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Abstract: Cancer is one of the leading causes of death in many countries, and this continues to be 
the case because of the lack of sufficient treatment. One of the most common types is non-small-cell 
lung cancer (NSCLC). The increasingly large and diverse public datasets about NSCLC constitute a 
rich source of data on which several analyses can be performed so as to find candidate oncogenic 
drivers or therapeutic targets. The aim of this study is to reanalyze an existing NSCLC NCBI GEO 
Dataset (accession = GSE19804) in order to see if novel involved genes can be found. For this, we 
used microarray technology for preprocessing and, based on random forest, support vector machine 
and C5.0 decision tree models, made a comparison of the 10 most important genes recorded. This 
study was realized with R-Studio 4.0.2 and Bioconductor 3.11. In conclusion, the EFNA4 gene and 
other genes, namely KANK3, GRK5, CLIC5, SH3GL3, ACACB, LIN7A, JCAD, and NEDD1, are 
thought to be potential genes that may play a role in NSCLC and it is recommended that researchers 
working in the wet laboratory should focus on these genes. 
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1. Introduction 
Lung cancer is the leading cause of death in many countries around the word [1]. 

Non-small-cell lung cancer (NSCLC) is the most widespread, accounting for approxi-
mately 85% of lung cancers, with a five-year survival rate of approximately 5% [2]. Many 
studies have been done and several methods have been developed to fight this disease 
but the main obstacle that they face is the development of drug resistance or the late de-
tection of the disease [3]. Thus, finding the genes involved in NSCLC and their roles can 
help to overcome this disease.  

DNA microarray analysis is one of the new technologies that helps to measure the 
expression levels of a large number of genes simultaneously through chips. With DNA 
microarray technology, it is possible to define the gene expression profile of the tumor [4]. 
Gene expression analysis is a study used to classify cancers, predict clinical outcomes and 
discover disease-associated biomarkers [5]. Microarray technology has been used in the 
study of several types of cancer, such as esophageal [6,7], prostate[8], breast [9] and gastric 
cancer [10], and it has also been utilized in other types of cancer. However, one of the 
major obstacles of gene expression experiments is that not only is their analysis usually 
done in isolation but it is also carried out with a very small number of samples and is not 
easy to conduct.  

In this article, our work consists of reconducting a thorough analysis of an existing 
GEO Non-Small Cell Lung Cancer dataset retrieved from NCBI (reference GSE19804) 
[11,12]. For this, we have used the R programming language through R-Studio version 
4.0.0 and also Bioconductor’s 3.11 version. Firstly, the dataset was downloaded through 
the GeoQuery package, and differential gene expression analysis with the limma package 
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was carried out. The obtained differentially expressed genes were filtered through the 
GeneFilter package. In order to identify important candidate genes, random forest [13], 
support vector machine (SVM) [14] and C5.0 decision tree [15] were used.  

2. Materials and Methods 
2.1. Datasets 

Many studies have provided a differentially expressed gene list but unfortunately 
these data cannot be verified due to many issues, such as overfitting of the small discovery 
dataset and the lack of a sufficient validation set. Over the years, available public data-
bases have continued to collect data. The work carried out in this study was based on one 
of these public databases, namely the Gene Expression Omnibus (GEO) dataset repository 
located at https://www.ncbi.nlm.nih.gov/geo/ (11 November 2020). From the GEO data-
base, the DNA microarray dataset was downloaded under the accession number 
GSE19804 by the getGEO function in GEOquery package [16]. 

The dataset was provided by an analysis of paired tumor and adjacent normal lung 
tissue specimens obtained from nonsmoking female non-small-cell lung carcinoma pa-
tients in Taiwan [11,12]. The gene expression profile consisting of 120 samples was made 
up of 60 NSCLC samples and 60 control samples, rendering it a balanced dataset. The 
platform used for the gene microarray was GPL570 (HG-U133_Plus_2) Affymetrix Hu-
man Genome U133 Plus 2.0 Array and patients between 37 and 80 years old were enrolled.  

2.2. Setup and Visualization of the Dataset 
The DNA dataset was downloaded and read into the R statistical environment with 

the help of Bioconductor, a package that provides tools for the analysis and comprehen-
sion of high-throughput genomic data [17]. A boxplot on the dataset is shown in Figure 1, 
distinctly separating NSCLC and control samples on two sides, demonstrating that the 
dataset was perfectly normalized and thus ready for further analyses. 

 
Figure 1. Boxplot of normalized GSE19804 datasets. 

2.3. Gene Expression and Identification of Candidate Genes  
GeneFilter, a package delivered by Bioconductor, provides different methods for fil-

tering genes from high-throughput experiments [18]. NsFilter, a function of the GeneFilter 
package, offers a filtering operation that reduces the number of the ExpressionSet features 
by filtering features exhibiting little variation, or a consistently low signal, across samples 
and also removes duplicate probes corresponding to the same gene in the dataset [17]. 
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The ExpressionSet resulting from our dataset consists of 54,675 features or genes. 
Nsfilter function applied to the dataset with a cut-off of 0.9 reduces the differentially ex-
pressed gene number from 54,675 to 2018. In order to identify the important genes in-
volved in the dataset of the study, a feature selection operation was applied to the ob-
tained reduced dataset. To do so, random forest, support vector machine and C5.0 deci-
sion tree algorithms imported from the Caret package were used [19,20]. For every se-
lected algorithm, the 10 most important candidate genes were recorded. The results ob-
tained from these algorithms were compared. 

3. Results 
The normalized NSCLC dataset was downloaded from the GEO database. With the 

method mentioned in the previous section, 54,675 differentially expressed genes were 
identified. After the filtration of these genes by Genefilter’s NsFilter function with a cut-
off of 0.9, the dataset was reduced to 2018 differentially expressed genes. Feature selection 
performed on the reduced dataset with random forest, support vector machine and C5.0 
decision tree algorithms showed a number of important features. Later, the features were 
sorted from the most important to the least, and for every single created model, the 10 
most important genes were recorded, as presented in Tables 1–3. 

Table 1. Table of top 10 candidate differentially expressed genes identified with random forest 
model. 

 PROB_ID SYMBOL GENE 
1 217428_s_at COL10A1 collagen type X alpha 1 chain 
2 203878_s_at MMP11 matrix metallopeptidase 11 
3 213317_at CLIC5 chloride intracellular channel 5 
4 210608_s_at FUT2 fucosyltransferase 2 
5 215918_s_at SPTBN1 spectrin beta, non-erythrocytic 1 
6 205637_s_at SH3GL3 SH3 domain containing GRB2 like 3, endophilin A3 
7 205107_s_at EFNA4 ephrin A4 
8 230469_at RTKN2 rhotekin 2 
9 210081_at AGER advanced glycosylation end-product specific receptor 

10 209904_at TNNC1 troponin C1, slow skeletal and cardiac type 

Table 2. Table of top 10 candidate differentially expressed genes identified with SVM model. 

 PROB_ID SYMBOL GENE 

1 202524_s_at SPOCK2 
SPARC (osteonectin), cwcv and kazal like domains 
proteoglycan 2 

2 217771_at GOLM1 golgi membrane protein 1 
3 230469_at RTKN2 rhotekin 2 
4 215918_s_at SPTBN1 spectrin beta, non-erythrocytic 1 
5 213715_s_at KANK3 KN motif and ankyrin repeat domains 3 
6 217428_s_at COL10A1 collagen type X alpha 1 chain 
7 204396_s_at GRK5 G protein-coupled receptor kinase 5 
8 205107_s_at EFNA4 ephrin A4 
9 210608_s_at FUT2 fucosyltransferase 2 

10 210081_at AGER advanced glycosylation end-product specific receptor 
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Table 3. Table of top 10 candidate differentially expressed genes identified with C5.0 decision tree 
model. 

 PROB_ID SYMBOL GENE 

1 202524_s_at SPOCK2 
SPARC (osteonectin), cwcv and kazal like domains 
proteoglycan 2 

2 217428_s_at COL10A1 collagen type X alpha 1 chain 
3 49452_at ACACB acetyl-CoA carboxylase beta 

4 227929_at LIN7A lin-7 homolog A, crumbs cell polarity complex 
component 

5 213316_at JCAD junctional cadherin 5 associated 
6 204533_at CXCL10 C-X-C motif chemokine ligand 10 
7 204469_at PTPRZ1 protein tyrosine phosphatase receptor type Z1 
8 1552417_a_at NEDD1 NEDD1 gamma-tubulin ring complex targeting factor 
9 1569003_at VMP1 vacuole membrane protein 1 

10 204475_at MMP1 matrix metallopeptidase 1 

As seen in Tables 1–3, the genes listed in order of importance may differ according 
to the algorithm used. However, it is expected that algorithms applied to the same dataset 
will present a similar list. The presence of the same gene in more than one table suggests 
that this gene may be a good candidate. As shown in Figure 2 below, COL10A1 is present 
in the three models; EFNA4, FUT2, AGER, RTKN2 and SPTBN1 are present in the SVM 
and random forest models, and the SPOCK2 gene is common to the SVM and C5.0 models. 

 
Figure 2. Relations between SVM, random forest and C5.0 tables. 

4. Discussion 
In this study, a GEO dataset was downloaded and analyzed, and 54,675 differentially 

expressed genes were identified. A filter operation applied to the dataset reduced the fea-
tures number to 2018. Feature selection was performed on the reduced dataset and, with 
random forest, SVM and decision tree algorithms, the 10 most important genes were rec-
orded and compared.  

The aim of the present study was to reanalyze an existing dataset in order to see if 
novel genes could be found. Microarray data analysis, filtering and feature selection re-
vealed that COL10A1, SPOCK2, SPTBN1, RTKN2, FUT2 and AGER differentially ex-
pressed genes may be potentially involved in NSCLC and many other studies have 
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demonstrated the same result [21–27]. COL10A1 [22] was identified to be common to all 
three algorithms, suggesting that it could be a gene that may play an important role in 
NSCLC. The EFNA4 gene was found in two models but was not found in the literature. 
Moreover, SPOCK2 [23], present in Tables 1 and 2, and SPTBN1 [21], RTKN2 [24] and 
AGER [25,26], present in Tables 2 and 3, were also identified to be present in at least two 
algorithms. Other genes, such as GOLM1 [28] in Table 2, MMP11 [29] in Table 1 and 
MMP1 [30] in Table 3, were also expressed and also recognized to be involved in NSCLC.  

5. Conclusions 
In conclusion, this study identified 54,675 differentially expressed genes; 2018 of 

them, chosen by a filter method with a cut-off = 0.9, were evaluated and a feature selection 
operation was performed. After a comparison between feature selection methods, 
COL10A1, SPOCK2, SPTBN1, RTKN2 and AGER genes, which are known to play a role 
in NSCLC, were also detected in our study. Genes such as GOLM1, MMP1, MMP11, 
CXCL10, PTPRZ1, TNNC1, FUT2, VMP1 are already well-known genes. KANK3, GRK5, 
CLIC5, SH3GL3, ACACB, LIN7A, JCAD, NEDD1 genes can be suggested as gene candi-
dates even if they were found in only one model. The EFNA4 gene is thought to be a 
stronger candidate as it was detected in both SVM and random forest models. 

In the future, this study could be utilized in the detection of possible candidate genes 
by reanalyzing existing datasets with different algorithms. 
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