
Citation: Feng, Y.; Yang, T.; Yu, Y.

Enhancing UAV Aerial Docking: A

Hybrid Approach Combining Offline

and Online Reinforcement Learning.

Drones 2024, 8, 168. https://doi.org/

10.3390/drones8050168

Academic Editor: Shiva Raj Pokhrel

Received: 5 March 2024

Revised: 12 April 2024

Accepted: 22 April 2024

Published: 24 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Enhancing UAV Aerial Docking: A Hybrid Approach Combining
Offline and Online Reinforcement Learning
Yuting Feng , Tao Yang and Yushu Yu *

The School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China;
yuting.feng@bit.edu.cn (Y.F.); 3120210270@bit.edu.cn (T.Y.)
* Correspondence: yushu.yu@bit.edu.cn

Abstract: In our study, we explore the task of performing docking maneuvers between two un-
manned aerial vehicles (UAVs) using a combination of offline and online reinforcement learning
(RL) methods. This task requires a UAV to accomplish external docking while maintaining stable
flight control, representing two distinct types of objectives at the task execution level. Direct online
RL training could lead to catastrophic forgetting, resulting in training failure. To overcome these
challenges, we design a rule-based expert controller and accumulate an extensive dataset. Based
on this, we concurrently design a series of rewards and train a guiding policy through offline RL.
Then, we conduct comparative verification on different RL methods, ultimately selecting online RL
to fine-tune the model trained offline. This strategy effectively combines the efficiency of offline RL
with the exploratory capabilities of online RL. Our approach improves the success rate of the UAV’s
aerial docking task, increasing it from 40% under the expert policy to 95%.

Keywords: uav aerial docking; offline reinforcement learning; online reinforcement learning

1. Introduction

In recent years, with the increasing prevalence of autonomous robots, UAVs in the
aviation sector have garnered a great deal of attention. UAVs have demonstrated immense
applicability in various domains, such as cinematography, visual inspection, communi-
cations, and networking [1–3]. However, their size, motors, and other components limit
their effective payload capacity. When multiple UAVs are integrated into a cohesive system
known as a multiple aerial vehicle assembly (MAVA), they can achieve higher load-bearing
capabilities and perform more complex tasks [4–9]. However, this assembled structure
compromises the system’s maneuverability, particularly in confined spaces, posing greater
challenges to the completion of more specific tasks. Therefore, the design of effective aerial
vehicle docking and separation control mechanisms has become crucial. TRADY [10] is
engineered as an aerial unit with the capability for autonomous assembly and disassembly
in flight. However, the execution of this task necessitates a specialized UAV equipped with
a magnetic docking mechanism. This prerequisite presents a considerable challenge when
attempting to modify existing MAVA platforms. We implement a modification to the F450
subunits of the MAVA platform, realizing a novel docking mechanism.

RL has found extensive applications in the domain of quadrotors [11,12]. It is often
observed that RL may not match the accuracy of traditional optimal control methods
in control-oriented tasks. However, it tends to demonstrate superior robustness and
effectiveness in manipulation tasks [13,14]. The proximal policy optimization (PPO) [15]
algorithm has also demonstrated some advantages [16,17]. The advantage of RL lies not
in its superior optimization of the objective, but in its optimization of a better objective.
In optimal control, the task is typically decomposed into planning and control when
accomplishing the objective. This decomposition limits the range of behaviors that the
controller can express, leading to poor control performance when facing unmodeled effects.

Drones 2024, 8, 168. https://doi.org/10.3390/drones8050168 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8050168
https://doi.org/10.3390/drones8050168
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0003-4842-8746
https://doi.org/10.3390/drones8050168
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8050168?type=check_update&version=1

Drones 2024, 8, 168 2 of 18

In contrast, RL can directly optimize task-level objectives and use domain randomization to
cope with model uncertainty, thereby discovering more robust control responses. However,
RL training is not straightforward, as it usually requires extensive tuning of the reward
function and the simulation environment, and it may not guarantee successful learning [18].

Most existing RL algorithms start from scratch to collect data online each time they
learn a new strategy. This quickly becomes impractical in fields such as robotics, where the
cost of physical data collection is high. Just as powerful models in computer vision and
natural language processing are typically pre-trained on large general datasets and then
fine-tuned on specific task data, practical instances of RL for real-world robotic problems
need to be able to effectively integrate a large amount of prior data into the learning process,
while still collecting additional data online for the task at hand. Doing so effectively will
make the online data collection process more practical, while still allowing robots to operate
in the real world to continue improving their behavior.

Previous studies have indicated that RL is vulnerable to catastrophic forgetting during
training, mainly due to the presence of multiple and conflicting learning objectives [19].
This issue also arises in the docking process: first, learning how to control the quadrotors’
movement; second, learning how to avoid collision and maintain stability during the
docking process; the third objective involves mastering the ability to maintain a stable hover
for the pair of quadrotors post-docking. The primary items in accomplishing successful
training are bifurcated into two aspects: the formulation of a suitable reward function
tailored for the docking procedure, and the circumvention of catastrophic forgetting that
arises due to the presence of multiple objectives.

Inverse reinforcement learning (IRL) emerges as a viable technique when the reward
function is elusive to define [20–22]. It possesses the capability to autonomously discern a
reward function from expert demonstrations, a characteristic exemplified by generative
adversarial imitation learning (GAIL) [23]. Certain algorithms, such as adversarial motion
prior (AMP) [24–26], streamline the reward function design by assimilating expert policy
data. However, these algorithms are typically plagued by intricate parameter tuning,
sluggish convergence, and an inability to mitigate the catastrophic forgetting issue.

Behavioral cloning (BC) [27] is a methodology that can encapsulate an expert policy
into a neural network [28]. However, it generally necessitates a substantial volume of
data, and its performance is upper-bounded by the expertise level [29]. In scenarios of
data paucity, BC is susceptible to a pronounced out-of-distribution (OOD) problem [30].
BC exhibits efficacy when the expert policy is optimal. Conversely, in the presence of a
suboptimal expert policy, offline RL can enhance the expert policy, provided there is an
abundance of data [31–34].

The twin delayed deep deterministic policy gradient with behavior cloning (TD3BC)
algorithm [33] can mitigate the OOD problem in Offline RL to some extent. The TD3BC
algorithm introduces a regularization term in the calculation of policy gradients, making the
learning policy as close as possible to the behavior policy. This can reduce the exploration
of the policy in the OOD region, thereby reducing the overestimation problem caused
by it. Implicit Q-learning (IQL) [35], as an offline RL algorithm, primarily refrains from
evaluating the Q-value of the latest policy under unseen actions. Instead, it implicitly
estimates the policy improvement step by considering the Q-value of the optimal action
under a state as a random variable determined by the action. This approach alleviates the
OOD problem in offline RL to a certain extent.

Since offline RL can only perform limited exploration [35–42], the policy learned by
offline RL is generally suboptimal as well, but online RL can discover a better policy. So
the integration of online and offline RL offers several advantages. It allows for the efficient
use of previously collected data (offline learning), while still enabling the model to adapt
to new information as it interacts with the environment (online learning). This hybrid
approach can lead to more robust and adaptable models. Specifically, offline learning can
provide a solid foundation of knowledge, reducing the amount of exploration needed
during online learning. Meanwhile, online learning allows the model to continually refine

Drones 2024, 8, 168 3 of 18

its strategies based on new experiences, leading to ongoing performance improvements.
This combination can result in more effective learning, particularly in complex, dynamic
environments where the ability to leverage both historical data and new experiences is
crucial. This paper tackles the issue of catastrophic forgetting in online RL by utilizing a
guidance policy derived from offline RL. As a result, this methodology markedly improves
the success rate of docking tasks.

Our contributions are summarized as follows:

• We developed an expert strategy scheme that combines hybrid force/position control
to solve the docking problem during the interaction process of two quadrotors.

• For aerial docking tasks, we designed effective rewards for RL to support strategy training.
• We efficiently combined offline learning and online learning strategies in RL, effectively

increasing the success rate of the entire training task to 95%.

The organization of this paper is as follows: Section 2 delves into the problem defini-
tion, providing a comprehensive description of the quadrotor dynamics, the thrust-omega
controller, and the descriptions of RL. Section 3 meticulously outlines the method used,
organized around the Rule-Based Expert Policy, Offline-to-Online RL, and the reward
function. In Section 4, we test our distinctive approach to the docking task. Here, we
conduct experiments with a variety of online and offline RL strategies and delve into an
exploration of a fusion method that integrates offline-to-online methods. Finally, Section 5
wraps up the paper with a conclusion and sketches out potential directions for future work.

2. Problem Definition
2.1. Quadrotor Dynamics

The dynamics of each quadrotor are characterized by the state s = [X, V, R, Ω], encom-
passing the position X ∈ R3 in the world frame, velocity V ∈ R3 also in the world frame,
rotation matrix R ∈ SO(3) from the body to the world frame, and angular velocity Ω ∈ R3

in the body frame. The dynamics of the quadrotor are delineated as follows:

V̇ = −ge3 + R
F
m

+
Fe

m
, (1)

Ω̇ = I−1(τ − Ω × (IΩ)), (2)

Ṙ = Ω× R, (3)

where g denotes the gravitational acceleration, m represents the mass of the quadrotor,
e3 = (0, 0, 1)T, F ∈ R3 corresponds to the thrust in the body frame, Fe ∈ R3 signifies the
contact force with environment in the world frame, I = diag(Ixx, Iyy, Izz) is the inertia
matrix of the quadrotor, and τ ∈ R3 is the total torque in the body frame, Ω× ∈ R3×3 is a
skew-symmetric matrix associated with Ω rotated to the world frame. In (2), τ is calculated
as follows:

τ =
3

∑
i=0

fi × ri +
3

∑
i=0

(−1)i f T
i tt, (4)

where fi ∈ R3 is the thrust of a single propeller in the body frame, ri ∈ R3 is the position of
the propeller in the body frame, and tt is the torque-to-thrust coefficient.

We employ RaiSim v1.1.01 [43] to develop a quadrotor simulator, which accurately
simulates collisions and contact scenarios between two quadrotors.

2.2. Thrust-Omega Controller

The input of the environment is normalized accelerations V̇′
zd ∈ R1 along the z-axis in

the world coordinate system, coupled with angular velocities Ωd ∈ R3 in the body frame
for each quadrotor. The policy (from the expert or RL) outputs normalized motor thrust
and angular velocity values through the following thrust-omega controller, which applies

Drones 2024, 8, 168 4 of 18

forces to the four rotors of a quadrotor in the RaiSim environment via an open API, thereby
driving the UAV’s motion.

Normalized motor thrust is computed as follows:

f̂ = M−1
(

V̇zd
Ω̇d

)
(5)

where V̇zd = g(V̇′
zd + 1), g is the gravitational acceleration. Ω̇d is the target angular

acceleration of the quadrotor. And M is the control efficiency matrix [44] defined as follows:

M =

fmax
m

fmax
m

fmax
m

fmax
m

fmax√
2Ixx

l fmax√
2Ixx

l − fmax√
2Ixx

l − fmax√
2Ixx

l
fmax√
2Iyy

l − fmax√
2Iyy

l − fmax√
2Iyy

l fmax√
2Iyy

l

− tt fmax
Izz

tt fmax
Izz

− tt fmax
Izz

tt fmax
Izz

 (6)

where l is the distance between the center of mass and the motor, tt is the torque-to-thrust
coefficient, and fmax is the maximum thrust of the motor. Ω̇d could be computed by:

Ω̇d = I−1(−KpeΩ − Ki

∫
eΩdt) (7)

where eΩ = Ω − Ωd. Kp and Ki are the proportional and integral gains.

2.3. Reinforcement Learning

Reinforcement learning is a field of machine learning that emphasizes how to act based
on the environment to achieve maximum expected benefit. It is the third basic machine
learning method besides supervised learning and unsupervised learning. Unlike super-
vised learning, RL does not require labeled input-output pairs, nor does it need to precisely
correct non-optimal solutions. Its focus is on finding a balance between exploration (of
unknown areas) and exploitation (of existing knowledge). The inspiration for RL comes
from behavioral theories in psychology, how organisms gradually form expectations of
stimuli and habitual behaviors that can obtain maximum benefits under the stimuli of
rewards or punishments given by the environment. This method is universal, so it has
been studied in many fields, such as education, marketing, robotics, gaming, autonomous
driving, natural language processing, internet of things security, recommendation systems,
finance, and energy management [45,46].

RL can be categorized in various ways, including model-based versus model-free,
value-based versus policy-based, on-policy versus off-policy, and so on. Methods for
solving RL problems that use models and planning are called model-based methods, as
opposed to simpler model-free methods that are explicitly trial-and-error learners—viewed
as almost the opposite of planning [47]. Model-free approaches require more data and
diverse experience to learn the task than model-based methods, but model-free approaches
often produce better performance than model-based methods [48]. Value-based methods
aim to find the value of each state or state-action pair and select the optimal action based
on these values. This could result in a slow learning process. Policy-based algorithm
directly optimizes the policy that determines the agent’s behavior [49]. It could solve
the continued action space during the training process. On-policy and off-policy refer
to two different training methodologies, distinguished by whether the behavior policy
and the target policy are the same [50]. On-policy methods follow and improve on the
same policy throughout the learning process, allowing them to converge to the optimal
policy in deterministic environments. However, a major drawback of on-policy methods is
their inability to effectively utilize old or offline experiences, as they require collecting new
experiences under the current policy. Off-policy methods can learn from one policy while
improving upon another policy simultaneously. This enables them to effectively utilize old

Drones 2024, 8, 168 5 of 18

or offline experiences. Off-policy methods may require more complex learning algorithms
since they need to handle experiences from different policies.

Both PPO and TD3BC belong to the category of model-free algorithms. They offer
some advantages in performance over model-based algorithms. Q-learning and Deep Q-
Networks (DQN) are value-based methods. These methods may struggle with large-scale or
continuous action spaces, as they need to evaluate the value function for each action. On the
other hand, PPO has recently gained popularity for its robustness and simplicity. And it is
well-suited for RL problems with continuous state and action spaces where interacting with
the environment is not considered expensive [18,51]. However, as an on-policy algorithm,
PPO does not utilize training data efficiently and can lead to phase forgetting in the face of
complex docking tasks at hand, making the final model difficult to converge. TD3BC, as an
off-policy algorithm, uses experience replay to alleviate sample correlation and employs a
dual Q-value network to reduce overestimation errors, thereby improving sample efficiency.
It also mitigates phase forgetting through data replay. However, considering that offline
algorithms may lack environmental exploration capabilities, we propose a combination of
offline and online methods to accomplish our current docking task.

RL can be formulated as a Markov Decision Process (MDP). An MDP is defined by a
tuple (S , A, P , r, γ) [47], where S is the state space, A is the action space, P is the transition
probability, r is the reward function, and γ is the discount factor. The goal of RL is to find a
policy π : s → a that maximizes the expected return J(π) = EΘ∼π

[
∑∞

t=0 γtr(st, at)
]
, where

Θ = {s0, a0, d0, s1, a1, d1, · · · } is a trajectory sampled from the policy π. d denotes the done
flag, which indicates whether the episode is terminated.

3. Method

As shown in Figure 1, the docking apparatus comprises two quadrotors, each equipped
with a docking device. One quadrotor features a cylindrical recess, while the other is fitted
with a conical tip designed to fit precisely within the recess. This design was meticulously
crafted using SolidWorks. For the docking procedure, the recess is attached to quadrotor
A and the tip to quadrotor B. The docking task is deemed successful once the tip is fully
inserted into the cylindrical recess, and the controller is able to maintain stable flight of the
now unified quadrotors.

Figure 1. This is a schematic diagram of the docking structure. dy is the distance between P3 and P2

on the y-axis, dxz is the distance between P3 and P2 on the xz-axis. db is the depth of quadrotor A
docking device, ds is the length of quadrotor B docking device, dg is the length of Guide area, and rb
is the diameter of the barrel.

3.1. Rule-Based Expert Policy

The collection of expert data is a pivotal step for RL. The quality of the data from expert
policies directly impacts the effectiveness of the learning process. Poor data quality can

Drones 2024, 8, 168 6 of 18

lead to suboptimal learning results. Additionally, given that the data are generated through
interactions between the agent and the environment, data stability is a significant concern.

As illustrated in Figure 2, we design a rule-based expert system. During the initializa-
tion phase, quadrotor A remains in a hover state, while quadrotor B moves towards quadro-
tor A along the y-axis (the axial direction of the docking equipment of the two quadrotors),
with its x and z target positions unchanged. To ensure that the two quadrotors remain
collinear on the x and z axes during the movement process, we maintain quadrotor B’s
moving speed at a relatively slow 0.05 m/s.

Figure 2. Flowchart of the rule-based expert policy. Initially, quadrotor A remains hovering, while
quadrotor B gradually approaches quadrotor A along the y-axis. If contact occurs between the two, it
is determined whether the docking conditions (tip is in recess) are met. If they are, force-position
hybrid control can be implemented until the target point is reached and docking is completed. If
the conditions are not met, to avoid becoming stuck, quadrotor B needs to move back to ensure the
disappearance of external forces, and then approach quadrotor A along the y-axis.

In the absence of contact between the two quadrotors, we employ a PID controller for
a single quadrotor. When contact force is detected on the docking equipment, a hybrid
force/position control [52] is employed. And the system evaluates whether the tip is
inserted into the cylindrical recess. If it is not, quadrotor B will move back to ensure the
disappearance of external forces, and then approach quadrotor A along the y-axis. If the tip
is inserted into the cylindrical recess, the remaining docking process could be completed.

Figure 3 illustrates the various scenarios that may be encountered during the data
collection process of expert policy in docking tasks. The success rate of the expert strategy
in a noise-free environment is 40%. When collecting expert policy data, successful and
unsuccessful data are of paramount importance. Successful data aids the model in learning
how to make correct decisions to achieve the objective. Conversely, unsuccessful data helps
the model understand which actions could lead to adverse outcomes, thereby avoiding the
repetition of these errors in future decision-making. Therefore, whether it is successful or
unsuccessful data, both are integral components of the learning and strategy optimization
process in RL models.

Drones 2024, 8, 168 7 of 18

(a) (b)

(c) (d)

Figure 3. The potential interaction process of expert policy within RaiSim. The green arrow points
in the direction of the resultant force, while the yellow arrow points in the direction of the resultant
torque. (a,b) illustrate potential scenarios where two quadrotors may become stuck during the
docking process; (c,d) depict two scenarios that may occur when two quadrotors successfully dock.

We monitor the state of the two quadrotors in real time. If any anomalies are detected
during the docking process, such as significant fluctuations in the roll angle or pitch angle,
or a jamming situation caused by inaccurate docking angles between them, as shown in
Figure 3a,b, we will terminate the current round of data collection with a heavy penalty
and initiate the next episode.

In the control of quadrotors interacting with the external environment, the hybrid
force/position control strategy provides an effective solution. This strategy allows quadro-
tors to accurately control the contact force while maintaining position control. In addition,
through the switch of control modes, quadrotors can flexibly adjust their control strategies
according to actual conditions. This method has strong adaptability and can adaptively
adjust its motion trajectory to adapt to the actual situation. Finally, by inputting the ideal
motion trajectory into the quadrotor’s attitude controller, trajectory and attitude tracking of
the host can be achieved.

Our hybrid force/position control is only used on the docking axis. Because the
external forces generated on the other two coordinate axes, apart from the docking axis, are
relatively small. To simplify the process of generating contact external forces, we choose
to temporarily ignore the external forces on the other two axes in the docking task. The
docking work is not completed after the two quadrotors make contact. The completion of
the docking work needs to be determined by the relative position and posture of the two
quadrotors. To prevent the stability of the entire system from being affected by external
forces after contact, we use hybrid force/position control after contact [53]. The formula is
as follows:

Fe = fd − K f i

∫
(fc − fd)dt (8)

where fd is the desired contact force in the world frame, fc is the real contact force, K f i is
the integral gains of the force control. It is important to note that our hybrid force/position
control only acts on the y-axis, so the external forces in other directions are always set
to zero.

During the data collection phase, the collected data includes the state of quadrotor A at
time t sA

t = [XA
t −XA

dt, VA
t , RA

t , ΩA
t], the state of quadrotor B at time t, sB

t = [XB
t − XA

dt + dAB,

Drones 2024, 8, 168 8 of 18

VB
t , RB

t , ΩB
t], the six-dimensional contact forces fc = [fx, fy, fz, τx, τy, τz]. dAB denotes the

difference in target positions between quadrotor A and quadrotor B. The corresponding
actions aA

t = [V̇
′A
zdt, ΩA

dt], aB
t = [V̇

′B
zdt, ΩB

dt], XA
dt,X

B
dt are the desired positions of quadrotor A

and quadrotor B respectively at time t. V̇
′A
zdt, ΩA

dt, V̇
′B
zdt, ΩB

dt are the desired acceleration on
the axis-z and the desired angle velocity of the quadrotor A and quadrotor B respectively.

3.2. Offline-to-Online Reinforcement Learning

We try to train the docking task directly through online RL, and the specific simulation
result can be seen in Section 4.1. However, we find that using online RL directly can lead to
catastrophic forgetting situations, and the overall docking task is difficult to train.

Online RL algorithms necessitate environmental exploration, which significantly
increases training costs and reduces efficiency. When multiple tasks are present, the
catastrophic forgetting of online RL complicates the entire training process. To address
these issues, we attempted to accomplish the docking task directly through the offline
RL approach. Experimental results indicate that this method is feasible. For the specific
experimental process, please refer to Section 4.2. Further, based on the foundation of the
offline RL model, we consider enhancing the model’s ability to explore the environment.
Therefore, we integrate offline RL with online RL. The results prove that this method is
indeed effective. For the specific result, please refer to Section 4.3.

Our algorithm framework is shown in Figure 4. In the pre-training phase, the TD3BC
algorithm is utilized for training. The TD3BC algorithm, through state normalization,
achieves enhanced stability. It stands out for its simplicity and efficiency, requiring only
minor modifications to TD3 to achieve performance comparable to more complex methods.
Subsequently, during the fine-tuning phase, we employ the PPO algorithm. Prior to the
application of TD3BC, it is imperative to normalize the state, s, and the action, a, within the
dataset as follows:

xi =
xi − xi
ξi + ε

(9)

where xi and ξi denote the mean and standard deviation of the i-th dimension of the dataset,
respectively, ε is a small constant introduced to prevent division by zero, while xi represents
the i-th dimension of either the state s or the action a.

The architecture we have devised facilitates the utilization of a shared actor network
between the TD3BC and PPO algorithms. This is noteworthy given the fundamental
divergence in their policy types: TD3BC employs a deterministic policy, while PPO utilizes
a stochastic policy. The shared network comprises two hidden layers, with the first layer
consisting of 512 neurons and the second layer containing 256 neurons. The rectified
linear unit (ReLU) serves as the activation function. The network’s output is a normalized
action, collectively forming an eight-dimensional vector. Notably, this output layer does not
incorporate an activation function. The TD3BC critic network features two fully connected
layers with 512 and 256 neurons, respectively, using the ReLU activation function. In
contrast, the PPO critic network comprises three layers, each with 128 neurons, and utilizes
the Leaky ReLU activation function.

The choice to abstain from utilizing the tanh activation function in the output layer is
influenced by two primary considerations. Initially, due to the normalization procedure in
Equation (9), it is not guaranteed that the output will fall within the −1 to 1 range. In fact,
if the action space extends beyond the [−1, 1] interval, the tanh function will be incapable
of representing actions outside this range. This could potentially restrict the expressiveness
of the policy, thereby inhibiting the learned policy from executing certain possible actions.
This is a crucial factor to consider in the design and implementation of RL algorithms.
Secondly, the tanh function approaches a gradient near zero in its near-saturation regions,
which is not conducive to fine-tuning in the PPO algorithm. This gradient could obstruct
the effective learning and adjustment processes within PPO.

Drones 2024, 8, 168 9 of 18

Figure 4. Flowchart of the proposed method. The far left represents the process of collecting data from
expert policy. The expert policy comprises a PID controller and a hybrid force/position controller,
which are switched and adapted to alter the desired poses of the two quadrotors based on a series
of predetermined rules. The policy outputs thrust and angular velocity, which are processed by
a thrust-omega controller to generate the thrust values for the four motors of the quadrotor. The
four thrust values are then applied to the quadrotor in the RaiSim environment, thereby driving the
quadrotor to execute maneuvers. The middle diagram represents the offline RL, which uses TD3BC
for training based on the data collected from the expert strategy. And the MLP is a multi-layered
perceptron. Finally, in the far right diagram, PPO is used for online fine-tuning.

In the TD3BC algorithm, the computation of target actions, denoted as a′, is governed
by the following formula:{

a′(s′) = clip(πϕ′(s′) + clip(ϵ,−c, c), amin, amax)

ϵ ∼ N (0, σtb)
(10)

where πϕ′ represents the target actor network, ϵ denotes the noise sampled from a normal
distribution, c is the noise clip, amin and amax correspond to the minimum and maximum
values of the action in the dataset, respectively.

In the PPO algorithm, the action that interacts with the environment is determined by
the following expression: {

a = πϕ(s) + σ · z
z ∼ N (0, 1)

(11)

where πϕ is the target actor network, σ is the noise scale.
The output of the actor network typically encompasses the mean and variance for

action sampling within the PPO framework. However, the integration of the TD3BC pre-
trained model as a guiding policy introduces complexity and limits control over the initial
exploration intensity during the training phase. To mitigate this, we introduce logσ as an
independently trainable parameter, which is aligned with the dimensions of the action.
This modification, which involves the integration of logσ with the actor network, effectively
shapes the stochastic policy within the PPO framework.

During the training process of PPO, we differentiate the state values given by the
critic network and the actor network. This is primarily to balance the trade-off between
exploration and exploitation, and to enhance the stability of the training. The critic net-
work is mainly responsible for evaluating the performance of the current policy, typically
through value function estimation. Therefore, it requires an accurate estimation of the

Drones 2024, 8, 168 10 of 18

environmental state to accurately evaluate the quality of the policy. Introducing noise into
this process could potentially affect the accuracy of the value function, thereby impacting
policy evaluation. On the other hand, the actor network is responsible for choosing actions
based on the current state. Introducing noise into this process can increase the exploratory
nature of the policy, enabling the agent to better explore the environment and identify
potentially superior policies. Therefore, we do not add noise to the input state values on the
critic network, while the state values on the actor network are noise-added. This design can
balance the exploration-exploitation trade-off to a certain extent and improve the stability
and effectiveness of the training.

3.3. Reward Function

In RL, the reward function plays a crucial role. It depends on the current state of
the world, the action just taken, and the next state of the world. It can guide the agent’s
behavior in order to maximize its long-term reward. We define the same reward function
for both online and offline RL. During the process of collecting expert data, we found that
the states of quadrotor A and quadrotor B have a significant impact on the entire docking
process. Moreover, we aspire that the magnitude of external forces, once generated during
the docking process, can provide some guidance to the entire procedure. This is to avert
collision issues that could be caused by excessive external forces. So the reward function
consists of four parts: attitude, position, guiding docking, and force reward.

The attitude reward function for quadrotors A and B is formulated as follows:

rR = −cos−1
(

tr(RA)− 1
2

)
− cos−1

(
tr(RB)− 1

2

)
(12)

where tr(R) is the trace of the rotation matrix R. The term cos−1(tr(R)−1
2) represents the

angle of rotation between the current orientation and the identity rotation matrix. We hope
that during the docking process, the postures of the two quadrotors strive to maintain the
form of the identity matrix.

For the position setting, we hope that the two quadrotors are as close as possible to
their target positions. So the position reward function is defined as follows:

rP = −(||XA − XA
d ||2 + ||XB − XA

d + dAB||2) (13)

where XA is the current position of the quadrotor A, XB is the current position of the
quadrotor B, XA

d is the target position of the quadrotor A.
We aim to enhance the stability during the docking process of two quadrotors. Ac-

cording to the data acquisition process of expert strategies, we find that the docking speed
and accuracy have a significant impact on the successful completion of the docking task.
Therefore, we add a guiding docking reward term in the entire reward function. This term
can easily guide quadrotor B into the docking area, thereby greatly improving the docking
success rate. As shown in Figure 1, when P3 is in the guide area, the guiding reward will be
added. The guiding docking reward function is defined as follows:

rE = rmin −
(P3y − P2y − dg)(rmax − rmin)

(db + dg)
(14)

where rmin represents the minimum reward, rmax signifies the maximum reward, P2y is the
y-axis position of point P2, P3y is the y-axis position of point P3.

For the force reward associated with contact forces, we aim to impose certain constraints
on the docking forces along the y-axis. This is to prevent system instability issues that could
arise from severe collisions. Therefore, the design of the force reward is as follows:

rF = −|| fyc − fyd||2 (15)

Drones 2024, 8, 168 11 of 18

where fyc and fyd are the real contact force and desired contact force on the y-axis.
Consequently, the total reward function is articulated as follows:

r = (αRrR + αPrP + αErE + αFrF)dt (16)

where αR, αP, αE, αF represent the weights assigned to the four types of rewards, dt is the
time interval.

The allocation of reward weights in RL is a complex process. It should reflect the
relative importance of various rewards to maintain balance. Through extensive exper-
imentation and adjustment, we have determined the final allocation of reward weight
parameters, as detailed in Table 1.

Table 1. Reward function parameters.

Parameter Value

αR 0.1
αP 1.02
αE 1.0
αF 0.3

rmax 2.0
rmin 0.0
dg 0.02

4. Simulation and Result

Our algorithm is available at AquaML [54]. The framework encompasses various
online and offline RL algorithm frameworks and supports multi-machine parallel computa-
tion. The simulation environment is established in RaiSim. The operating frequency of the
controller is 200 Hz. Our computational setup utilizes a CPU with 32 cores and 64 threads,
and the GPU unit consists of 4 NVIDIA GeForce RTX 2080 Ti graphics cards.

4.1. Online RL Simulation

To accomplish the docking task, our initial approach is to employ online RL directly.
Consequently, we experiment with various online RL methods. To evaluate the performance
of these methods on the docking task, we adopt three different training strategies, as shown
in Figure 5. In (a), we initially attempt to train using PPO directly. However, once the policy
acquires the ability to control the movement of the two quadrotors, a collision between
them results in a decrease in the accumulated reward, thereby impeding further learning.

To mitigate the issue of a sudden drop in reward due to collisions between two
quadrotors, we propose dividing the docking task into two subtasks. The first subtask
is stable flight (non-contact flight between two quadrotors), and the second subtask is to
complete docking (stable flight after an external force is generated between two quadrotors).
This approach aims to optimize the final task performance.

In Figure 5b,c, we employ a curriculum learning strategy, initially concentrating on
training the agents to maneuver two quadrotors concurrently toward the desired position
prior to docking. Following the successful completion of the first subtask, we then focus on
optimizing the second subtask. (b) utilizes AMP, while (c) employs PPO. However, these
methodologies fail to mitigate the negative impact of collisions on reward accumulation,
leading to localized convergence during the training phase. The primary challenge in these
scenarios is the compound nature of the task objectives, which significantly increases the
risk of catastrophic forgetting.

Drones 2024, 8, 168 12 of 18

0 100 200 300 400 500 600 700
Episode number

90

80

70

60

50

40

30

20

10

Ac
cu

m
ul

at
ed

 re
w

ar
d

0 200 400 600 800 1000 1200 1400
Episode number

16

14

12

10

8

6

4

Ac
cu

m
ul

at
ed

 re
w

ar
d

(a) (b)

0 200 400 600 800 1000
Episode number

11

10

9

8

7

6

Ac
cu

m
ul

at
ed

 re
w

ar
d

(c)

Figure 5. The accumulated rewards are trained via Online RL; (a) is the reward by PPO; (b) is the
reward of curriculum learning and AMP; and (c) is the reward of curriculum learning and PPO.

4.2. Offline RL Simulation

During the offline RL phase, we employ 5000 complete docking trajectories. This
phase is characterized by a rapid training speed that is completed in just half an hour.

We employ two types of offline RL methods, namely IQL and TD3BC. Both methods
successfully complete the training. We conduct a comparative analysis of the success rates
and time consumption of both methods. TD3BC achieves a success rate of 65% and requires
980 steps to complete the docking task, while IQL has a success rate of 60% and requires
990 steps. Therefore, for subsequent offline-to-online training, we utilize the model trained
by TD3BC.

In the training process of TD3BC, many hyperparameters are indeed involved. The
selection and adjustment of these hyperparameters have a significant impact on the perfor-
mance of the model. Through algorithmic experience [33] and experiment, we can find the
satisfactory hyperparameters, which are shown in Table 2.

Table 2. TD3BC hyperparameters.

Parameter Value

Batch size 4096
Target update rate 0.005

Policy noise 0.2
Policy noise clipping (−0.5, 0.5)

Policy update frequency 2
Actor learning rate 3 × 10−4

α 2.5

Drones 2024, 8, 168 13 of 18

4.3. Offline-to-Online RL Simulation

We choose to use offline-to-online RL. In the online RL phase, we deploy 21 processes,
with 20 serving as sampling processes and one dedicated to policy updates. The entire
training procedure spans 12 h, with the policy undergoing updates across 842 rounds. Each
round samples 40,000 steps, culminating in a total of 34 million steps sampled throughout
the training process.

In the fine-tuning process within the PPO framework, it is crucial to ensure that
the divergence between the newly proposed and the existing policies does not exceed a
certain threshold. This is to prevent instability during the policy update process, a key
consideration in the design of the PPO algorithm. Firstly, if the difference between the old
and new policies is too large, it could lead to instability in the training process or even a
sharp decline in performance. By limiting the difference between the old and new policies,
this situation can be avoided, thereby improving the stability of training. Secondly, in RL, a
large step size in policy updates could lead to a “cliff fall” (i.e., obtaining a policy with poor
performance), and it might take a long time or even be impossible to recover. By limiting
the difference between the old and new policies, excessive updates can be avoided, thereby
improving the efficiency of learning. Lastly, it has been found in practice that smaller policy
updates are more likely to converge to the optimal solution during the training process.
Excessive policy updates may cause the algorithm to oscillate near the optimal solution
and not converge. Based on previous research experience [18,55] and our experiments,
the hyperparameters are shown in Table 3. The proportion of old and new strategies is
described in detail in Table 3 (target KL).

Table 3. PPO hyperparameters.

Parameter Value

γp 0.99
clip ratio 0.05
target KL 0.05

log std init value −1.2
λp 1.0

entropy coef 0.005
learning rate 2 × 10−6

In our algorithm, we employ an early stop method, stopping the training process
when the KL divergence exceeds 0.05. The parameters logσ of PPO are selected based on
the hyperparameter value of “log std init value” and have no connection with the original
network. It serves as the variance of the Gaussian distribution for the PPO. To initiate
effective training, the intensity of initial policy exploration should be moderate, with logσ
starting at −1.2 and gradually increasing throughout the training process. The entropy
loss coefficient in PPO is configured to 0.005 to facilitate this gradual elevation in logσ. As
depicted in Figure 6b, the entropy value increases as the training progresses. Figure 6a
illustrates the curve of the accumulated reward. We adopt a strategy that data collected
during each update is randomly divided into four subsets, facilitating more efficient sample
utilization. This approach, default in the AquaML framework, involves repeating the
process 16 times, resulting in more stable training across various tasks. We perform an
evaluation using the model derived from the 800th episode and attain a success rate of 95%
within the docking environment.

In the quadrotor simulation, the incorporation of sensor noise is aimed at more
realistically emulating the actual environment. In the real world, quadrotor sensor readings
are often influenced by various factors, such as environmental interference and equipment
errors, which result in a certain level of noise in the sensor readings. By introducing noise
into the simulation, the simulated environment can be made to more closely resemble
the actual operating environment, thereby enhancing the accuracy and reliability of the
simulation. We obtain noise data by conducting multiple measurements on the sensor

Drones 2024, 8, 168 14 of 18

in the actual environment, recording the measurement values, and then analyzing the
noise data through statistical methods. In the simulation process, based on experimental
experience, we add independent Gaussian noise to the position and linear velocity data of
the quadrotor state, as shown in Figure 7.

0 200 400 600 800
Episode number

1

2

3

4

5

6

7

8

Ac
cu

m
ul

at
ed

 re
w

ar
d

0 200 400 600 800
Episode number

1.76

1.78

1.80

1.82

1.84

1.86

1.88

En
tro

py
 v

al
ue

(a) (b)

Figure 6. Accumulated reward and entropy curve in the fine-tuning phase; (a) shows the accumulated
reward during the fine-tuning phase; (b) represents the entropy curve in the fine-tuning phase.

(a) (b)

Figure 7. Gaussian noise is incorporated into the state measurements. (a) shows the noise and target
values of position; (b) represents the noise and target values of linear velocity. The solid blue line
represents the noise in the position and linear velocity. The dashed red line indicates the target values.

During the completion of the docking task, we simultaneously monitor the external
forces generated between the two quadrotors. As time progresses, the quadrotors, while
continuously approaching each other, generate external forces due to contact. Once fully
docked, the external forces in the docking direction can be controlled within a certain range,
as illustrated in Figure 8. And in this process, we are not using any force controller.

Drones 2024, 8, 168 15 of 18

Figure 8. Throughout the completion of the docking task, the external force values generated on the
y-axis are tracked. The dashed red line represents the target external force values, while the solid
blue line represents the actual values.

As depicted in Figure 9, the graph represents the variations in the distance, specifically
dxz on the xz plane and dy41 on the y-axis between points P4 and P1, as shown in Figure 1.
These distances pertain to the relative positioning of the two quadrotors during the docking
process. When the complete coupling is achieved, the desired dy41 is set at 0.14 m. This
illustration substantiates that our approach proficiently administers the stable control of
both the separation and complete docking processes of the two quadrotors.

Figure 9. The changes of dxz and dy41 during docking. The dashed red line represents the ideal value
at complete docking and the solid blue line is the real value.

The overall test results are shown in Table 4. In our test environment, each docking
method is tested 200 times to calculate the success rate. The term ‘Steps’ refers to the
average number of steps required to complete the docking task, which is derived based on
a maximum step length of 2000. “AMP CL” represents the algorithm that combines AMP
with course learning, “PPO CL” represents the algorithm that combines PPO with course
learning, and × indicates training failure.

Drones 2024, 8, 168 16 of 18

Table 4. Algorithm performance comparison for aerial docking task.

Algorithm Type Algorithm Success Rate Steps

Online PPO × ×
Online AMP CL × ×
Online PPO CL × ×
Offline IQL 60% 990
Offline TD3BC 65% 980

Offline-to-Online TD3BC+PPO 95% 890

In the environmental setup, we also introduce randomness within a certain range for
the initial relative pose of the two quadrotors. The initial position of quadrotor B is within
a 1 m range to the right of the y-axis from the target position of quadrotor A. The initial
position of quadrotor B is [xB, yB, zB], and it is randomized within the following domain:

xB ∼ U[−0.15, 0.15]m
yB ∼ U[−1.5,−1.3]m
zB ∼ U[4.85, 5.15]m

(17)

As demonstrated in Table 4, the offline-to-online algorithm achieves superior perfor-
mance in terms of both success rate and time efficiency. Online RL is incapable of directly
training for the docking task, whereas offline RL can accomplish task training. However,
when comparing success rates and time consumption, offline RL still falls short of the
offline-to-online method.

5. Conclusions

In this study, we proposed a scenario for quadrotor aerial docking tasks. The real-
ization of this scenario allows quadrotors to complete free combination and separation
tasks in the air, expanding the operational skills of quadrotors in complex scenarios. Firstly,
we obtained better expert data by defining rules through traditional control methods.
Secondly, we designed different RL methods to train the aerial docking tasks, including
online RL, offline RL, and offline-to-online methods, and designed the reward function
under the docking task. Ultimately, we used the offline-to-online method, TD3BC plus PPO,
which achieved a success rate of 95% in the aerial docking scenario, outperforming other
types of RL methods. This method can alleviate the problem of catastrophic forgetting in
multi-task training scenarios to a certain extent, and mitigate the OOD problem in offline
RL. It provides a promising direction for subsequent RL training with different types of
task objectives.

For future work, we hope to deploy this scenario on real drones. Although the current
success rate in the simulation environment has reached a high level, the transfer from
simulation to reality is also a key issue we will consider in the future.

Author Contributions: Conceptualization, Y.Y.; Methodology, Y.F.; Validation, T.Y.; Investigation,
Y.F.; Resources, Y.F.; Data curation, T.Y.; Writing—original draft, Y.F. and T.Y.; Writing—review
and editing, Y.F. supervision, Y.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant 62173037, the National Key R. D. Program of China, and the State Key Laboratory of Robotics
and Systems (HIT).

Data Availability Statement: The following supporting information can be found at: https://drive.
google.com/file/d/1k6SAxTvzHRVDskx8_wPrtFySkYnyJxr4/view?usp=drive_link (accessed on
10 April 2024), Video: Video of the UAV aerial docking.

Conflicts of Interest: The authors declare no conflict of interest.

https://drive.google.com/file/d/1k6SAxTvzHRVDskx8_wPrtFySkYnyJxr4/view?usp=drive_link
https://drive.google.com/file/d/1k6SAxTvzHRVDskx8_wPrtFySkYnyJxr4/view?usp=drive_link

Drones 2024, 8, 168 17 of 18

References
1. Karakostas, I.; Mademlis, I.; Nikolaidis, N.; Pitas, I. Shot type constraints in UAV cinematography for autonomous target tracking.

Inf. Sci. 2020, 506, 273–294. [CrossRef]
2. Shi, C.; Lai, G.; Yu, Y.; Bellone, M.; Lippiello, V. Real-Time Multi-Modal Active Vision for Object Detection on UAVs Equipped

with Limited Field of View LiDAR and Camera. IEEE Robot. Autom. Lett. 2023, 8, 6571–6578. [CrossRef]
3. Sharma, A.; Vanjani, P.; Paliwal, N.; Basnayaka, C.M.W.; Jayakody, D.N.K.; Wang, H.C.; Muthuchidambaranathan, P. Communi-

cation and networking technologies for UAVs: A survey. J. Netw. Comput. Appl. 2020, 168, 102739. [CrossRef]
4. Yu, Y.; Wang, K.; Du, J.; Xu, B.; Xiang, C. Design and Trajectory Linearization Geometric Control of Multiple Aerial Vehicles

Assembly. J. Mech. Eng. 2022, 58, 16–26. [CrossRef]
5. Nguyen, H.N.; Park, S.; Park, J.; Lee, D. A novel robotic platform for aerial manipulation using quadrotors as rotating thrust

generators. IEEE Trans. Robot. 2018, 34, 353–369. [CrossRef]
6. Yu, Y.; Shi, C.; Shan, D.; Lippiello, V.; Yang, Y. A hierarchical control scheme for multiple aerial vehicle transportation systems

with uncertainties and state/input constraints. Appl. Math. Model. 2022, 109, 651–678. [CrossRef]
7. Sanalitro, D.; Savino, H.J.; Tognon, M.; Cortés, J.; Franchi, A. Full-Pose Manipulation Control of a Cable-Suspended Load with

Multiple UAVs Under Uncertainties. IEEE Robot. Autom. Lett. 2020, 5, 2185–2191. [CrossRef]
8. Park, S.; Lee, Y.; Heo, J.; Lee, D. Pose and Posture Estimation of Aerial Skeleton Systems for Outdoor Flying. In Proceedings of

the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 704–710.
[CrossRef]

9. Park, S.; Lee, J.; Ahn, J.; Kim, M.; Her, J.; Yang, G.H.; Lee, D. ODAR: Aerial Manipulation Platform Enabling Omnidirectional
Wrench Generation. IEEE/ASME Trans. Mechatron. 2018, 23, 1907–1918. [CrossRef]

10. Sugihara, J.; Nishio, T.; Nagato, K.; Nakao, M.; Zhao, M. Design, Control, and Motion Strategy of TRADY: Tilted-Rotor-Equipped
Aerial Robot with Autonomous In-flight Assembly and Disassembly Ability. arXiv 2023, arXiv:2303.07106.

11. Zhang, M.; Li, M.; Wang, K.; Yang, T.; Feng, Y.; Yu, Y. Zero-Shot Sim-To-Real Transfer of Robust and Generic Quadrotor Controller
by Deep Reinforcement Learning. In Proceedings of the International Conference on Cognitive Systems and Signal Processing,
LuoYang, China, 10–12 August 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 27–43.

12. Feng, Y.; Shi, C.; Du, J.; Yu, Y.; Sun, F.; Song, Y. Variable admittance interaction control of UAVs via deep reinforcement learning.
In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023;
IEEE: Piscataway, NJ, USA, 2023; pp. 1291–1297.

13. Song, Y.; Romero, A.; Müller, M.; Koltun, V.; Scaramuzza, D. Reaching the limit in autonomous racing: Optimal control versus
reinforcement learning. Sci. Robot. 2023, 8, eadg1462. [CrossRef]

14. Kaufmann, E.; Bauersfeld, L.; Loquercio, A.; Müller, M.; Koltun, V.; Scaramuzza, D. Champion-level drone racing using deep
reinforcement learning. Nature 2023, 620, 982–987. [CrossRef] [PubMed]

15. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017, arXiv:1707.06347.
16. Chikhaoui, K.; Ghazzai, H.; Massoud, Y. PPO-based reinforcement learning for UAV navigation in urban environments. In

Proceedings of the 2022 IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS), Fukuoka, Japan,
7–10 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–4.

17. Guan, Y.; Zou, S.; Peng, H.; Ni, W.; Sun, Y.; Gao, H. Cooperative UAV trajectory design for disaster area emergency communica-
tions: A multi-agent PPO method. IEEE Internet Things J. 2023, 11, 8848–8859. [CrossRef]

18. Molchanov, A.; Chen, T.; Hönig, W.; Preiss, J.A.; Ayanian, N.; Sukhatme, G.S. Sim-to-(multi)-real: Transfer of low-level robust
control policies to multiple quadrotors. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Macao, China, 3–8 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 59–66.

19. Vithayathil Varghese, N.; Mahmoud, Q.H. A survey of multi-task deep reinforcement learning. Electronics 2020, 9, 1363. [CrossRef]
20. Abbeel, P.; Ng, A.Y. Apprenticeship learning via inverse reinforcement learning. In Proceedings of the Twenty-First International

Conference on Machine Learning, New York, NY, USA, 4 July 2004; p. 1.
21. Ziebart, B.D.; Maas, A.L.; Bagnell, J.A.; Dey, A.K. Maximum entropy inverse reinforcement learning. In Proceedings of the AAAI,

Chicago, IL, USA, 13–17 July 2008; Volume 8, pp. 1433–1438.
22. Arora, S.; Banerjee, B.; Doshi, P. Maximum Entropy Multi-Task Inverse RL. arXiv 2020, arXiv:2004.12873.
23. Ho, J.; Ermon, S. Generative adversarial imitation learning. In Advances in Neural Information Processing Systems 29, Proceedings of

the 30th Annual Conference on Neural Information Processing Systems 2016, Barcelona, Spain, 5–10 December 2016; NeurIPS: La Jolla,
CA, USA, 2016.

24. Peng, X.B.; Ma, Z.; Abbeel, P.; Levine, S.; Kanazawa, A. Amp: Adversarial motion priors for stylized physics-based character
control. ACM Trans. Graph. (ToG) 2021, 40, 1–20. [CrossRef]

25. Vollenweider, E.; Bjelonic, M.; Klemm, V.; Rudin, N.; Lee, J.; Hutter, M. Advanced skills through multiple adversarial motion
priors in reinforcement learning. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA),
London, UK, 29 May–2 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 5120–5126.

26. Wu, J.; Xin, G.; Qi, C.; Xue, Y. Learning robust and agile legged locomotion using adversarial motion priors. IEEE Robot. Autom.
Lett. 2023, 8, 4975–4982. [CrossRef]

27. Pomerleau, D.A. Efficient training of artificial neural networks for autonomous navigation. Neural Comput. 1991, 3, 88–97.
[CrossRef] [PubMed]

http://doi.org/10.1016/j.ins.2019.08.011
http://dx.doi.org/10.1109/LRA.2023.3309575
http://dx.doi.org/10.1016/j.jnca.2020.102739
http://dx.doi.org/10.3901/JME.2022.21.016
http://dx.doi.org/10.1109/TRO.2018.2791604
http://dx.doi.org/10.1016/j.apm.2022.05.013
http://dx.doi.org/10.1109/LRA.2020.2969930
http://dx.doi.org/10.1109/ICRA.2019.8794080
http://dx.doi.org/10.1109/TMECH.2018.2848255
http://dx.doi.org/10.1126/scirobotics.adg1462
http://dx.doi.org/10.1038/s41586-023-06419-4
http://www.ncbi.nlm.nih.gov/pubmed/37648758
http://dx.doi.org/10.1109/JIOT.2023.3320796
http://dx.doi.org/10.3390/electronics9091363
http://dx.doi.org/10.1145/3450626.3459670
http://dx.doi.org/10.1109/LRA.2023.3290509
http://dx.doi.org/10.1162/neco.1991.3.1.88
http://www.ncbi.nlm.nih.gov/pubmed/31141866

Drones 2024, 8, 168 18 of 18

28. Torabi, F.; Warnell, G.; Stone, P. Behavioral cloning from observation. arXiv 2018, arXiv:1805.01954.
29. Kumar, A.; Hong, J.; Singh, A.; Levine, S. Should i run offline reinforcement learning or behavioral cloning? In Proceedings of the

International Conference on Learning Representations, Virtual, 25–29 April 2022.
30. Yang, J.; Zhou, K.; Li, Y.; Liu, Z. Generalized out-of-distribution detection: A survey. arXiv 2021, arXiv:2110.11334.
31. Levine, S.; Kumar, A.; Tucker, G.; Fu, J. Offline reinforcement learning: Tutorial, review, and perspectives on open problems.

arXiv 2020, arXiv:2005.01643.
32. Kumar, A.; Zhou, A.; Tucker, G.; Levine, S. Conservative q-learning for offline reinforcement learning. Adv. Neural Inf. Process.

Syst. 2020, 33, 1179–1191.
33. Fujimoto, S.; Gu, S.S. A minimalist approach to offline reinforcement learning. Adv. Neural Inf. Process. Syst. 2021, 34, 20132–20145.
34. Agarwal, R.; Schuurmans, D.; Norouzi, M. An optimistic perspective on offline reinforcement learning. In Proceedings of the

International Conference on Machine Learning (PMLR), Virtual, 13–18 July 2020; pp. 104–114.
35. Kostrikov, I.; Nair, A.; Levine, S. Offline reinforcement learning with implicit q-learning. arXiv 2021, arXiv:2110.06169.
36. Fujimoto, S.; Meger, D.; Precup, D. Off-policy deep reinforcement learning without exploration. In Proceedings of the International

conference on machine learning (PMLR), Long Beach, CA, USA, 9–15 June 2019; pp. 2052–2062.
37. Ghasemipour, S.K.S.; Schuurmans, D.; Gu, S.S. Emaq: Expected-max q-learning operator for simple yet effective offline and

online rl. In Proceedings of the International Conference on Machine Learning (PMLR), Virtual, 18–24 July 2021; pp. 3682–3691.
38. Jaques, N.; Ghandeharioun, A.; Shen, J.H.; Ferguson, C.; Lapedriza, A.; Jones, N.; Gu, S.; Picard, R. Way off-policy batch deep

reinforcement learning of implicit human preferences in dialog. arXiv 2019, arXiv:1907.00456.
39. Kumar, A.; Fu, J.; Soh, M.; Tucker, G.; Levine, S. Stabilizing off-policy q-learning via bootstrapping error reduction. In Advances in

Neural Information Processing Systems 32, Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019),
Vancouver, Canada, 8–14 December 2019; NeurIPS: La Jolla, CA, USA, 2019.

40. Wu, Y.; Tucker, G.; Nachum, O. Behavior regularized offline reinforcement learning. arXiv 2019, arXiv:1911.11361.
41. Siegel, N.Y.; Springenberg, J.T.; Berkenkamp, F.; Abdolmaleki, A.; Neunert, M.; Lampe, T.; Hafner, R.; Heess, N.; Riedmiller, M.

Keep doing what worked: Behavioral modelling priors for offline reinforcement learning. arXiv 2020, arXiv:2002.08396.
42. Guo, Y.; Feng, S.; Le Roux, N.; Chi, E.; Lee, H.; Chen, M. Batch reinforcement learning through continuation method. In

Proceedings of the International Conference on Learning Representations, Virtual, 3–7 April 2020.
43. Hwangbo, J.; Lee, J.; Hutter, M. Per-contact iteration method for solving contact dynamics. IEEE Robot. Autom. Lett. 2018,

3, 895–902. [CrossRef]
44. Quan, Q. Introduction to Multicopter Design and Control; Springer: Berlin/Heidelberg, Germany, 2017.
45. Fahad Mon, B.; Wasfi, A.; Hayajneh, M.; Slim, A.; Abu Ali, N. Reinforcement Learning in Education: A Literature Review.

Informatics 2023, 10, 74. [CrossRef]
46. Sivamayil, K.; Rajasekar, E.; Aljafari, B.; Nikolovski, S.; Vairavasundaram, S.; Vairavasundaram, I. A Systematic Study on

Reinforcement Learning Based Applications. Energies 2023, 16, 1512. [CrossRef]
47. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
48. Pinosky, A.; Abraham, I.; Broad, A.; Argall, B.; Murphey, T.D. Hybrid control for combining model-based and model-free

reinforcement learning. Int. J. Robot. Res. 2023, 42, 337–355. [CrossRef]
49. Byeon, H. Advances in Value-based, Policy-based, and Deep Learning-based Reinforcement Learning. Int. J. Adv. Comput. Sci.

Appl. 2023, 14, 348–354. [CrossRef]
50. Wang, X.; Wang, S.; Liang, X.; Zhao, D.; Huang, J.; Xu, X.; Dai, B.; Miao, Q. Deep Reinforcement Learning: A Survey. IEEE Trans.

Neural Netw. Learn. Syst. 2024, 35, 5064–5078. [CrossRef]
51. Yi, W.; Qu, R.; Jiao, L. Automated algorithm design using proximal policy optimisation with identified features. Expert Syst. Appl.

2023, 216, 119461. [CrossRef]
52. Nguyen, H.N.; Lee, D. Hybrid force/motion control and internal dynamics of quadrotors for tool operation. In Proceedings

of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; IEEE:
Piscataway, NJ, USA, 2013; pp. 3458–3464.

53. Nguyen, H.N.; Ha, C.; Lee, D. Mechanics, control and internal dynamics of quadrotor tool operation. Automatica 2015, 61, 289–301.
[CrossRef]

54. Tao, Y.; Yu, Y.; Feng, Y. AqauML: Distributed Deep Learning Framework Based on Tensorflow2. 2023. Available online:
https://github.com/BIT-aerial-robotics/AquaML/tree/2.2.0 (accessed on 2 May 2023).

55. Huang, S.; Dossa, R.F.J.; Raffin, A.; Kanervisto, A.; Wang, W. The 37 implementation details of proximal policy optimization. In
Proceedings of the The ICLR Blog Track, Online, 25–29 April 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/LRA.2018.2792536
http://dx.doi.org/10.3390/informatics10030074
http://dx.doi.org/10.3390/en16031512
http://dx.doi.org/10.1177/02783649221083331
http://dx.doi.org/10.14569/IJACSA.2023.0140838
http://dx.doi.org/10.1109/TNNLS.2022.3207346
http://dx.doi.org/10.1016/j.eswa.2022.119461
http://dx.doi.org/10.1016/j.automatica.2015.08.015
https://github.com/BIT-aerial-robotics/AquaML/tree/2.2.0

	Introduction
	Problem Definition
	Quadrotor Dynamics
	Thrust-Omega Controller
	Reinforcement Learning

	Method
	Rule-Based Expert Policy
	Offline-to-Online Reinforcement Learning
	Reward Function

	Simulation and Result
	Online RL Simulation
	Offline RL Simulation
	Offline-to-Online RL Simulation

	Conclusions
	References

