.2. Data Augmentation

Data augmentation is an important technique in deep learning, especially when the
training sample is small. It increases the training sample as well as exposes the model to
different varieties of data. Thus, we utilized the following techniques in our research for
data augmentation:

• Rotation: The images were rotated by 90 degrees and 180 degrees.
• Flipping: Horizontal flipping was applied to the images.
• Intensity Scaling: Intensity range adjusted from 0 to 255.

3.2. Segmentation

The segmentation of an image predicts a class for each pixel of what it represents,
and since it predicts every pixel in an image, it is commonly known as a dense prediction.
Besides, the output from the segmentation process is a high-resolution image typically of
the same size as the input image. Thus, the segmentation of chest radiographs helps to
detect the boundaries of the lungs. This research uses the CNN with standard architecture:
U-Net and HRNet for the segmentation.

3.2.1. U-Net Architecture

The U-Net architecture is an end-to-end fully convolutional neural network (FCN),
which contains only convolutional layers (without any dense layers). Generally, CNN
is used in classification, localizing areas, and distinguishing borders in images. Thus,
the U-Net architecture designed with CNN can segment biomedical images [34]. The U-Net
architecture, as shown in Figure 9, contains two paths: the contracting path, also known as
an encoder, captures the context information in the image, and the expanding path, known
as a decoder, enables precise localization. The encoder contains stacks of convolutional
layers and max-pooling layers, and the decoder contains transposed convolutional layers.
Here, two consecutive convolutional layers with ReLU activations are applied to each pro-
cess, after which the max-pooling is done, which halves the size of the image. The process is
replicated four times. Then two consecutive convolutional layers are applied without max
pooling. Finally, the image will regain its original size in the expanding section. This section
uses transposed convolutional layers, which enables precise localization. Furthermore,
the skip connection is adopted between the convolutional and deconvolutional layers of the
network. The connection passes the details of the hierarchical features from convolutional
layers to the corresponding deconvolutional layers to be fused, making it more beneficial
in generating the segmented image with better precise locations. Besides, the problem of
convergence issues in the deeper network is prevented by this skip connection. As the
skip connection allows the backpropagation directly to the bottom layer, the vanishing
gradient problem in the deeper network is also resolved. The contracting path is composed
of 4 blocks. Each block is composed of:

• 3 × 3 Convolution Layer + activation function + batch normalization
• 3 × 3 Convolution Layer + activation function + batch normalization
• 2 × 2 Max Pooling

The expanding path is also composed of 4 blocks. Each of these blocks is composed of

• Transposed convolutional layers
• Concatenation with the corresponding cropped feature map from the contracting path
• 3 × 3 Convolution layer + activation function + batch normalization
• 3 × 3 Convolution layer + activation function + batch normalization
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Figure 9. The architecture of the U-Net used in the segmentation process of the proposed method.

3.2.2. HRNet Architecture

High-to-low convolution streams are connected parallelly in the HRNet network.
High-resolution representations are preserved throughout the whole process, and reliable
high-resolution representations are generated by fusing the representations repeatedly
from parallel multi-resolution streams [35,36]. It has four parallel convolution streams
with resolutions 1/4, 1/8, 1/16, and 1/32. In the first stage, four residual units are formed
by a bottleneck with a width of 64. Each unit is then followed by one 3 × 3 convolution
changing the width of feature maps to the number of channels (C). Furthermore, it consists
of four residual units in each branch of the multi-resolution parallel convolution of the
modularized block. Two 3 × 3 convolutions for each unit’s resolution are utilized, followed
by batch normalization and the ReLU activation function. The numbers of channels of the
convolutions of the four resolutions are C, 2C, 4C, and 8C, respectively. The modularized
block is divided into multi-resolution parallel convolutions and multi-resolution fusion.
In parallel convolution, group convolution is performed. Input channels are divided into
several streams of channels, and each stream is convoluted over different spatial resolutions.
However, in multi-resolution fusion, multiple convolution streams are fused, i.e., each
high to low-resolution stream gets the information from other streams. In each stream,
the output after fusion is the summation of the outputs from convolutions over each stream.
In addition, while fusing resolution, change should also be handled. The architecture of
HRNet used for segmentation is shown in Figure 10.

Figure 10. The architecture of the HRNet used in the segmentation process of the proposed method.
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3.3. Regression Network/Lung Volume Estimation

Estimation of the continuous value is obtained by employing regression techniques.
Various computer vision applications have implemented regression to estimate the re-
quired output, such as facial landmark detection, head pose estimation, age estimation,
human pose estimation, or image registration. With the explosive computational growth
in resources in the early 2000s, deep learning (DL) has overwhelmingly outperformed the
traditional machine learning-based methods [37]. Moreover, deep learning architecture
consists of several convolutional layers, fully-connected layers, and a softmax layer with a
loss function. This architecture, also known as a convolutional neural network (ConvNet),
is typically used in classification problems. However, after replacing softmax layers with
fully connected regression layers (with sigmoid or linear activations), this network can be
used in regression problems. Thus, to estimate the lung volume in the proposed approach,
the regression network is employed. The architecture of the proposed regression network
is shown in Figure 11, where the segmented images are trained to give a final lung volume.
The network consists of several convolutional layers with activation functions, pooling,
and fully connected layers. The final layer of the fully connected layer has a single output
dense layer that gives the required volume of the lung. The model is trained with DRR
images with ground truth volume data. The mean squared error (MSE) was used between
the predicted volume and the ground truth for the error calculation, optimizing the net-
work. Thus, if the segmented output from the segmentation network is Xs and the output
from the k-th layer of the segmentation network is Xk

S, which is given as an input to the
regression network, then the output from the regression network is expressed as:

Yr = f (Xk
S), (3)

where f represents the function of the regression network.

Figure 11. The architecture of the regression network, where the segmented image is regressed to
give the final volume of the lung.

3.4. Multi-Task Network

Multitask Learning is a method that improves learning for one task by using the
knowledge from the training of other related tasks [38]. In multitask model, learning is
performed in parallel utilizing a shared representation, and learning from one task helps
other tasks’ performance. Due to layer sharing, the redundancy of calculating the same
features is reduced for every task, which increases training speed and memory footprint [39].
This research uses two multitask models: (a) HRNet with convolution layers and fully
connected layers and (b) U-Net with convolution layers and fully connected layers are
used, and the performance is analyzed.

3.4.1. Multitask Network with HRNet

In this network, two tasks: segmentation and volume estimation are performed. Sev-
eral convolutions and fully connected layers are added to HRNet architecture to extract lung
volume information from lateral and posterior-anterior chest radiographs. The network
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is formed by connecting the convolution unit before the fusion unit of the low-resolution
stream of the fourth stage of HRNet architecture to the convolution layers. The convolution
layer consists of 3 × 3 convolution, ReLu activation function, and max pooling. The output
from max pooling is then flattened and fed to the fully connected layer. The final layer of the
fully connected layer has a single output dense layer that gives the required volume of the
lung. Two loss functions were used for error calculation: dice loss for image segmentation
and MSE loss for volume calculation. The architecture of the multitasking network with
HRNet used in this research is shown in Figure 12.

Figure 12. The architecture of the multitask network containing HRNet, convolutional layers and
fully connected layers.

3.4.2. Multitask Network with U-Net

This network employs four convolution layers and two fully connected layers to the
U-Net architecture to extract lung volume information from lateral and posterior-anterior
chest radiographs. Two tasks, i.e., segmentation and volume calculation, share the encoder
and the same layers of the decoder of U-Net, and then the convolution layer is added
for volume estimation. Besides, the rest of the decoder layer of U-Net architecture is also
utilized for segmentation. The convolutional layer (of the regression network) comprises a
3 × 3 convolution followed by a ReLU activation function and max pooling similar to the
multitask network of HRNet. The resultant output from max pooling is flattened and passed
to a fully connected layer, whose final layer provides the desired lung volume. To evaluate
the segmented and predicted output, each network have their own loss functions, the dice
loss for image segmentation and the mean squared error (MSE) loss for volume calculation.
The architecture of the multitasking network with U-Net used in this research is shown
in Figure 13.
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Figure 13. The architecture of the multitask network containing U-Net, convolutional layers and fully
connected layers.

3.5. Model Evaluation

The proposed method has two major tasks: segmentation and volume estimation,
whose performances were evaluated separately. The segmentation’s performance was
assessed based on the dice coefficient; however, the mean square was used as a performance
metric for volume estimation.

3.5.1. Dice Coefficient

The Dice coefficient is the spatial overlap index used in validating image segmen-
tation [40,41]. The spatial overlap is evaluated when a ground truth image is available.
The dice score ranges from 0 to 1; 0 indicates no overlap between the segmented image and
ground truth, and 1 indicates complete overlap. Moreover, it is calculated by multiplying
the overlap area by two and dividing the result by the total number of pixels in both
images [42] as given by (4).

Dice(xg, xp) = (2 ∗ xg ∗ xp)/(xg + xp) (4)

Dice = (2TP)/(FP + 2TP + FN), (5)
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where xp is predicted image, xg is ground truth image, TP is true positive, FP is false
positive and FN is false negative. Dice coefficient is also equivalent to F1 score. F1 score is
harmonic mean between precision and recall. i.e.,

F1 = 2/(recall−1 + precision−1)

= 2/(((TP)/(TP + FN))−1 + ((TP)/(TP + FP))−1)

= 2/(((TP + FN)/(TP)) + ((TP + FP)/(TP)))

= 2TP/(2TP + FP + FN)

(6)

3.5.2. Mean Square Error

Mean square error (MSE) is a regression loss function that is equal to the sum of all the
squared differences between the target value (ground truth) and the predicted value [43].

MSE(xg, xp) = 1/n ∗
n

∑
i=1

(yi − f (xi))
2, (7)

where yi is ground truth value, f (xi) is the predicted value.

4. Experimental Results and Discussion

This study employs two networks for segmentation, namely U-Net and HRNet,
wherein the networks were trained using Adam-optimizer with a learning rate of 0.0001,
600 epochs, and a batch size of four. The segmentation result is shown in Table 2. Testing
on two segmentation networks with real X-ray images and DRR images show that both
networks performed well with high accuracy. Out of the two networks, HRNet performed
better, with an accuracy of about 0.962 with DRR images and 0.9747 with real X-ray images.
On the other hand, U-Net has an accuracy of 0.96 with real X-ray images and 0.9171 with
DRR images. The graphical representation of training and validation dice score while
training on HRNet is shown in Figure 14. As illustrated in the figure, the accuracy increases
(or loss decreases) with each epoch up to a certain number and started saturating with
higher dice metric and lower dice loss value, indicating the valid model’s performance.
Similarly, the test output images from the HRNet network in Figures 15 and 16 show that
both segmented images are similar to respective ground truth images.

Figure 14. An illustration of HRNet segmentation training and validation dice score.
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Table 2. Segmentation testing dice and loss on different networks and data.

Network Data Testing Dice Score Testing MSE

U-Net DRR 0.9171 0.069
U-Net Montgomery 0.96 0.03
HRNet DRR 0.962 0.027
HRNet Montgomery 0.9747 0.017

Figure 15. Posteroanterior image segmentation generated from testing data.

Figure 16. Lateral image segmentation generated from testing data.

The regression network consists of several convolutional layers, followed by a fully-
connected layer and a softmax layer with a loss function. Adam-optimizer with a learning
rate of 0.0001, 300 epochs, and a batch size of four was used for the training, utilizing MSE
as the loss function. Thus, 58 posteroanterior and lateral images were used as training data,
and seven were used as testing data. The network’s performance was analyzed by training
it with two different ground truths, one with the lung volume and the other with the ratio
between lung volume and the total volume, while ensuring the effectiveness of the network.
The graphical representation of training MSE and validation MSE, trained with the lung
volume as ground truth, is illustrated in Figure 17, which shows that the resultant MSE by
the regression network is 0.013. However, on the contrary, the network trained with the
volume ratio as a ground truth shows better performance with a reduced MSE of 0.0016,
which is shown in Figure 18. Thus, the latter approach is adopted to train the model.

Two multitasking networks: (a) U-Net with convolution layers and fully connected
layers and (b) HRNet with convolution and fully connected layers, were trained for volume
estimation. Both networks result in two outputs: segmented image and volume information.
On both networks, 65 posterior-anterior and 65 lateral images were used. These data were
divided into training and testing data on two ratios: 90:10 and 80:20. From each training
dataset, 10 percent of data were used as validation. Posterior-anterior and lateral images are
combined to get one image by adding their channels to feed it as an input to the network.
Besides, an optimizer with a learning rate of 0.0001, 300 epochs, and a batch size of four
was used for the training, utilizing MSE as the loss function for volume estimation and dice
metric as accuracy for segmentation.
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Figure 17. An illustration of training and validation mean square error on network trained with the
lung volume.

Figure 18. An illustration of training and validation mean square error on network trained with the
volume ratio.

The result of the multitasking network is shown in Table 3. Multitasks network with
U-Net and HRNet were trained with two different ground truths, one with the lung volume
and the other with the ratio between lung volume and the total volume. The training
was performed with two different training and testing data ratios, i.e., 90:10 and 80:20.
The result in Table 3 shows that the multitask network has a better performance in terms
of MSE than on individual networks ( regression). Out of two datasets with two different
training and testing dataset ratios, the dataset having a ratio of 90:10 performed better than
the dataset having a ratio of 80:20. Besides, the multitask network with HRNet performed
better than that with the U-Net network. The graphical representation of validation mean
square error for volume estimation while training on multitasking with HRNet and U-Net
is shown in Figure 19. As illustrated in the figures, the error decreased with each epoch
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to a certain number and started saturating with a lower MSE value, indicating the valid
model’s performance.

Table 3. Multi-task segmentation accuracy (Dice metric) and volume loss (MSE) on different network,
data ratios and ground truth.

Network Data Ratio Ground Truth Test MSE Test Dice Score

Regression 90:10 Volume 0.013 -
Regression 90:10 Ratio 0.0016 -

Multitask with U-Net 90:10 Volume 0.0086 0.96
Multitask with U-Net 90:10 Ratio 0.0017 0.9693
Multitask with HRNet 90:10 Volume 0.0040 0.9625
Multitask with HRNet 90:20 Volume 0.0071 0.9658
Multitask with HRNet 90:10 Ratio 0.0010 0.9746
Multitask with HRNet 80:20 Ratio 0.0021 0.9702
Multitask with HRNet 70:30 Ratio 0.0052 0.92

Figure 19. An illustration of validation mean square error on multi-task network with hrnet and
U-Net.

From Table 3, it can be learned that the multitasking model with HRNet performed
better with the lowest mean square error on volume estimation. However, to further
signify the model’s performance, the model’s validation and evaluation are required. Thus,
a 10-fold cross-validation method was utilized to validate the multitasking network with
the HRNet. The dataset was divided into ten training and testing datasets with a 90:10 ratio
each. Then in the first model, the first set was used as a testing set and the remaining nine
as a training dataset. Similarly, for the second model, the second set is used as a testing
set, the remaining 9 (first and third to tenth) as a training dataset, and so on. The results
from 10-fold cross-validation are shown in Table 4, which shows that the mean square error
ranges from 0.0006 to 0.0014 and is comparable to each other. Also, the average value of
the result is 0.00108 looks similar to the MSE obtained from multitasking with the HRNet
network, as shown in Table 3. In addition, the standard deviation of 10-fold cross-validation
results is 0.00027. Thus, the model’s generalization capability to each independent dataset,
comprehended from the result, verifies that the model can accurately estimate the lung
volume in real practice.

Moreover, the proposed method is economically advantageous compared to traditional
techniques like CT, spirometry, and plethysmography as this method utilizes commonly
available X-rays for lung volume estimation. X-ray imaging is a widely available modality
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in medical settings. By using existing X-ray equipment, the need for expensive specialized
techniques is eliminated. This significantly reduces the overall cost associated with lung
volume estimation.

Table 4. 10-fold cross validation on multitask with HRNet.

Fold Mean Square Error

1 0.0010
2 0.0006
3 0.0013
4 0.0012
5 0.0010
6 0.0007
7 0.0013
8 0.0013
9 0.0014
10 0.0010

Mean 0.00108
Standard deviation 0.00027

5. Conclusions

This study proposes a new method for estimating lung volume capacity using inex-
pensive, more accessible chest radiographs. In this research, posterior-anterior and lateral
chest radiographs were segmented using a segmentation network, and output then fed into
a regression network for volume estimation. U-Net architecture and HRNet architecture
were used for segmentation, and regression networks with convolution and fully connected
layers were used for volume estimation. Two multitasking networks were implemented,
consisting of a segmentation network (both U-Net and HRNet) with convolution, flattened,
and fully connected layers. The experimental results from implementing different net-
works show that a multitasking network with HRNet performs better with less volume
estimation loss.

In this research work, due to the lack of ground truth volume data and segmented
lateral view image (i.e., ground truth), the X-ray image was simulated from a CT image.
Thus, it is worth testing the network performance on real X-ray images as training data to
estimate lung volume and compare its performance with other automatic method (which
use public datasets) for future work.
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