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Abstract: This paper proposes a novel five-dimensional (5D) memristor-based chaotic system by
introducing a flux-controlled memristor into a 3D chaotic system with two stable equilibrium points,
and increases the dimensionality utilizing the state feedback control method. The newly proposed
memristor-based chaotic system has line equilibrium points, so the corresponding attractor belongs
to a hidden attractor. By using typical nonlinear analysis tools, the complicated dynamical behaviors
of the new system are explored, which reveals many interesting phenomena, including extreme
homogeneous and heterogeneous multistabilities, hidden transient state and state transition behavior,
and offset-boosting control. Meanwhile, the unstable periodic orbits embedded in the hidden chaotic
attractor were calculated by the variational method, and the corresponding pruning rules were
summarized. Furthermore, the analog and DSP circuit implementation illustrates the flexibility
of the proposed memristic system. Finally, the active synchronization of the memristor-based
chaotic system was investigated, demonstrating the important engineering application values of the
new system.

Keywords: memristive system; extreme multistability; unstable periodic orbit; electronic circuit;
active synchronization

1. Introduction

In 1971, Professor Chua first theoretically predicted the existence of components that
describe the relationship between charge and magnetic flux from the perspective of circuit
theory completeness [1], and defined such components as memristors, which are nonlinear
resistors with memory function. The resistance value of a device can change with the
history of input current or voltage, that is, it can remember the charge or magnetic flux
flowing through it by the change of resistance value. Due to the lack of such devices, the
research on memristors and memristor circuits has not attracted widespread attention in the
scientific and engineering communities for a long time, until 2008, when Hewlett Packard
laboratory developed the first physical model of a nanoscale memristor and provided its
memory mechanism from an experimental perspective [2], which has aroused people’s
interest in conducting comprehensive research on memristors. Meanwhile, many simple
mathematical models with memristor characteristics have been successively reported [3],
such as quadratic nonlinear memristor [4], tri-valued memristor model [5], and five-valued
memristor model [6]. Considering the unique characteristics of memristors, they have
shown great research value and application prospects in engineering fields [7], such as
chaotic circuit construction [8,9], chaotic masking secure communication [10], artificial
neural networks [11,12], image encryption [13,14], and logic operations [15].

Since memristic systems often exhibit more complex dynamical characteristics, many
memristor-based systems have been proposed in recent years [16–19]. A new 4D chaotic
system with double memristors which has infinitely many unstable equilibria was con-
structed [20]. Dynamical analysis and circuit implementation of a new variable-wing 5D

Fractal Fract. 2024, 8, 266. https://doi.org/10.3390/fractalfract8050266 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract8050266
https://doi.org/10.3390/fractalfract8050266
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0003-4218-2466
https://doi.org/10.3390/fractalfract8050266
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract8050266?type=check_update&version=2


Fractal Fract. 2024, 8, 266 2 of 25

memristor-based hyperchaotic system was derived in [21]. A new memristor-based multi-
double-scroll system was achieved by directly embedding a piecewise-nonlinear memristor
into Chua’s system [22]. Some complex dynamic behaviors, such as periodic bursting and
chaotic bursting, can also be generated in the generalized ternary memristive circuit [23].
The influence of a specific symmetry break on the dynamics of a fourth-order autonomous
memristive chaotic circuit was evaluated [24]. A novel conservative memristive system was
discovered by introducing the three-terminal memristor into a newly constructed 4D Euler
equation [25]. In Ref. [26], a 4D chaotic system was proposed by introducing a memristor
to the jerk system. Grid multi-scroll attractors also can be generated in a 4D memristive
chaotic system and memristive neural networks [27,28].

Multistability is a common physical phenomenon in nonlinear dynamic systems.
When the system parameters remain unchanged and the initial state is changed, the system
trajectory may asymptotically approach different stable states, such as equilibrium point,
chaos, period, and quasi-period. The special properties of memristors make memristor
circuits multi or extremely multi-stable, easily exhibiting the coexistence of multiple or infi-
nite attractors. A 5D memristive chaotic system was introduced by replacing the coupling
parameters in the Sprott-B-based 4D chaotic system with a flux-controlled memristor [29],
which exhibits extreme multistability phenomena. Liu and Lai devised a new memris-
tive chaotic system with infinite coexisting attractors based on the Sprott-J system [30].
Chang et al. investigated extreme multistability and complex dynamics of a chaotic system
based on a smooth bistable bi-local active memristor [31]. Singh et al. found a new 4D
memristive hyperchaotic system that has extreme multistability and analyzed a nonlinear
active-adaptive projective synchronization control [32]. In Ref. [33], the generation of a
novel 4D memristor-based chaotic system characterized by abundant coexisting attractors
was investigated. Coexisting attractors or extreme multistability have also been found
in the two memristor-based Hopfield neural network [34], fractional-order memristor-
based chaotic system [35,36], a pair of coupled memristor-based Duffing oscillators [37],
memristor-based double-scroll chaotic system [38], current-controlled memristor-based
chaotic circuit [39], and memristor-based time-delay chaotic system [40].

The main contributions and innovations of this paper are as follows.

(1) This paper presents a variable-boostable memristor chaotic system with hidden at-
tractors, and the circuit implementation shows that the newly designed system has
feasibility for applications.

(2) The new system contains various interesting dynamic behaviors, such as extreme ho-
mogeneous multistabilities, extreme heterogeneous multistabilities, hidden transient
state, and complex state transition behavior.

(3) The unstable periodic orbits embedded in the hidden chaotic attractor were explored,
and relevant pruning rules are summarized, revealing the symbol encoding mecha-
nism of cycles.

The rest of this article is arranged as follows. Section 2 presents the mathematical
model of a 5D memristor-based chaotic system and analyzes its fundamental dynamic
properties. In Section 3, various interesting and complex dynamic behaviors of the new
system are investigated. Section 4 systematically explores the unstable periodic orbits of
the new system. In Section 5, the analog and DSP circuit is designed to implement the
memristor-based system. Section 6 discusses the active synchronization control of the new
5D system. Finally, Section 7 concludes this article.

2. The Novel 5D Memristor-Based Chaotic System

In recent years, various mathematical models for memristors have been proposed. In
this paper, the following form of cubic nonlinear flux-controlled memristor is adopted to
build the new system [41]:
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i = W(φ)v

W(φ) = f + 3gφ2 (1)
dφ

dt
= v,

where v and i are the input voltage and output current of the memristor, f and g are two
system parameters, and φ is the state variable. W(φ) represents the memductance of the
flux-controlled memristor; such memristors are not only theoretical models but can also
be physically realized in circuits using phase-change materials or nanotechnology, which
further proves their feasibility and practicability in the design of physical circuits.

In Ref. [42], a 3D chaotic system with hidden attractors was proposed, and the form of
the system is

·
x = a(y − x)
·
y = cx − xz (2)
·
z = xy − bz − d.

For the parameter values (a, b, c, d) = (35, 3, 35, 10) and the initial values (x0, y0, z0) =
(1, 1, 1), system (2) presents a chaotic attractor with a double-wing shape.

Subsequently, we add a linear feedback term, a nonlinear feedback term, and a flux-
controlled memristor W(u) to the system (2), where u is the internal state variable of the
memristor and x is the input voltage of the memristor. It is worth noting that their incorpo-
ration significantly enhances the nonlinear characteristics of chaotic systems, leading to
more complex chaotic behaviors. By extending the proposed 3D chaotic system, we obtain a
novel 5D memristive chaotic system with richer dynamics than higher-dimensional chaotic
systems, as follows:

·
x = a(y − x) + kW(u)x
·
y = cx − xz
·
z = xy − bz − d (3)
·

w = x − zw
·
u = mx,

where a, b, c, d, m, and k are the control parameters. Choosing W(u) = 1 + 0.1u2, a si-
nusoidal voltage source is considered as v(t) = Vm sin(2π f t), where Vm and f are the
excitation amplitude and frequency, respectively. Taking Vm = 1V, the internal initial state
of flux-controlled memristor φ0 = 0, and f is set to 0.05, 0.1, and 0.4 Hz. According to
Equation (1), the diagram of memductance and pinched hysteresis loop is displayed in
Figure 1.

The parameters of system (3) are fixed as (a, b, c, d, m, k) = (25, 4, 35, 10, 1, 0.01). Let
the terms on the left-hand side of system (3) be zero, then we can easily find that the system
has a line equilibrium

O = {(x, y, z, w, u)|x = y = w = 0, z = −2.5, u = e}, (4)

where e is any real constant, according to the category of the hidden attractor, which means
that the attractors generated by system (3) are all hidden.
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Figure 1. The characteristic curve of a memristor. (a) Memductance; (b) pinched hysteresis loop for
different frequencies.

The linearization matrix of system (3) on O is obtained as follows:

J(O) =


−a + k(1 + 0.1e2) a 0 0 0

c + 2.5 0 0 0 0
0 0 −b 0 0
1 0 0 2.5 0
m 0 0 0 0

. (5)

Based on the Jacobian matrix (5), the characteristic equation can be calculated by

λ(2.5 − λ)(b + λ){λ2 + [a − k(1 + 0.1e2)]λ − 2.5a − ac} = 0. (6)

Thus, the eigenvalues are obtained: λ1 = 0, λ2 = 2.5, λ3 = −b = −4, λ4, and λ5
are both real. It can be concluded that all the equilibrium points located on the line O
are unstable saddle points. It is worth noting that the stability of the memristive chaotic
circuit cannot be simply determined by the stability of the nonzero eigenvalues of the
equilibrium point set O. Under certain parameters, zero eigenvalues also significantly
impact the stability of the memristive chaotic circuit.

The symmetry of chaotic systems is an important property. If we perform transfor-
mations (x, y, z, w, u) → (−x,−y, z,−w,−u), the memristive system (3) is invariant, which
means that system (3) is symmetric relative to the z-axis in the phase space. Therefore, the
limit cycles of the system are either self-symmetric or appear in pairs.

The dissipativity of system (3) can be expressed as follows:

∇ · V =
∂
·
x

∂x
+

∂
·
y

∂y
+

∂
·
z

∂z
+

∂
·

w
∂w

+
∂
·
u

∂u
= −a + kW(u)− b − z. (7)

When the following condition is satisfied: 0.001 u2 − z < 28.99, the system is dissipa-
tive, which means there may be strange attractors present.

The initial values (x0, y0, z0, w0, u0) are set as (1, 1, 1, 1, 1), and the Ode 45 algorithm is
used for numerical integration in Matlab, which reveals the chaotic behaviors characterized
by double-wing strange attractors, as shown by the 2D projection of the phase portraits in
Figure 2. The corresponding Lyapunov exponents are L1 = 0.2386, L2 = 0, L3 = −0.3934,
L4 = −13.3292, L5 = −30.7285 (see Figure 3a), and the Kaplan–Yorke dimension is
DKY = 2.6253. Due to the existence of one positive Lyapunov exponent in the system
and ∑ Li < 0, the system under current parameters is in a chaotic state. The continuous
broadband power spectrum shown in Figure 3b also verifies the emergence of chaos.



Fractal Fract. 2024, 8, 266 5 of 25

-40 -20 0 20 40

x

-40

-20

0

20

40

y

-40 -20 0 20 40

x

0

10

20

30

40

50

60

70

z

(a) (b)

-40 -20 0 20 40

y

0

10

20

30

40

50

60

70

z

-40 -20 0 20 40

x

-1

-0.5

0

0.5

1

w

(c) (d)

-40 -20 0 20 40

x

-40

-20

0

20

40

60

u

0 10 20 30 40 50 60 70

z

-1

-0.5

0

0.5

1

w

(e) (f)

Figure 2. 2D projection of phase portraits in different state space under parameters (a, b, c, d, m, k) =
(25, 4, 35, 10, 1, 0.01), the initial values are set as (1, 1, 1, 1, 1). (a) x–y phase space; (b) x–z phase space;
(c) y–z phase space; (d) x–w phase space; (e) x–u phase space; (f) z–w phase space.
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Figure 3. (a) The Lyapunov exponents spectrum of system (3) for evolution time t = 5000. (b) A
continuous broadband power spectrum.

3. Dynamical Analysis of the Memristor-Based Chaotic System
3.1. Complex Dynamical Behavior Depending on Control Parameter b

When the parameters of system (3) are set as (a, c, d, m, k) = (25, 35, 10, 1, 0.01) and
the initial values are taken (x0, y0, z0, w0, u0) = (1, 1, 1, 1, 1), the dynamic behavior of the
system under different b values is investigated. Figure 4 shows the bifurcation diagram and
its corresponding Lyapunov exponents spectrum when b is varied in the interval [0, 5]. It
can be seen that system (3) exhibits various states with different b values, such as periodic,
quasi-periodic, and chaotic states. When b is in the interval [0, 1.25], the system is in a
periodic or quasi-periodic state at most positions, except for a few parameters where the
system is in a chaotic state. When b ∈ (1.25, 2], the system has a chaotic status at most
positions. However, near b = 1.65, the maximum Lyapunov exponent is approximately
zero, which indicates that system (3) is periodic within a small parameter range. Then,
when b > 2, the system eventually becomes a chaotic state, which means that the system
indeed produces chaotic attractors with one positive Lyapunov exponent for a wide range
of b. Different dynamic behaviors under five b values are summarized in Table 1, and the
corresponding 2D projection of phase portraits for some typical values of b in x − z state
space are displayed in Figure 5, which indicates the intricate topological structure and rich
dynamic properties in the memristor-based system (3).
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Figure 4. (a) Bifurcation diagram and (b) Lyapunov exponents spectrum of system (3) versus b under
parameters (a, c, d, m, k) = (25, 35, 10, 1, 0.01).
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Figure 5. 2D view of phase portraits of system (3), (a, c, d, m, k) = (25, 35, 10, 1, 0.01). (a) b = 0;
(b) b = 0.5; (c) b = 1.1; (d) b = 1.7; (e) b = 4.54.

Table 1. Dynamics and Lyapunov exponents for some typical values of b in system (3) with
(a, c, d, m, k) = (25, 35, 10, 1, 0.01).

b L1 L2 L3 L4 L5 Dynamics Graphics

0 0 −0.003 −0.0182 −21.5206 −38.1067 Periodic 5a
0.5 0.4546 0.0016 0 −25.4393 −32.7797 Chaos 5b
1.1 0 0 −0.0928 −26.0188 −33.1678 Quasi−periodic 5c
1.7 0 −0.0188 −0.0882 −26.6117 −32.1694 Periodic 5d
4.54 0.3168 0 −0.3634 −14.8637 −29.8309 Chaos 5e
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3.2. Poincaré Mapping

Poincaré mapping is a very common approach for analyzing dynamic systems. This
method analyzes the motion state of the system by selecting an n − 1 dimensional cross-
section in the n-dimensional state space and observing the distribution of the intersection
points between the motion trajectory and the cross-section. Suppose there are countless
points on the Poincaré section. In that case, the system enters a chaotic state, and the ar-
rangement of points on the Poincaré section generally exhibits certain fractal characteristics.
By observing the phase diagrams in Figure 2, we selected the cross-section as x = 0, and
the corresponding 2D Poincaré mapping is shown in Figure 6a,b. It is obvious that there are
many dense points on the cross-section, which further validates the chaotic characteristics
of the system. Figure 6c shows the first return map of system (3) with a cross-section z = 35
for evolution time t = 1000, where a dense sheet point set with a unimodal structure of
two branches is presented.
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Figure 6. The 2D Poincaré map with section x = 0 of system (3): (a) in y − z plane; (b) in w − u plane.
(c) The first return map with section z = 35. (a, b, c, d, m, k) = (25, 4, 35, 10, 1, 0.01), and the initial
values are taken as (1,1,1,1,1).

3.3. Extreme Homogeneous and Heterogeneous Multistabilities

On the other hand, the multistability phenomenon in memristive chaotic systems
has broad application prospects in various fields. For instance, in the area of neural
networks, multistable systems can simulate the functions of biological neural systems,
inspiring the design of efficient artificial neural networks [43]. Moreover, in the domain
of secure communications, the complex dynamics of chaotic systems can be utilized for
encrypting signals to prevent unauthorized interception or decryption of information [44].
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Specifically, homogeneous multistability refers to the ability of a chaotic system to generate
coexisting attractors with the same structure but different positions or amplitudes, while
heterogeneous multistability refers to the ability of a system to generate several or even
infinite coexisting attractors with different structures under the same parameters [45].
Due to the unique memory of memristors on the initial states, in addition to the control
parameters that can affect the dynamic behavior of the system, the internal state initial
value u(0) of the memristor can also have a deep impact on the state of the system. In
system (3), when the parameters are taken as (a, b, c, d, m, k) = (35, 3, 35, 10, 0.01, 0.01), and
initial values are set as (1, 1, 1, 1, u(0)), the system can generate various coexisting chaotic
attractors depending on u(0). Figure 7 shows a projection of the chaotic attractors onto
the 2D or 3D phase space for seven different u(0), whose orbits exhibit a relatively small
range of extension in the u direction and are not stationary. Moreover, they shift vertically
within the phase space depending on the initial values. This phenomenon indicates that
system (3) has the property of homogeneous multistability, which means that under a
certain parameter, as the initial value of the memristor changes, the system exhibits extreme
multistability phenomena.

(a) (b)

Figure 7. Phase portraits when u(0) = −90 (pink), u(0) = −60 (blue), u(0) = −30 (yellow),
u(0) = 0 (red), u(0) = 30 (purple), u(0) = 60 (green), u(0) = 90 (black), (a, b, c, d, m, k) =

(35, 3, 35, 10, 0.01, 0.01). (a) In y − u plane, the black rectangular in the subfigure in the right column
shows the amplification of the corresponding chaotic attractor, (b) in x − y − u space.

When the parameters are set as (a, b, c, d, m, k) = (25, 0.8, 35, 10, 0.01, 0.01), and initial
values are set as (1, 1, 1, 1, u(0)), system (3) can also present extreme heterogeneous multi-
stability. When u(0) is set to 60, 80, 90, 100, and 120, respectively, the phase portraits in the
x − z plane, and the x − y − z space are shown in Figure 8, which reveals the coexisting
symmetric limit cycle, asymmetrical limit cycle, quasi-periodic attractor, and chaotic attrac-
tors. The coexisting infinitely many attractors with different topological structures confirm
the emergence of heterogeneous multistability.

3.4. Hidden Transient State and State Transition Behavior

Transient state refers to a special phenomenon where a system is in one state for a
short time, but with the evolution of time, it transitions to another state. Here, the hidden
transient state and state transition of system (3) depending on the system parameters
are discussed. Choosing the parameters (a, b, c, d, m, k) = (20, 4, 35, 10, 1, 0.01), the initial
condition(1, 1, 1, 1, 1), and the simulation time t = 1000. The 2D phase diagram and time-
domain waveform of the state variable z are shown in Figure 9. It can be observed that the
system turns to another kind of chaos when t = 424.4, and there are significant differences
in the strange attractors before and after the transfer.
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Figure 8. Phase portraits when u(0) = 60 (blue), u(0) = 80 (red), u(0) = 90 (green), u(0) = 100 (grey),
u(0) = 120 (yellow), (a, b, c, d, m, k) = (25, 0.8, 35, 10, 0.01, 0.01). (a) In x − z plane, (b) in x − y − z
space.
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Figure 9. Transient chaotic transition behavior under parameters (a, b, c, d, m, k) = (20, 4, 35, 10, 1, 0.01).
(a) Phase portraits when t ∈ (0, 400) (red) and t ∈ (0, 1000) (green); (b) time domain waveform about z.

When the parameters are changed to (a, b, c, d, m, k) = (25, 7, 35, 10, 0.01, 0.01), and
the initial condition is (1, 1, 1, 1, 1), the system exhibits transient asymptotic convergence
and steady-state chaotic behavior, as shown in Figure 10. It can be observed that the
time-domain waveform changes from a straight line to disorderly in the vicinity of t = 300,
and the system has a state transition.

Similarly, when the parameters are taken (a, b, c, d, m, k) = (18, 0.95, 35, 10, 0.01, 0.9),
and the initial condition is (1, 1, 1, 1, 1), the system has a state transition around t = 200, as
shown in Figure 11. Obviously, the attractor with quasi-periodic characteristics appears
in a short time, and the chaotic attractor appears in a long time, which fully indicates that
the system has hidden transient quasi-period under the corresponding parameters and
initial values.

As a result, the hidden transients and state transitions reveal the unpredictability of
the new system (3) over long-term evolution. The existence of these dynamic behaviors not
only enhances the robustness and adaptability of the system but also lays the foundation
for the subsequent in-depth study of synchronous control strategies.



Fractal Fract. 2024, 8, 266 11 of 25

0 200 400 600 800 1000

Time

0

10

20

30

40

50

60

70

z

(a) (b)

Figure 10. Transient asymptotic convergence transition behavior under parameters (a, b, c, d, m, k) =
(25, 7, 35, 10, 0.01, 0.01). (a) Phase portraits when t ∈ (0, 300) (red) and t ∈ (0, 1000) (green); (b) time
domain waveform about z.

0 200 400 600 800 1000

Time

10

20

30

40

50

60

z

(a) (b)

Figure 11. Transient quasi-periodic transition behavior under parameters (a, b, c, d, m, k) =

(18, 0.95, 35, 10, 0.01, 0.9). (a) Phase portraits when t ∈ (0, 200) (red) and t ∈ (0, 1000) (green);
(b) time domain waveform about z.

3.5. Offset-Boosting Control

Offset-boosting control refers to the process of adding a constant term to a state
variable in a deterministic chaotic system when it only appears once in the system’s
equation, resulting in a controllable offset and causing the chaotic signal to change from
bipolar to unipolar. Since the derivative of a constant is 0, the form of the differential
equation remains unchanged after the introduction of a constant in the variable. Therefore,
the offset-boosting control can achieve the mutual conversion of chaotic signals between
different polarities by simply changing an additional control constant without changing
the basic dynamic characteristics of the system. According to system (3), the state variable
w only appears once to the right of the fourth equation in system (3), so it is easy to achieve
offset-boosting control of the chaotic attractor. Using the state variable w + v instead of w,
where v is the offset increment controller, then system (3) can be rewritten as
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·
x = a(y − x) + kW(u)x
·
y = cx − xz
·
z = xy − bz − d (8)
·

w = x − z(w + v)
·
u = mx.

Therefore, by changing the size of v within a certain range, the offset-boosting
control of the chaotic attractor on the w axis can be achieved. When selecting param-
eters (a, b, c, d, m, k) = (25, 4, 35, 10, 0.01, 0.01), and the initial values are (1, 1, 1, 1, 1),
Figure 12a,b show the phase diagrams and corresponding time series diagrams of three
chaotic attractors generated at different positions in the z − w plane when v is −1, 0, and
1, respectively. It can be seen that when v = 0, the chaotic signal is on the positive and
negative half axes of the w axis; when v = 1, the chaotic signal is on the negative half
axis of the w axis; when v = −1, the chaotic signal is on the positive half axis of the w
axis. This indicates that when the offset increment controller v takes a positive value,
the attractor shifts towards the negative direction of the w axis; while when the offset
increment controller v takes a negative value, the attractor shifts towards the positive
direction of the w axis. It can be seen that the memristor-based system (3) belongs to
the variable-boostable systems, which is very appropriate in chaos-based applications,
because it can be used for amplitude control and reduce the number of components
required for signal conditioning [46].

On the other hand, the Lyapunov exponents spectrum versus v is also calculated,
and the five Lyapunov exponents remained almost unchanged, as shown in Figure 12c,
indicating that the dynamical state of system (3) did not change with the offset controller v.
At the same time, in Figure 12d, the average of the state variable w decreases as the offset v
increases, while the average value of the other variables remains unchanged. Furthermore,
there is a variable w in the model whose value does not affect the dynamics of the remaining
variables. Therefore, system (3) is a four-variable dynamic model whose evolution affects
the fifth variable, but not the other way round. In summary, the introduction of the offset v
can flexibly shift the position of the attractors in the w direction in the phase space, which
has great application value in engineering.
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Figure 12. (a) Phase diagram of chaotic attractors; (b) time series diagram of state variable w;
(c) Lyapunov exponents spectrum corresponding to different values of offset-boosting controller v;
(d) average values of the state variables.

4. Analysis of the Unstable Periodic Orbits via Variational Approach

Unstable periodic orbits play an important role in chaotic systems: according to the
periodic orbit theory [47], due to the orbital shadowing effect, the average values of physical
quantities in a dynamic system can be calculated by cycle expansions. Thus, it is important
not to miss any short cycles as ignoring long cycles has little impact on calculation accuracy.
Many numerical calculation methods have been proposed to locate the unstable periodic
orbits in chaotic systems. In this section, we employ the variational calculation approach to
extract and encode the unstable periodic orbits embedded in the chaotic attractor of the
memristor-based system (3).

4.1. Variational Method for Calculations

Strange attractors are composed of numerous unstable periodic densely covered orbits;
analyzing periodic orbits can help us better understand the properties of strange attractors.
To extract these unsteady periodic orbits, we utilized the variational method in this paper,
which has shown its reliability and efficiency [48]. The fundamental physical idea is to
make an initial loop guess about the shape of a periodic orbit and then gradually evolve it
into a true periodic orbit. The initialization is crucial in variational computation because it
determines whether the computed periodic orbits are the ones of interest, which can be
achieved in various ways. The following discrete version is expressed by(

Â −υ̂
â 0

)(
δx̃
δλ

)
= δτ

(
λυ̂ − ˆ̃v

0

)
; (9)

it can be derived to solve for δx̃ and δλ, which leads to the period and the position of the
cycle. Compared to other numerical methods, as a result of the use of a continuum of
points, the variational method has the advantage of numerical stability. The selection of the
initial conditions is a crucial factor in ensuring the computation yields the desired trajectory.
To accommodate different systems, multiple initialization strategies are used to ensure
the flexibility of the method. Especially, when the parameters of system (3) are chosen
as (a, b, c, d, m, k) = (25, 4, 35, 10, 1, 0.01), the variational method is used here to perform
the calculations.

4.2. Symbolic Encoding of Periodic Orbits

We first found the shortest periodic orbit, whose phase diagram projected on the x − z
plane is shown in Figure 13a. We can see that the topological structure of the cycle presents a
symmetric 8-shape. The Poincaré first return map in Figure 6c exhibits a unimodal structure,
which implies the possibility of encoding all short unstable periodic orbits embedded in
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the strange attractor by symbolic dynamics with two letters. To systematically calculate
and classify all short periodic orbits, two-letter symbolic dynamics can be established
according to the following rules: we mark orbital segments with x < 0 as symbol 0, and
the orbital segments with x > 0 as symbol 1; therefore, the cycle in Figure 13a is cycle
01. Utilizing these two basic building blocks, the initial loop guess for calculating other
periodic orbits can be constructed accordingly, and their existence can be checked through
the variational method.
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Figure 13. x − z plane projection of the unstable cycles in system (3) under parameters
(a, b, c, d, m, k) = (25, 4, 35, 10, 1, 0.01): (a) cycle 01; (b) 0011; (c) 000111; (d) 00001111; (e) 0000011111.
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Through calculations, we also found another four short periodic orbits, which are
0011, 000111, 00001111, and 0000011111, as shown in Figure 13b–e. Table 2 lists the five
short periodic orbits, along with their topological lengths, symbol sequences, periods,
and five coordinates of a point on the cycle. Figure 14 shows the x − u plane projection
of the short periodic orbits with different topological lengths. Through observation, it
was found that symbol 0 corresponds to the left half loop on the x − u plane projection,
while symbol 1 corresponds to the right half loop. Due to the unclosed projection on the
x − u plane of the orbits corresponding to the symbol sequences 0, 1, 001, 0001, etc., these
orbits have been pruned. We summarized the pruning rules for the existence of cycles as
follows:

(1) Periodic orbits with odd topological lengths do not exist due to inconsistent numbers
of 0 and 1 in the symbol sequence;

(2) For the periodic orbits with even topological lengths, only those cycles with the same
number of 0 and 1 in the symbol sequence may exist.

(3) All symbols 0 or 1 must be arranged consecutively.

Table 2. Unstable periodic orbits embedded in the hidden chaotic attractor of the memristor-based
system (3) for (a, b, c, d, m, k) = (25, 4, 35, 10, 1, 0.01).

Length Itinerary Period x y z w u

2 01 1.015780 3.928509 5.789716 16.190186 0.132805 −1.822898
4 0011 2.011453 1.945930 2.799221 17.086838 0.072094 0.296554
6 000111 2.980442 1.270081 1.845676 16.401504 0.048772 2.562770
8 00001111 3.926360 −1.592965 −0.032261 33.110587 −0.091595 −4.762559

10 0000011111 4.856028 −2.345522 0.105067 35.755113 −0.118993 −7.099945

Based on the pruning rules mentioned above, all existing periodic orbits are conjugated
with themselves. By utilizing 1D symbolic dynamics, we can calculate any complex long
periodic orbit. The establishment of symbolic dynamics here indicates that the topological
structure of orbits in phase space has a crucial impact on the symbol encoding.
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Figure 14. x − u plane projection of the unstable cycles in system (3) under parameters
(a, b, c, d, m, k) = (25, 4, 35, 10, 1, 0.01). (a) Cycle 01; (b) 0011; (c) 000111; (d) 00001111; (e) 0000011111.

5. Circuit Implementation
5.1. Circuit Simulation

The circuit implementation of a memristor-based chaotic system is very important for
engineering applications. In this section, an analog circuit is designed to verify the dynamic
behavior of the new memristic chaotic system. The circuit includes circuit components such
as capacitors, resistors, operational amplifiers, and analog multipliers. To avoid saturation
of the output signal of the operational amplifier, the output level of the chaotic signal
is reduced to 1/10 of the original level, that is, X = 1

10 x, Y = 1
10 y, Z = 1

10 z, W = 1
10 w,

and U = 1
10 u. In addition, taking the time scale factor RC into account, let τ = τ0t,

and τ0 = 1
RC = 1000. Memristic system (3) after scale transformation can be expressed

as follows:

RC
·

X = a(Y − X) + k(1 + 100U2)X

RC
·
Y = cX − 10XZ

RC
·
Z = 10XY − bZ − d

10
(10)

RC
·

W = X − 10ZW

RC
·

U = mX.

where a = 25, b = 4, c = 35, d = 10, k = 0.01, and m = 1.
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The flux-controlled memristor shown in the dashed box in Figure 15b is used to con-
struct a chaotic circuit. The proposed circuit design of system (3) is depicted in Figure 15a.
Based on Kirchhoff’s law, the following state equation is obtained:

C1
·

X = − R3

R1R4
X +

R3

R2R4
Y + (

R3

RcR4
+ 0.01

R3

RbR4
U2)X

C2
·
Y =

R8

R7R10
X − R8

R9R10
0.1XZ

C3
·
Z =

R14

R13R17
0.1XY − R14

R15R17
Z +

R14

R16R17
V1 (11)

C4
·

W =
R21

R20R23
X − R21

R22R23
0.1ZW

C5
·

U =
X
Ra

.

Comparing Equations (10) and (11), it can be concluded that the circuit component
parameters in Figure 15 are C1 = C2 = C3 = C4 = C5 = 1000 nF, V1 = −1 V, R1 = R2 =
4 kΩ, R3 = R5 = R6 = R8 = R11 = R12 = R14 = R18 = R19 = R21 = R24 = R25 = 10 kΩ,
R4 = R9 = R10 = R13 = R17 = R22 = R23 = 1 kΩ, R7 = 2.857 kΩ, R15 = 25 kΩ,
R16 = R20 = 100 kΩ, Ra = 100 kΩ, Rb = 1 kΩ, and Rc = 10 MΩ.

The circuit was simulated using Multisim 14.0 software, and the simulation results are
displayed in Figure 16. It is clear that the strange attractors obtained in the analog circuit
are in basic agreement with the results of the computer numerical simulation. Affected
by the disturbance of the external environment and impurity of precision, the theoretical
results and the actual results have a certain degree of error.

(a)

Figure 15. Cont.
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(b)

Figure 15. (a) Circuit implementation of the proposed 5D memristor-based chaotic system.
(b) Equivalent circuit of the flux-controlled memristor.

(a) (b)

(c) (d)

Figure 16. Multisim software phase diagram for the 5D chaotic system based on memristor: (a) in the
X − Y plane; (b) in the X − Z plane; (c) in the Y − Z plane; (d) in the X − U plane.
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5.2. DSP Implementation

DSP implementation has strong anti-interference capability and high flexibility in sys-
tem parameter control [49,50]. In this section, we realize the digital circuit of a memristor
chaotic system based on DSP technology. The DSP chip TMS320F28335 is used in this paper
for its high precision and performance. Additionally, to allow oscilloscopes to better capture
the waveform, we used a D/A converter to transform the DSP-generated digital sequences
into analog sequences. On the other hand, it is necessary to discretize the continuous
memristive chaotic system using a fourth-order Runge–Kutta method and achieve the com-
putation on the DSP chip using C programming, with the waveforms ultimately observed
on the oscilloscope. Choosing the parameters (a, b, c, d, m, k) = (25, 4, 35, 10, 1, 0.01) and
the initial value (1, 1, 1, 1, 1), the obtained chaotic attractor of the new system is depicted
in Figure 17. The results show that the waveforms on the DSP are also in basic agreement
with the computer numerical results (Figure 2), which verifies that the system has good
flexibility in terms of physical hardware.

(a) (b)

(c) (d)

Figure 17. DSP implementation for the 5D chaotic system based on memristor: (a) DSP experimental
platform; (b) in the X − Y plane; (c) in the X − Z plane; (d) in the X − U plane.

6. Active Synchronization Control of Memristor-Based Chaotic System

Chaos synchronization refers to the process of two or more chaotic systems achieving
consistent chaotic motion under coupling or driving, which belongs to specific chaotic con-
trol. Chaos synchronization and its application in secure communication and other fields
have become a research hotspot in the fields of chaos and control. Many typical chaotic
synchronization methods have been proposed [51,52], such as drive-response synchroniza-
tion method, active–passive synchronization method, adaptive synchronization method,
etc. In this section, we use the active control method to achieve complete synchronization
of two chaotic systems.
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The master and slave systems are described, respectively, as follows:

·
xm = a(ym − xm) + k(1 + 0.1u2

m)xm
·

ym = cxm − xmzm
·

zm = xmym − bzm − d (12)
·

wm = xm − zmwm
·

um = mxm,

and

·
xs = a(ys − xs) + k(1 + 0.1u2

s )xs + vx
·

ys = cxs − xszs + vy
·

zs = xsys − bzs − d + vz (13)
·

ws = xs − zsws + vw
·

us = mxs + vu,

where vx, vy, vz, vw, and vu are the active controllers. The synchronization errors of the
state variable are

ex = xs − xm

ey = ys − ym

ez = zs − zm (14)

ew = ws − wm

eu = us − um.

Then, one can obtain an error system as

·
ex = a(ey − ex) + kex + 0.1ku2

s xs − 0.1ku2
mxm + vx

·
ey = cex − xszs + xmzm + vy
·

ez = xsys − xmym − bez + vz (15)
·

ew = ex − zsws + zmwm + vw
·

eu = mex + vu.

The active controllers are designed as

vx = −0.1ku2
s xs + 0.1ku2

mxm + fx

vy = xszs − xmzm + fy

vz = −xsys + xmym + fz (16)

vw = zsws − zmwm + fw

vu = fu.

The errors can be eliminated according to the Routh–Hurwitz stability criterion, and
the following active controllers guarantee complete synchronization between the master
system (12) and the slave system (13):
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vx = −0.1ku2
s xs + 0.1ku2

mxm + a(ex − ey)− kex − ex

vy = xszs − xmzm − cex − ey

vz = −xsys + xmym + bez − ez (17)

vw = zsws − zmwm − ex − ew

vu = −mex − eu.

In the numerical simulations, we choose the parameters (a,b,c,d,m,k) = (25,4,35,10,1,0.01).
The initial values of the master and slave systems are taken as (1,−1, 7, 1,−3) and (3,−2, 4, 2, 0),
respectively. Figure 18 displays the time response of the master system (12) and the slave
system (13). The error trajectories between the master system and the slave system are
shown in Figure 19a, while Figure 19b illustrates the asymptotic convergence of the active
controllers to 0. It can be observed that the synchronization errors are asymptotically stable
and rapidly achieve synchronization when t = 5.
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Figure 18. Coordinates time series of the master system and the slave system showing results of occurrence
of synchronization: (a) x variable; (b) y variable; (c) z variable; (d) w variable; (e) u variable.
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Figure 19. (a) Synchronization errors evolution between the two memristor-based chaotic systems;
(b) time evolution of the active controllers.

Therefore, the research on active synchronization within the proposed memristive
chaotic system has significant value for engineering applications. Especially in the se-
cure communication field, the utilization of active synchronization techniques can create
synchronized dynamic states between transmitters and receivers, achieving synchronized
transmission and decryption of encrypted information. By precisely controlling chaotic
synchronization, it is possible to effectively prevent information from being intercepted
or tampered with by third parties during transmission, which significantly enhances the
security of the communication system.

7. Conclusions

This paper presents a novel 5D memristive chaotic system constructed based on a
flux-controlled memristor, which exhibits more complex and richer dynamics than higher-
dimensional chaotic systems. Compared to the original system, the novelty of the new sys-
tem is to have a line equilibrium point, leading to the phenomenon of super-multistability
where infinitely many coexisting attractors depend on initial conditions. Additionally, the
regularity of unstable periodic orbits in this system is analyzed and discovered for the first
time via the variational approach. Specifically, the dynamic characteristics of the system
were studied through theoretical analysis and numerical simulation, indicating that the
system exhibits extremely complex dynamic behaviors, including hidden transient state
and state transition phenomena. At the same time, interesting offset-boosting control was
explored using phase portraits and time series diagrams. In particular, by using phase
trajectory diagrams based on the initial state changes of memristors, the phenomena of
extremely homogeneous and heterogeneous multistability were explored, and an infinite
number of coexisting attractors were observed. Moreover, 1D symbolic dynamics was pro-
posed to investigate the unstable periodic orbits in the new system, and the corresponding
pruning rules were summarized. Furthermore, the analog and DSP circuit implementation
of the memristor-based chaotic system agrees with the numerical simulation results, verify-
ing the flexibility and feasibility of the new system in terms of physical hardware. Finally,
active synchronization control for the new system was discussed. The research results
presented in this paper provide a theoretical foundation for the application of this system in
various engineering fields. For example, in the domain of secure communications, the sys-
tem can be utilized to develop new encryption algorithms, enhancing the security of data
transmission; in the area of signal processing, it can be employed to design sophisticated
filters and noise suppression systems, improving the clarity and quality of signals.

Fractional-order chaotic systems can more accurately describe complex nonlinear dy-
namic behaviors and memory effects by introducing fractional-order calculus. Compared
to the integer-order chaotic systems, it has a wider range of dynamic behavior modes
and higher model flexibility, thus having more advantages in many practical applica-
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tions. Therefore, it is very meaningful for us to design the corresponding fractional-order
memristor-based systems in our future work. Moreover, determining how to effectively
build memristor systems with multi-scroll attractors is also worth further exploration
and investigation.
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