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Abstract: This paper describes a simulated MEMS field mill that utilizes a vertical movement shutter
powered by an electrostatic actuator. The design is based upon a Flexible PCB substrate to enable
faster prototyping and lower cost. The simulation results show that if the system operates at a
resonance, a 10 kV/m field will induce a current of 53 pA, resulting in a charge induction efficiency
of 5.3 pA/(kV/m).
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1. Introduction

Electric-field sensors are designed to measure electric-field strength. Microelectrome-
chanical system (MEMS) electric-field sensors have gained significant popularity in recent
years due to their small size, lightweight, low power consumption, and low cost [1]. Some
of their common applications include voltage measurement in power systems, fault diag-
nosis in electrical equipment, electrostatic hazard warning, etc. Some MEMS electric-field
sensors mimic conventional field mills by utilizing a shutter that moves laterally [2,3].
However, these sensors face a problem where their sensitivity is considerably reduced
when the shutter is largely deflected in a strong field. To overcome this issue, some sensors
use a shutter that moves vertically [4,5], which compensates for the displacement. In
recent years, many MEMS devices on Flexible Printed Circuit Board (FPCB) have been
reported [6]. The FPCB incorporates a polyimide substrate and copper layers, allowing
for the fabrication of MEMS devices with reduced cost and increased efficiency through
commercialized manufacturing.

This paper presents a simulation of a MEMS electric-field sensor with a vertical
movement shutter driven by electrostatic forces. The sensor is designed based on upon a
FPCB substrate. The resonant frequency and sensor performance in a dc field are simulated.

2. Sensor Design

The sensor’s operation is depicted in Figure 1. The shutter and sensing electrodes are
both grounded. When the shutter moves up and down within an electric field, the sensing
electrodes detect variations in the field caused by the changes in the fringing effect. As a
result, varying charges are induced, leading to the generation of an alternating current if
shutter moves periodically.

The design of the sensor is illustrated in Figure 2, and it includes a shutter, sensing
electrodes, and a bottom driving electrode. The shutter is supported by four 1000 µm long
S-shaped micro springs. The sensing electrodes have a size of 60 µm × 1000 µm, and there
are 12 sensing electrodes on each side of the sensor. The size of the electrostatic driving
electrode is 920 µm × 1200 µm. There are two grounded guard lines of 140 µm × 1200 µm
on both sides of the driving electrode to reduce noise from the driving signal on the sensing
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electrodes. The distance between the shutter and the driving electrode is 100 µm. The
thickness of the polyimide is 25 µm and the copper is 18 µm thick.
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Figure 2. Sensor design.

3. Results and Discussion

COMSOL Multiphysics was used for the simulations. Figure 3 shows the shutter’s
downward movement when pulled by the driving electrode. Figure 4 depicts the distri-
bution of the electric field between the driving electrode and the surrounding grounded
structures. We can see that the sensing electrodes are minimally affected by the driving
voltage. The shutter resonant frequency is 493 Hz. When a 200 V is applied to the driving
electrode, the shutter’s downward displacement is 5.7 µm, and the induced charge on the
sensing electrodes is 2.5 fC. At resonance, with a Q factor of ~100, the driving voltage will
only be about 20 V, and the noise current is calculated to be 0.4 pA. In an electric field
of 10 kV/m, the motion results in an induced charge of 0.17 pC, while at rest (0 V drive)
the induced charge is 0.153 pC. When operating at the resonant frequency, the generated
current is calculated to be 53 pA, and the efficiency of charge induction is 5.3 pA/(kV/m).
The sensing signal is 130 times stronger than the driving noise. The efficiency of charge
induction is comparable to [7].
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Figure 4. Driving electric-field distribution. 
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