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Abstract: Background: Nigeria is among the top five countries that have the highest gap between
people reported as diagnosed and estimated to have developed tuberculosis (TB). To bridge this gap,
there is a need for innovative approaches to identify geographical areas at high risk of TB transmission
and targeted active case finding (ACF) interventions. Leveraging community-level data together with
granular sociodemographic contextual information can unmask local hotspots that could be otherwise
missed. This work evaluated whether this approach helps to reach communities with higher numbers
of undiagnosed TB. Methodology: A retrospective analysis of the data generated from an ACF
intervention program in four southwestern states in Nigeria was conducted. Wards (the smallest
administrative level in Nigeria) were further subdivided into smaller population clusters. ACF sites
and their respective TB screening outputs were mapped to these population clusters. This data were
then combined with open-source high-resolution contextual data to train a Bayesian inference model.
The model predicted TB positivity rates on the community level (population cluster level), and these
were visualised on a customised geoportal for use by the local teams to identify communities at high
risk of TB transmission and plan ACF interventions. The TB positivity yield (proportion) observed at
model-predicted hotspots was compared with the yield obtained at other sites identified based on
aggregated notification data. Results: The yield in population clusters that were predicted to have
high TB positivity rates by the model was at least 1.75 times higher (p-value < 0.001) than the yield in
other locations in all four states. Conclusions: The community-level Bayesian predictive model has
the potential to guide ACF implementers to high-TB-positivity areas for finding undiagnosed TB in
the communities, thus improving the efficiency of interventions.

Keywords: hotspots; tuberculosis; mapping; modelling; artificial intelligence

1. Introduction

According to the World Health Organization (WHO), around 10.6 million people
across the world fell ill with tuberculosis (TB) in 2021. Until the COVID-19 pandemic, there
was a yearly 2% decline in TB incidence being observed over the past 20 years, but the post-
pandemic world actually saw an increase of 3.6% in the overall incidence of TB between 2020
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and 2021 [1]. Between 2015 and 2021, the African region, where a quarter of all TB occurs,
saw a decline of 22% in TB incidence, thus meeting the 2020 target of a 20% decline [1].
However, despite all efforts, more than 4 million, approximately 40%, of all incident cases
remain undiagnosed or unreported to the National TB Control Program (NTP). Missing
patients, especially the ones who go undiagnosed, can unknowingly transmit disease to
their families and communities. Interventions need to be strengthened to find these missing
TB cases and connect them to care.

Nigeria has the sixth highest burden of TB cases in the world, where 4.4% of all cases
are found. The country is also among the top five countries that have the highest gap in
estimated incidence and reported number of people with newly diagnosed TB [1]. In 2021,
only 44% of the estimated number of incident cases were notified in the country. Finding
the missing cases early and treating them remains the single most important priority in the
country for TB control.

Apart from treating those with existing TB, it is imperative that the halting of trans-
mission be prioritised. A disease like TB, which can remain asymptomatic for long periods
of time, will need more than just passive case finding to control. Active case finding (ACF)
is about proactively reaching out to the community, finding people who have undiagnosed
infections, and connecting those people to care [2]. Current evidence supports that ACF
interventions can help to reach undiagnosed individuals early and are beneficial in low-
resource settings. A multi-faceted community-based TB case-finding intervention in two
southern states of Nigeria observed that the intervention led to a 138% increase in case
detection as compared to the expected notifications in the absence of any intervention [3].

In another study focused on potentially high transmission settings like urban slums,
they found a 6.4% TB positivity among the target population, of which 65% were smear
positive. They reported that the high transmission could be due to poor living conditions
and overcrowding [4]. Another ACF project implemented in Ebonyi state in Nigeria
combined house to house outreach with ACF activity to target attendees of a health facility
in the general outpatient departments, ANC and MCH clinics, and people living with HIV
(PLHIV) reporting to ART centres—including contact tracing of index clients. They found
3.2% TB positivity among those who were evaluated [5]. Facility-based screening like
this can reach a big population in a relatively short period of time, but the overall impact
can be variable. Although ACF interventions are necessary and impactful, they can be
resource intensive. Innovative and data-driven approaches can make them more efficient
and help to reduce the overall resources consumed. An early warning outbreak recognition
system (EWORS) was implemented in 14 states in Nigeria, which helped to identify areas
with potentially high TB spread at the ward level, and subsequent ACF interventions in
the hotspot wards yielded a significantly lower number needed to screen as compared to
non-hotspot wards [6].

It is now advocated that communities use locally tailored interventions to target
specific areas that could be at increased risk of TB. Subnational estimation of TB burden,
though extremely valuable to guide local community-based interventions, is rather lim-
ited in low–middle-income countries. Most countries still depend on case notifications,
prevalence surveys with small-area estimation, and surveys of infection to estimate burden
of TB. Although such surveys are expensive and time consuming, case notifications are
often subject to bias due to differential access to healthcare and under-reporting in low-
and middle-income countries [7]. The MATCH framework proposed by Rood E et al.
emphasises using subnational data such as disaggregated notifications and local screening
data to derive granular insights on a subnational scale [8]. Also, the risk of TB transmission
and delayed diagnosis and treatment is determined by several contextual factors like popu-
lation demographics, socioeconomic conditions, nutritional status, access to health services,
and environmental conditions, which are important to consider along with notification
data [9–11]. Therefore, there is value in leveraging data and available technology to make
evidence-based decisions for routine programmatic activities and improve the effectiveness
of interventions [12].
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The goal of this paper is to describe the approach taken for developing a TB risk
predictive model at the community level and discuss the impact it had on the yield of TB
ACF interventions. The ACF yield in clusters that overlap with model predicted hotspot
locations was compared with those that do not overlap with hotspots, our hypothesis being
that if implementers selected sites that had high predicted TB positivity rates for ACF—“TB
hotspots”—they would find more cases of undiagnosed TB than at sites not predicted to
be hotspots.

2. Methodology

Data generation methodology. A retrospective analysis was conducted of the data
generated from community-based ACF interventions led by the Society for Family Health
(SFH) in Nigeria in four southwestern states, namely, Lagos, Oyo, Ogun, and Osun. The
project was funded by the United States Agency for International Development (USAID),
which established the Local Organizations Networks (LON) to increase the level of TB
cases detected and treated in Nigeria over five years (2020–2025). The project engages
community-based organizations (CBOs) and community volunteers (CVs) for contact
tracing of index TB cases enrolled for treatment, community outreach, active case finding,
and sensitisation meetings in the communities.

Implementing a closed-loop dynamic model training pipeline. Principles of machine
learning were used to develop an epidemiological digital representation (“twin model”) of
the TB situation in the four states of Nigeria. This digital twin model was based on data
generated from local ACF program implementation and contextual data and followed the
principles of the MATCH framework as implemented in Pakistan TB ACF settings [8,13,14].
The outputs generated by the model were visualised on a web interface (hereafter referred to
as the geoportal) that was used by the local teams to identify high-priority neighbourhoods
for routine activities. The new data thus generated from the routine ACF events were
regularly incorporated into the training data. Continuous flow of new data from the
program formed a feedback loop, improved the model’s ability to learn from data coming
in, distinguished better among the low- and high-TB-risk areas, and calibrated previous
predictions. This method allowed the outputs to become fine-tuned over time, keeping in
mind the need to support program teams in finding the last missing TB cases. The first
model was trained in September 2020 with very limited data, including only 24 unique
ACF locations. This grew to the present 857 unique locations as of June 2022.

Justification for a Bayesian modelling approach. The approach used Bayesian net-
works that provided a powerful machine learning technology to reason with uncertainty in
complex environments. In this case, it refers to the spatially aware programmatic and socioe-
conomic data, multiple variables with potentially nonlinear relationships, large amounts of
natural variation, and missing values. The model was queried for TB positivity rate across
the four states, including areas where observations were not available, using known local
contextual data at the relevant subnational resolution. The Bayesian framework used was a
proprietary naive Bayes implementation. Naive Bayes is founded on the assumption of
conditional independence between predictors—called the naive Bayes assumption. The
benefits of such an approach are well known in terms of ease of implementation, scalability
to the number of predictors and data points, and ability to be trained on relatively limited
input data.

Data geolocation. Routinely collected TB screening data from ACF sites were received
in monthly intervals. Each row corresponded to a unique location or community where the
screening activity took place and contained corresponding information on the state, local
government area (LGA), and ward name. Google Maps was used to manually look up the
geo-coordinates of each community, and the ones that did not show up on Google Maps
were excluded.

Data preparation and transformation. The TB positivity rate (proportion) was derived
from the number of people diagnosed with bacteriologically positive TB and absolute
number of people screened at each ACF event. Similar proportions were also calculated



Trop. Med. Infect. Dis. 2024, 9, 99 4 of 16

for contact investigations (close contacts of index TB clients diagnosed positive over total
contacts screened) and facility-based screening (number of attendees diagnosed positive
over number of attendees screened).

Socioeconomic data processing. Indicators of sociodemographic situation and human
development known to be associated with TB [10,15] were accessed from open-source plat-
forms. Data on age- and gender-related population estimates [16], population density [17],
poverty [18], nighttime lights [17], and elevation [17] were obtained from WorldPop. Spa-
tially modelled data from the Demographic and Health Surveys (DHS) platform on literacy,
access to clean water, sanitation services, stunting in children (proxy for nutritional sta-
tus), vaccination coverage (indicator of access to care and health-seeking behaviour) were
used [19]. Travel time to health care facilities [20], distance to major roads [17], and health
facility density [21] were also used as indicators of access to care. Modelled estimates
of human immunodeficiency virus (HIV) prevalence [22] and child mortality [23] were
available from the Institute for Health Metrics and Evaluation (IHME) and the Global
Health Data Exchange (GHDx) platform. A more detailed view on the variables used is
provided in Table 1.

Table 1. Description and sources of all variables used for training the predictive Bayesian
inference model.

Variable Name Description/Definition Source Resolution Year

Total population density Number of people per
square kilometre WorldPop 100 m 2020

Male population density Counts of males per
square kilometre WorldPop 100 m 2020

Elderly population density Counts of people age 65 plus per
square kilometre WorldPop 100 m 2020

Population growth model Modelled estimates using 2000,
2010, 2020 populations WorldPop 100 m 2010–2020

Poverty index
Proportion of people below the
poverty line of USD 1.25 a day

per 1 × 1 km grid cell
WorldPop 1 km 2013

Access to improved
water source

Percentage of the de jure
population living in households
whose main source of drinking

water is an improved source

DHS 5 × 5 km 2018

Access to improved
sanitation facilities

Percentage of the de jure
population living in households
whose main type of toilet facility

is no facility (open defecation)

DHS 5 × 5 km 2018

Prevalence of stunting
in children

Percentage of children stunted
(below −2 SD of height for age

according to the WHO standard)
DHS 5 × 5 km 2018

Vaccination coverage
(8 basic vaccinations, DPT1,

DPT3, measles)

Percentage of children
12–23 months old who

are vaccinated
DHS 5 × 5 km 2018

Literacy (men, women) Percentage of men and women
who are literate DHS 5 × 5 km 2018

Motorised travel time to
healthcare facility

Optimal travel time to healthcare
with access to

motorised transport
Malaria Atlas Project 1 × 1 km 2019
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Table 1. Cont.

Variable Name Description/Definition Source Resolution Year

Distance to major roads
Distance of a major road from
the centroid of a population
cluster, measured in metres

WorldPop 100 m 2016

Child mortality under
age 5

Estimates of death counts for
children under the age of 5

(0–5 years old)
IHME 5 × 5 km 2017

HIV prevalence Estimated prevalence among
individuals aged 15–59 years IHME 5 × 5 km 2017

Health facility coverage
(density)

Number of health facilities per
square kilometre GHDx point level data

Nighttime lights VIIRS data measured in
nanoWatts/cm2/sr WorldPop 100 m 2016

Elevation Elevation above sea level
(in metres) WorldPop 100 m 2016

TB Program Variables

Active case-finding yield

Number of people diagnosed
with TB (all forms of TB and

bacteriologically positive) over
absolute number of

people screened

TBLON program Community level
Intensive case-finding yield

Number of attendees diagnosed
positive over number of

attendees screened

Contact investigation TB
positivity yield

Close contacts of index TB
clients diagnosed positive over

total contacts screened

Population clustering and Thiessen polygon generation. In highly populous coun-
tries like Nigeria, the usual administrative units like the wards can be very large in some
regions. In order to provide a model output that is able to guide neighbourhood-level inter-
ventions, wards were further divided into smaller units. This was done by an observation-
weighted k-means clustering [24,25], algorithm that divided the population in a given ward
into polygons of varying shape and population, such that each polygon contained approxi-
mately 10,000 people and did not cross the ward borders. This way, the four states were
disaggregated into 7088 population clusters (also called Thiessen polygons) [26] of variable
sizes. High-population-density areas had smaller size clusters, whereas low-density areas
like rural areas had comparatively large-sized clusters. K-means clustering is a well-known
unsupervised machine learning technique for finding clusters in data. The benefits of using
an unsupervised algorithm to cluster population density include estimates of local popula-
tion density centroids (from the k-means cluster centroids), facilitating microplanning in
the absence of high-resolution municipal boundaries. The clusters also allowed our clients
to set targets based on the proportion of each Thiessen population to be screened. The
model was trained to produce an output for each of these 7088 population clusters.

Data aggregation and standardization. Each variable mentioned in Table 1 was
aggregated to match the resolution of the newly designed polygon level and scaled to
a rate form, such that each population cluster had a unique profile defined by its local
contextual information.

Model training and hotspot recommendations. The model was trained on the TB
positivity rate derived from ACF events that took place in a limited number of population
clusters to predict a TB positivity rate for all other clusters. The predicted output thus
allowed for identification of other clusters that could be prioritised for ACF activities.
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The geoportal allowed the local teams to activate a filter and select sites with the highest
predicted TB positivity rate in their region of activity. The location was then communicated
to the field teams responsible for organising TB screening events in the community. The
yield obtained at the ACF event (observed TB positivity rate) was allocated to the respective
population cluster to calculate the new average observed rate. If the site had never been
screened, the new yield obtained after ACF was included as a new data point on the
dataset. The model was dynamic in nature, receiving new ACF data at regular intervals
and retrained every two to three months. The outputs were expected to improve over time,
and the model identified hotspots or population clusters that could be at risk of increased
TB positivity driven by the local contextual conditions such as poverty, access to health
facilities, or population density.

Platform-assisted program steering. The hotspot predictions had been used in the
four states since early 2021 for selecting the most optimal sites for ACF; however, the uptake
was variable across the region. Some of the ACF events were planned using the model
predictions, whereas others were selected based on the conventional approach. The latter
was based on facility-level TB notifications, aggregated to the LGA level, which serves as
the functional unit of the TB control program in Nigeria. LGA-level data were submitted to
the State TB and Leprosy Control Officer (STBLCO), who then reported to the NTP [27].
Thus, facility-level notifications were used to identify the catchment areas with potentially
high TB burden, which were then targeted for active case finding. The project implementers
who preferred to select their ACF sites using the geoportal commonly chose sites with high
predicted TB positivity rates, from the top 10% to the top 50%.

Comparing hotspots and non-hotspots. The ACF yield in population clusters that
overlap with model-predicted hotspot locations was compared with those that were not
predicted as hotspots (other sites). These other sites were chosen based on the conventional
approach of using facility-level notifications. The comparison was carried out between
proportions of TB positivity (yield) using the Chi-square test. For the sake of uniformity,
the threshold was set at 30%—all clusters that had a TB positivity rate falling in the top
30% range of predicted values in each state were classified as hotspots.

Investigating the relationship between covariates and model output. Pearson’s
correlation analysis was performed for all covariates and the output variables in a pairwise
manner to investigate their magnitude and the direction of the relationships as a data-
quality check and to investigate the impact of various covariates on the model outputs.
Significant relationships between covariates and the output variable could provide clues to
causal or confounding relationships in the data warranting investigation.

3. Results

The TB positivity rate was predicted at the population cluster level (below ward level)
in four southwestern states of Nigeria (Figure 1). The predicted outputs were used to
select more suitable ACF sites, a step towards making data-driven decisions. To facilitate
reporting the predicted TB burden at standard municipal boundaries, population-weighted
averages of the predicted rates at the cluster level were also calculated at the ward level,
which is the lowest municipal level in Nigeria (see Supplementary Data File S1).

Figure 2 shows a further refined view of Figure 1, limited only to the areas that were
inhabited by individuals after eliminating all unsettled areas such as fields, forests, and
barren land. The areas with clustering of a large number of settlements represent major
cities and urban areas, surrounded by less densely packed settlements in peri-urban and
rural areas.
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population clusters and the spatial distribution of the predicted bacteriological TB positivity rate. The
map is in north-up orientation.
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Figure 2. A visualisation from the TBLON 3 geoportal showing the distribution of human settlements
across the four states (within the population clusters) and the spatial distribution of the predicted
bacteriological TB positivity rate. The map is in north-up orientation.

Table 2 describes the overall administrative division, the number of population clusters
further created during this modelling exercise, and the total number of ACF locations that
could be mapped using the approach described earlier. In the four states combined, the
mappable population clusters formed 12% of the total 7088 clusters, and the respective data
generated were used for model training.
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Table 2. Administrative division and population distribution across the four states.

Characteristics of the
Administrative Unit Lagos Ogun Osun Oyo Total of Four States

Population of the state 12,594,007 6,375,060 4,871,838 8,308,362 32,149,267

Number of LGAs 20 20 30 33 103

Number of wards 377 226 267 344 1214

Total number of Thiessens 2706 1403 1120 1859 7088

Number of Thiessens with
any ACF activity mapped 271 132 173 281 857

ACF coverage (%) 10.01% 9.41% 15.45% 15.12% 12.09%

Figure 3 shows the geographical distribution of ACF sites mapped across the four
states (in blue) together with the population clusters identified as hotspots (in red) by
the model. The geoportal allowed the user to visualise several layers of interest, such as
previous ACF activity, locations of TB diagnostic services, and newly predicted hotspots.
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Figure 3. A visualisation from the geoportal showing the spatial distribution of predicted bacteriolog-
ical TB positivity rate in red and previous ACF activity in blue, at population cluster level. The map
is in north-up orientation.

Figure 4 shows the graphical representation of the median TB positivity yield obtained
when ACF activity took place in the predicted hotspots in comparison with other sites for
each of the states. The median yield in hotspot clusters was higher than the non-hotspot
clusters in three out of four states. The lowest median yield was observed in Lagos in the
hotspot locations, albeit with exceptionally high yield in some locations; thus, the average
yield was still higher than the non-hotspot group for the state as a whole. Outliers seemed
to be common in all states and in both groups.
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Figure 4. Graphical comparison of median TB positivity yield obtained when ACF activity took place
in the predicted hotspots in comparison with other sites for each of the states. The red lines indicate
the median values, and the whiskers extend to 1.5 times the interquartile range above and below the
third and first quartiles, respectively. Circles are individual data points plotted as outliers.

Table 3 shows the comparative analysis of average ACF yields obtained in each of the
states. For each state, the table depicts the outcome of ACF in the predicted hotspots, sites
that were identified by the model to be at high risk of TB, and other sites that were not
predicted to be among high-TB-positivity locations but were nevertheless chosen for ACF
by the local teams based on the conventional approach.

Comparison of yield differences between hotspot and non-hotspot sites. In terms of
ACF coverage of the predicted hotspots within each state, Lagos had the highest coverage
at 8%, while Ogun state only selected 3% of its predicted hotspots for screening. Fewer sites
were selected based on the model predictions (128), and the conventional approach (729)
seemed to be more popular overall in the four states. Even though much less screening
happened in the predicted hotspots, the proportion of TB-positive individuals diagnosed
was at least 1.7 times higher individually in each state, and the difference was statistically
significant. In Osun state, the yield obtained in the predicted hotspots was more than
double compared to that in the other sites. Although Ogun state had the lowest uptake
of predictive sites for ACF, they reported the second highest overall yield, which was 95%
more than that observed in the other sites selected conventionally.
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Table 3. Comparative analysis of average ACF yields obtained in predicted hotspots and other sites
separately for each of the states.

Characteristics of ACF
per State Lagos Ogun Osun Oyo Total of Four States

Predicted
Hotspots

Other
Sites

Predicted
Hotspots

Other
Sites

Predicted
Hotspots

Other
Sites

Predicted
Hotspots

Other
Sites

Predicted
Hotspots

Other
Sites

Total number of
Thiessens in the state 811 1895 420 983 336 784 557 1302 2124 4964

Thiessens selected
for ACF 67 204 12 120 22 151 27 254 128 729

Screening coverage % 8 11 3 12 7 19 5 20 6 15

Number of people
bacteriologically

diagnosed TB
positive (P)

132 917 26 716 371 2325 144 1470 673 5428

Number of individuals
screened (S) 20,075 243,516 2047 109,675 18,863 240,692 12,069 216,929 53,054 810,812

Yield % [(P/S)×100] 0.66 0.38 1.27 0.65 1.97 0.97 1.19 0.68 1.27 0.67

p value <0.001 <0.001 <0.001 <0.001 <0.001

% Difference in Yield 73.68 95.38 103.09 75 89.55

Investigating the relationships between model covariates and model predictions.
Based on Pearson’s correlation between covariates and the predicted output variables, the
variable with the highest correlation with the bacteriologically positive predictions was
“evaluated_tot_norm_f” (observed evaluated rate at the facility level, the number tested
divided by total screened), with a positive correlation (r = 0.73, p-value = 0). Similarly,
“presumptives_tot_norm_f” (presumptive rate at the facility level) also correlated highly
with predicted B-positive rates (r = 0.719, p-value = 0), while all-form diagnosis and
B-positive rates were slightly less correlated with predicted B-positive rates (r = 0.413,
p-value = 4.801 × 10−154 and r = 0.388, p-value = 6.4685 × 10−135, respectively). Conversely,
the variable with the lowest correlation to the predicted bacteriologically positive rate was
the total screened at the facility level (r = −0.335, p-value 1.79 × 10−98). The contextual
variable with the highest correlation to predicted B-positive rates was HIV prevalence
(r = 0.12, p-value = 0) and the least correlated contextual variable was population density
of people over 60 years old (r = −0.133, p-value = 0). See Supplementary Data File S2.

4. Discussion

Using community ACF data for high-resolution TB burden modelling. Routine ACF
data generated at the community level were used to make a high-resolution TB predictive
model for the four southwestern states in Nigeria. The outputs were accessible to the local
team via a customised geoportal, which allowed the ground teams to visualise the hotspots
on a mapping portal and make data-driven decisions for their ACF activities. Apart from
planning community-based TB screening, the predictive outputs were also used for other
program objectives, such as to identify priority areas for engaging private care providers
and community engagements.

Using unsupervised population clusters combined with local context to model
underserved locations. This predictive model is the first of its kind in Nigeria to predict
hotspots on specially designed population clusters below the ward level. These population
clusters were designed in discussion with the local teams such that each cluster contained a
manageable size of population (up to 10,000) for ACF. Identifying the high-TB-transmission
areas on the basis of facility-level notification data alone can be challenging. This model
does not depend heavily on the number of registered TB clients at the facility level, which is
often affected by the capacity and quality of diagnostic and treatment services available in
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an area. Areas that are rather remote and located away from quality TB diagnostic facilities
can have low notification rates and might be mistaken for low TB transmission [7,15,28].

In contrast, a study in Kampala, Uganda, reported that facility-based passive case
finding could predict high-TB-prevalence settings and was sufficient to effectively guide
ACF. However, their study area was a 2.2 km2 region with a population of approximately
49,000 individuals with quite homogenous access to TB diagnostic and treatment services.
The authors remarked that facility-based notifications may be less useful in bigger regions
where access to health services is variable [29]. Therefore, it is plausible that the current
approach is well suited for these populous southwestern states in Nigeria.

Leveraging limited ACF data with local context for data-driven program steering.
This model leveraged community-based screening data from a limited number of locations,
enriched it with other local determinants of TB transmission, and predicted the TB posi-
tivity rate at the community level across the whole geographic region. The advantage of
using ACF data could be that it reflected the TB transmission among the people who live
or frequent the screened location. The model thus predicted and helped to identify even
those communities that were traditionally not known to report many TB cases or were not
reached by any previous ACF activities. This can also be seen as an added advantage over
the commonly used spatial clustering techniques. These techniques are able to identify sta-
tistically significant clustering patterns from heterogenous disease distributions. Although
they would detect significant clusters if several data points fell adjacent to each other, they
can fail to identify small areas of TB transmission if they exist in an isolated and remote
location [30]. Identification of disease hotspots at the local level is believed to be one of
the important components of epidemic elimination [7]. Thus, the local teams could make
informed decisions regarding selecting ACF sites and reach out to the communities to find
a higher proportion of undiagnosed TB.

Population density associated with higher predicted TB rates. It can be seen that
the highest-TB-risk areas were predicted to be in and around the densely populated urban
centres. Although urban centres are often characterised by high accessibility to better health
care services, they also typically have overcrowded houses and people living in lower
socioeconomic conditions, which are determinants of TB transmission [31,32].

Increased yield from model recommendations obtained. TB positivity yield obtained
at the ACF sites that were also predicted by the model to be at high risk of TB were
compared to other sites that were selected based on the conventional approach for ACF
planning (using notification data). The overall yield in predicted hotspots was 73% higher
in Lagos, 95% higher in Ogun, 103% higher in Osun, and 75% higher in Oyo state compared
to the other sites, and the results were statistically significant. The results were especially
impressive because the model-recommended ACF sites only formed a very small proportion
of the total ACF that took place across the four states. This supports the fact these model-
predicted hotspots were in fact better suited for ACF, whereas the non-hotspot sites did
not find as many new TB cases with extensive screening. Ogbudebe et al., who used their
EWORS system to identify TB hotspots in 14 states of Nigeria, reported that the number
needed to screen to diagnose a TB case in the hotspot and non–hotspot areas was 146 and
193 per 10,000 people, respectively, which translated to an almost 24% higher yield [6].

Potential and challenges for targeted ACF in highly populated cities. Looking at
Lagos state, the median yield observed in the predicted hotspots was almost zero, which
means up to 50% of ACF events did not find any TB cases. Although the overall yield
(average) was higher as compared to the other sites, it potentially could have been driven
by the locations that found an extremely high yield. Lagos is the most densely populated
state in Nigeria, with a population density of almost 3791 per square kilometre. The state is
also the centre of focus for the National TB Control Program, with several government and
non-government organisations implementing their TB case-finding intervention programs
across the state. It is possible that some population clusters were repeatedly screened by
separate organisations at different points of time over the past few years. This could have
been one of the reasons for it having the lowest median yield among the four states despite
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having the highest extent of screening. This also points towards a need for increasing
collaboration among locally active organisations that perform ACF and sharing of data to
make evidence-based decisions. Pooling of data from different ACF programs across the
state could further boost predictive models like these and benefit the whole community. A
recent study from Pakistan that retrospectively analysed their ACF program data found
that among more than 1500 individual ACF events conducted in and around Karachi city,
almost three fourths did not find any TB cases. However, a small proportion of 5% of
events accounted for 40% of the TB cases diagnosed. The authors concluded that a more
targeted approach for ACF in high-population metropolitan cities can increase the yield
and cost-effectiveness of interventions [33].

The benefits of using local context and ACF data for TB burden modelling. The
interquartile range of yield, as observed in sites other than hotspots, reflects that the
sites selected by the local teams could have had similar local context and TB burden.
It is common practice that in most states ACF sites are chosen based on facility-level
notifications. However, the broader range and extreme values of yield found in predicted
hotspot locations show that even with much fewer sites, these were potentially different
from those selected by the conventional approach (non-hotspot sites) and had a much higher
number of undiagnosed TB. The reason could be that the predictive model learnt from
local contextual and ACF data to uncover TB transmission sites, which could have been
easily missed if only aggregated notification data were used. Further, training models with
local context could potentially ameliorate the effects of underreporting or other systematic
reasons for low notification rates, which may not accurately reflect the true disease burden
on their own.

Limitations of only using notification data for program steering. Another reason for
these high yields could be that the predicted hotspots were previously seldom targeted
based on reluctance of the local teams to explore communities that are not justifiably
represented on the treatment registers (facility notification registers). This leaves a pool of
undiagnosed TB waiting to be diagnosed at the earliest opportunity.

Local TB burden heterogeneity necessitates local approaches to ACF. Similarly, a
study in Peru mapped geographic coordinates of individuals treated for TB in an urban
district over five years and analysed their spatial distributions. They reported hetero-
geneous distributions of TB, with clustering of local hotspots and cold spots across the
74 neighbourhoods in the district. The study found that although the median rate of re-
ported cases in the district was 123.6, the range among neighbourhoods varied from 0 to
800 cases per 100,000 members of the population. Although the study utilised notification
registers alone, it highlights the possibility of local epidemics and the relevance of geo-
graphic mapping of individual cases from their addresses to identify areas at risk of TB
transmission and its practical implications for decision-making [34].

Challenges to the implementation and uptake of model-assisted ACF. There are a
number of challenges associated with deployment of the geoportal and model-driven case
finding. It took some handholding and mentorship before the local teams could trust the
predictions, as a number of the predicted hotspots were not known to be high yielding in
the past. Also, the limited digital literacy of some of the local teams particularly restricted
the use to some cadres of field staff. Additionally, it was challenging to input data back into
the model, as reporting was basically paper based, with sparse electronic data capturing.

Using a predictive model allows for the identification of new ACF sites. The main
strength of this approach was that the local ACF data allowed predictive models to learn
about the distribution of undiagnosed TB cases in the community, thus improving their
potential to predict new ACF sites, as opposed to the facility-level notification data. This
approach leverages incremental learning and does not require large volumes of data from
the beginning, allowing for data-driven decision-making in low-resource settings.

Limitations of the approach. Our results should be interpreted in light of certain
limitations and assumptions. Individuals screened at a certain population clusters or
communities were assumed to belong to that location; hence, the routine data collection
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sheets reported aggregated and not individual-level data. The geo-coordinates of the
ACF sites were manually searched for online and mapped; this could have led to some
discrepancies in precise mapping. Also, it was not possible to find all communities on
Google Maps, and thus, they had to be excluded. The uptake of using models for ACF
planning was variable across the states, and we had no control over how frequently this
approach was being used or the way this approach was being used. The retrospective nature
of this analysis did not allow us to control for any biases that could have had an impact
on the way the screening events were planned. For example, if the community volunteers
knew that they were screening in a predicted hotspot, some of their practices could have
been affected. Also, because the total training data at the population cluster level were very
limited compared to the total number of clusters the model was predicting for, it was not
possible to perform further disaggregation into age groups or gender, or train the model on
unseen data. The current work was unable to show the overall impact of this case-finding
intervention on the total notifications in the four states, as the TB-LON 3 program did
not have access to all the notification data at the state level. Nevertheless, notifications
to the National TB Control Program are affected by a number of factors, including the
diagnostic and treatment initiation capacities, whereas the model predictions were only
used to guide the ACF site selection. Finally, as the analysis was carried out retrospectively,
hotspots predicted from the final training set may not have been predicted as hotspots at
the time of screening and could have been selected by the conventional approach; thus,
prospective studies are needed to more accurately quantify the improvement in yield of the
data-driven approach when used for targeted ACF. Potential confounding factors identified
by Pearson’s correlation analysis included a negative relationship between total number of
people screened at the facility level and the predicted B-positive rates. Since facilities that
are in communities with better health infrastructure may tend to screen more patients, this
would create an artificial relationship between the total number screened and B-positivity,
although it can be argued that the total number screened does provide indirect evidence
for access to care in a community. Overall, the relationships identified between Pearson’s
correlation between covariates and predicted B-positivity were in line with the expected
relationships in the field, such as the positive correlation between HIV prevalence and
predicted B-positivity by the model.

Future directions for locally targeted ACF. Based on the findings of this work, for
future ACF programs and interventions, the recording of geographic information such
as coordinates should be promoted as much as possible. These results are motivating
enough to increase confidence in such data-driven approaches. A more systematic and
large-scale comparison in a prospective intervention design can provide stronger evidence
for advocating for this approach in other regions.

5. Conclusions

This approach leveraged local data, looked beyond facility-level aggregated noti-
fication, and enabled outreach to previously underserved locations. The program im-
plementers were able to find much higher yields when ACF activity happened in the
model-predicted hotspots.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/tropicalmed9050099/s1, File S1: Ward level TB risk predictions;
File S2: Pearson’s correlation analysis between covariates and model outputs.
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