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Abstract: Geophysical natural hazards, such as earthquakes and volcano eruptions, can have catas-
trophic effects on the population depending on the location and quality of construction. From the
geophysical point of view, several aspects are still debated in the preparation phase of such events. In
particular, several theories propose that prior to an earthquake or volcano eruption, the releases of gas,
fluids or charged particles from the lithosphere (e.g., from the fault for the earthquake) could create
some effects on the atmosphere and ionosphere. In this work, several single examples will be shown
of possible candidates of pre-earthquake ionospheric disturbances recorded by the China National
Space Administration (in partnership with the Italian Space Agency), China Seismo Electromagnetic
Satellite (CSES) and European Space Agency Swarm constellation. The examples show anomalous
ionospheric status in terms of magnetic disturbances or increase of electron density before earth-
quakes, such as Mw = 7.1 Ridgecrest (US) 2019, or during the large recent volcano eruption of Hunga
Tonga-Hunga Ha’Apai on 15 January 2022. In these cases, some couplings between the lithosphere
and ionosphere are proposed. Finally, verifying if such pre-event ionospheric disturbances are by
“chance” or are really linked to the incoming event is a crucial point. For this purpose, we perform
worldwide statistical studies, not only supporting the recurrence of such phenomena for about 15% of
M5.5+ shallow earthquakes but also showing a link between the magnitude of the upcoming seismic
events and the pre-earthquake anticipation time. Furthermore, we also show the influence of the
location (sea or land) on the frequency of the ionospheric electromagnetic disturbance.

Keywords: ionosphere; earthquake; precursors; LAIC; CSES; swarm

1. Introduction

The existence of ionospheric pre-earthquake electromagnetic disturbances is a contro-
versial topic among researchers. Despite the scepticism of some researchers, several pieces
of evidence exist of such disturbances. In particular, several single-earthquake studies pro-
vide empirical evidence for ionospheric anomalies before large earthquakes worldwide; for
example, Mansouri et al. [1] showed perturbations before the M8.3 Chile 2015 earthquake.
In addition, statistical studies, particularly on the DEMETER satellite that flew from 2004
to 2010, provided proof that shallow M4.8+ earthquakes were statistically preceded by
electron density anomalies in the 15 days before the earthquakes [2,3]. Several Lithosphere,
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Atmosphere, and Ionosphere Coupling (LAIC) models support pre-earthquake ionospheric
disturbances. Unfortunately, there is no unique LAIC model. In the present state of the
art, it is unclear if the various models describe several different coupling mechanisms or if
some of them are wrong. They are based on a chain of phenomena that starts with the air
ionisation induced by radon released from the fault (e.g., Pulinets and Ouzounov [4]); the
generation of positive holes (p-holes) as suggested by Freund [5]; a direct electromagnetic
ULF emission from the micro-crack as suggested by Molchanov and Hayakawa [6] or even
the Acoustic Gravity Waves induced by thermal heating of the Earth’s surface [7].

This short paper will present a few examples of ionospheric pre-earthquake and
-volcano ionospheric disturbances and, finally, a systematical statistical investigation of
China Seismo Electromagnetic Satellite (CSES) electron density and M5.5+ earthquakes
which supports the existence of such pre-earthquake phenomena.

All of the earthquake analyses were performed inside a circular area that scales
exponentially with the moment magnitude as defined by Dobrovoslky et al. [8].

2. Results

Here, we present some examples of anomalies before two earthquakes: Mw = 8.3 Chile
2015 and Mw = 7.1 Ridgecrest (US) 2019, and during and after the large Volcanic Explosive
Index (VEI) = 6 Hunga Tonga-Hunga Ha’apai eruption of 15 January 2022.

2.1. Mw = 8.3 Illapel (Chile) 16 September 2015 Earthquake

On 16 September 2015 at 22:54:32 UT, a large earthquake of moment magnitude
Mw = 8.3 hit Chile close to Illapel, with its epicentre localised at 31.573◦ S, 71.674◦ W. To
date, this is the largest earthquake that has occurred during the ESA Swarm mission. De
Santis et al. [9] studied the Swarm magnetic and electron density data one month before
and after the earthquake, together with 11 other seismic events with a magnitude of 6.1
or greater. The most interesting result of this paper is the correlation between the number
of detected magnetic or electron density anomalies and earthquake magnitude. Despite
this, such a study was limited to analysing only one month before the earthquake. At the
same time, several other investigations provide evidence for anomalies even before this,
particularly for large earthquakes [10–12]. For this purpose, in Figures 1 and 2, we show
an example of an anomaly in the magnetic field, especially in the Y-East component that
appeared about 258 days before the mainshock, very close to the future epicentre. Such
anomaly has a magnetic conjugate with slightly lower intensity and shorter, supporting
the hypothesis that the anomaly’s source was above the epicentre and it propagated in the
conjugated point following geomagnetic field lines, losing part of the energy as predicted
by the theories [13]. Looking at the following tracks, we still notice the presence of the
anomaly in the Y-East component in track 11 fully inside the Dobrosvolsky area and still
close to the future epicentre (slightly shifted northward according to the magnetic field
direction). Contrariwise, even though we detected a clear anomaly outside the Dobrovolsky
area in track 13 (green line in Figure 2), its shape is totally different. In fact, it presents
a larger intensity far from the centre of the anomaly, similar to a butterfly shape, so we
believe this is likely another source compared to the phenomenon depicted in Tracks 9 and
11 inside the Dobrovolsky area.

2.2. Mw = 7.1 Ridgecrest (California, US) 6 July 2019 Earthquake

On 6 July 2019 at 3:19:53 UT, an earthquake of moment magnitude 7.1 was localised
close to Ridgecrest in California (US). It was a result of the strike-slip focal mechanism,
and its depth was estimated at ~8.0 km. De Santis et al. [14] claimed a chain of processes
compatible with a LAIC and characteristics of complex systems, such as earthquakes.
Furthermore, an increase of magnetic anomalies was detected by Swarm satellites about
220 days before the earthquake by Marchetti et al. [15], and anomalies in Total Electron
Content and CSES-01 Ne data about one week before the mainshock by Xie et al. [16].
In addition, De Santis et al. [14] identified an increase of electron density 33 days prior
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to the mainshock as unique in several months of data investigation from Point Arguello
ionosonde (whose position is represented by the blue triangle in the map in Figure 3) and
Swarm Alpha, here reported in Figure 3. We also checked the electron density recorded by
CSES-01 on the same night at a very short time difference (just 13 min before). The CSES
satellite did not record any anomalous electron density value.
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Figure 1. Swarm Alpha magnetic field residual, track 9 on 2 January 2015, i.e., 258 days before M8.3 
Illapel (Chile) 2015 earthquake. The 3° latitude anomalous (kt = 2.5) windows are marked by red 
colour. The map of the region is represented with a yellow circle that shows the Dobrovolsky area 
of the earthquake, whose epicentre is marked with a green star and the satellite track projection by 
a brown line. The title indicates which satellite is represented (A = Alpha, B = Bravo, C = Charlie), 
the date of acquisition, track number, the direction of flying (U = Upward, D = Downward), local 
time (meanLT) and universal time (meanUT) at the middle of the plotted track. Geomagnetic in-
dexes Dst and ap at acquisition time as also reported. 

 
Figure 2. Tracks 11 (blue colour) and 13 (green colour) following Figure 1. As in Figure 1, the anom-
alies are marked by red lines, and the representation and the title information are the same of Figure 
1. Track 13 has no “red” anomaly as it is outside the Dobrovolsky area and the code automatically 
excludes it. 
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Figure 1. Swarm Alpha magnetic field residual, track 9 on 2 January 2015, i.e., 258 days before M8.3
Illapel (Chile) 2015 earthquake. The 3◦ latitude anomalous (kt = 2.5) windows are marked by red
colour. The map of the region is represented with a yellow circle that shows the Dobrovolsky area of
the earthquake, whose epicentre is marked with a green star and the satellite track projection by a
brown line. The title indicates which satellite is represented (A = Alpha, B = Bravo, C = Charlie), the
date of acquisition, track number, the direction of flying (U = Upward, D = Downward), local time
(meanLT) and universal time (meanUT) at the middle of the plotted track. Geomagnetic indexes Dst
and ap at acquisition time as also reported.
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anomalies are marked by red lines, and the representation and the title information are the same
of Figure 1. Track 13 has no “red” anomaly as it is outside the Dobrovolsky area and the code
automatically excludes it.
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Figure 3. Increase of electron density about one month before Mw = 7.1 Ridgecrest (California, US)
6 July 2019 earthquake. Electron Density (Ne) data are from Swarm Alpha (black) and CSES-01 (blue)
satellites. The map and the title information are the same as in Figure 1.

This apparent discrepancy can be explained in two different ways. The first is that the
increase of electron density occurred only westward of the future epicentre. The second
explanation could be that such an electron density increase, theorised to come from the
internal layer (the lithosphere), did not reach the higher altitude of the CSES satellite (about
510 km) compared with that of Swarm Alpha at that time (about 470 km). We tend to
exclude the possibility that the ionosphere could have changed in a much shorter time.

2.3. Hunga Tonga-Hunga Ha’apai Volcano Explosion Effect on the Ionosphere

On 15 January 2022, the submarine stratovolcano Hunga Tonga-Hunga Ha’Apai pro-
duced a wide explosion, estimated to have a Volcano Explosive Index (VEI) of about 6 [17].
Several studies have investigated such a large and rare geophysical event, considering
that this is the first time it has been possible to monitor and observe such a geophysical
event from several satellites [18–20]. Here, we further investigate the CSES satellite electron
density measurements already presented by D’Arcangelo et al. [21]. During the volcano
explosion (estimated from seismic data at 4:15:45 UTC), CSES-01 was flying westward of
the volcano (see Figure 4). In order to search if the electron density profile could contain
some signature of the volcano explosion, we compared the Ne profile with that of the
previous track at the same local time (about 2:00 P.M.).

In particular, in Figure 5, we have decomposed the electron density latitudinal profiles
in five different frequency bands from the continuum (DC) to half of the sampling frequency
of 333 mHz. As the two orbits were descending, the time went from right to left. Therefore,
the blue data at the left of the red vertical line (time of the explosion) were acquired after
it, the blue on the right, and all the grey before it. In particular, we noted an increment of
electron density and some slow oscillations (underlined by red oval) that were unique in
the track after the explosion from about 44◦ N to 32◦ N, as visible in subpanels d and e of
Figure 5. In the previous paper, this disturbance was underlined with a red circle and the
number “1” in Figure 15 of [21]. We propose that such disturbance is the ionospheric shock
induced by the explosion by electromagnetic coupling between the atmosphere/ocean (i.e.,
under the sea where the explosion originated) and the ionosphere. This can be explainable
only by electromagnetic mechanisms due to the very short time period and the relatively
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far position of the satellite at the time of the explosion (overflying the Kamchatka Islands,
see Figure 4).
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descending (daytime) directions as indicated by the black arrows.
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Figure 5. Frequency investigation of the electron density profile of CSES acquired during the Hunga
Tonga Hunga Ha’Apai volcano eruption of 15 January 2022 at 4:15:45 UTC. The blue and grey lines
represent the signal acquired in the daytime orbits during and before the explosion, respectively.
The signal has been decomposed into five frequency bands: (a) from 83 mHz to 167 mHz; (b) from
37 mHz to 93 mHz; (c) from 20 mHz to 47 mHz; (d) from 10 mHz to 23 mHz; (e) from DC to 10 mHz.
The vertical red line represents the position of the CSES satellite at the eruption time. Both tracks are
descending. The red circle underlines the particular signal recorded by CSES just after the eruption
may be induced by the volcano explosion.

Such a violent volcano explosion generated a pressure wave (Lamb wave) that propa-
gated at the speed of sound all around the Earth and was globally recorded by barometric
sensors [21–23]. In particular, the CSES-01 satellite orbit at around 10 UT passed almost
tangent to the Lamb wavefront (see Figure 17 in [21]), and we provide further details of
this orbit in Figure 6. We calculated a smoothed signal by a moving average window of
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11 samples to remove the possible oscillation of the measurements that made it unclear
whether they were due to the instrument or a real oscillation of the ionosphere. The distance
of the satellite with respect to the front of the pressure wave was also calculated, taking
into account that both the satellite and the front wave were moving simultaneously. The
pressure wave was simplified as perfectly circular, and its speed was considered fixed
at 1100 km/hour. In truth, the speed depends on air temperature and can be influenced
by orography, but our calculus could be a first approximation. Finally, we calculated the
correlation between the smoothed electron density and the surface atmospheric pressure
provided by ECMWF ERA-5 [24]. The correlation between the two profiles is 36%, support-
ing the coupling between the atmosphere and the ionosphere. Even though the ionosphere
electron density seems reasonably correlated (considering the distance of the geo-layers),
only a part of the track could be affected by the Lamb wave that, in any case, seems to have
perturbed the electron density in the ionosphere.
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explosion of 15 January 2022.

2.4. Worldwide Statistical Investigation of Ionospheric Electron Density Measured by CSES-01

A limitation of single case studies, as in the previous examples, is that some anomalies
may appear before the geophysical hazard by chance but are not related to the incoming
event. To address this problem, a statistical study on many events, such as the M5.5+
Worldwide earthquakes, can prove (or not) the relationship between ionospheric anomalies
and earthquakes. De Santis et al. [11] and Marchetti et al. [12] provided strong evidence
that not only a consistent number of M5.5+ shallow earthquakes are proceeded by Swarm
magnetic and electron density anomalies, but also that the anticipation time increases with
magnitude according to Rikitake’s law [10] and that the frequency of magnetic anomalies
seems to depend on sea or land epicentre location. De Santis et al. [25] conducted a
preliminary analysis of CSES Ne anomalies related to M5.5+ earthquakes that we extended
to 24 months of data (i.e., two years).

Figure 7 shows the result of the Worldwide Statistical Correlation (WSC) algorithm (de-
tails of the methods in [11,12]) applied to CSES electron density data. The 5.5+ earthquakes
were investigated in a symmetric period from 90 days before to 90 days after the 568 seismic
events. We immediately note that the results present interesting features and are statistically
significant. The analysis shows more pre-earthquake than post-earthquake anomalies. In
addition, the absolute maximum concentration is located before the earthquakes. Despite
a large number of total extracted anomalies (169,840), the statistical significance of the
concentrations potentially related to the pre-earthquake process is relatively high (i.e.,
1.8 higher than a random concentration as indicated by the “d” factor defined in [11,12]).
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Furthermore, it is notable that a significantly higher number of anomalies (6654) were
located in the 90 days before the earthquakes compared to the lower number of anomalies
(5928) in the 90 days following the same events. Finally, it seems that from about 56 days
before the earthquakes, there is an activation of the ionosphere, showing a “swarm” of
anomalies with a peak of about one month before the earthquake origin time. Future
studies are necessary to further extend the analysis at 4.5 years (or more) of CSES mission
data and thoroughly investigate the relationship between CSES anomalies and earthquakes
with a similar approach already used for Swarm in [11,12].
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Figure 7. WSC algorithm applied to CSES Ne anomalies (recorded in April, August and September
2018, in 2019 and from January to September 2020) correlated with M5.5+ earthquakes from 90 days
before until 90 days after the event. The number of anomalies in the first row before and after the
earthquakes is also reported. Two statistical parameters for the maximum anomaly concentration,
“d” and “n”, are reported. “d” represents how many times higher the concentration was than the
average random one and n represents by how many standard deviations of random simulation such
concentration is higher (full definition and details in [11,12]).

3. Discussion and Conclusions

The study of ionospheric disturbances is often afforded by investigating a geophysical
hazard event or by a statistical approach to a wide number of case studies. Both method-
ologies present advantages and disadvantages. The former permits us to thoroughly
investigate what happened before the specific event by taking into account several factors,
from the geomagnetic conditions to the tectonic and geological settings, while it is not
able to distinguish if some alterations of the ionosphere are by chance or really related
to the incoming event. A statical study such as the one we show in Figure 7 allows us to
confirm whether a phenomenon is recurrent or not, but it lacks specific details. For exam-
ple, we show evidence that about 20 days before 36 earthquakes, there was a significant
concentration of CSES Ne anomalies 1.8 times higher than what was expected by chance.
Still, the details, such as which LAIC mechanisms were involved, and whether or not a
conjugate anomaly exists (as in the example shown in Figure 1), are missing. Finally, even
if we confirm the existence of LAIC prior to earthquakes, future studies need to better
understand the LAIC propagation mechanisms and the features that influence the LAIC, as
partially done in [11,12].
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