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Abstract: To weaken or avoid the impact of dynamic threats such as wind and extreme weather on the
real-time path of a UAV swarm, a path-planning method based on improved long short-term memory
(LSTM) network prediction parameters was constructed. First, models were constructed for wind,
static threats, and dynamic threats during the flight of the drone. Then, it was found that atmospheric
parameters are typical time series data with spatial correlation. The LSTM network was optimized and
used to process time series parameters to construct a network for predicting atmospheric parameters.
The state of the drone was adjusted in real time based on the prediction results to mitigate the impact
of wind or avoid the threat of extreme weather. Finally, a path optimization method based on an
improved LSTM network was constructed. Through simulation, it can be seen that compared to
the path that does not consider atmospheric effects, the optimized path has significantly improved
flightability and safety.

Keywords: dynamic threat; unmanned aerial vehicle swarm; long short-term memory; predicting
atmospheric parameter; extreme weather; path optimization method

1. Introduction

With the rapid development of artificial intelligence and drone technology, using
drones to perform tasks has become a research focus and exploration direction in the
academic community. The ability of drones to arrive at the task area on time and safely
directly determines the success of the task. Whether a UAV swarm can arrive at the task area
with the optimal path directly affects the efficiency of the entire swarm in performing tasks.

In order to improve the efficiency of UAV mission execution, scholars have conducted
in-depth exploration and achieved fruitful results. These mainly include path-planning
methods based on classical theory or swarm intelligence optimization.

The classic path-planning theory mainly focuses on the RRT algorithm, A* algorithm,
Dubins path, Dijkstra algorithm, etc. It has a solid theoretical foundation and research results.

Before path planning, it is necessary to quantify the geographical environment. The
processing methods for geographical environments mainly include digital simulation,
rasterization, and the Voronoi diagram. Based on the elevation map, researchers [1,2]
converted it into a digital topographic map for path planning. The authors of [3] designed
a method for the feature extraction of three-dimensional maps, which added new features
to two-dimensional maps and obtained more information compared to two-dimensional
maps. The Voronoi diagram [4,5] divides the task area into a large number of equal-area
regions. When performing search tasks, it can divide the whole into parts, which is more
convenient for quantifying the effectiveness of search methods. Based on this, in [6,7], a
generalized Voronoi diagram method was established. This method uses the relationship
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between the edge of each block and the starting position to further shorten the path length
of UAVs.

After preprocessing the environment, classical path-planning methods can be used
to solve the problem. The RRT algorithm [8,9] uses a random tree approach to search for
the shortest path between the starting point and the destination point. Based on this, the
authors of [10] designed a bidirectional random tree, which improved the search speed
and ensured the convergence of the search. In [11], the authors constructed a method
for designing the shape of random trees based on prior knowledge, which improved the
search efficiency. In another study [12], a path-planning method was developed based on
time-varying ocean characteristics according to the maritime environment. This research
had a positive role in promoting the subsequent research carried out in this study on
time-varying environments.

The A* algorithm [13,14] is a method for quickly searching for the shortest path. Due
to its simple operation and good results, it is widely used in path planning. Based on the
A* algorithm, the authors of [15] constructed an improved sparse A* algorithm based on
the results of interaction with the environment. This method can better avoid the threat
of ground radar. In [16], combined with the geometric configuration of the mission area,
a geometric A* algorithm was proposed. This method significantly reduced the number
of maximum turns of the aircraft, making the planned path smoother. The authors of [17]
improved the search strategy of the A* algorithm and integrated it with the Delaunay
triangulation method, shortening the total length of the path and reducing the number of
turns. The authors of [18] nested the A* algorithm and proposed a multilevel hybrid A*
algorithm. Although the hybrid algorithm was much more complex than the classic A*
algorithm, the constructed algorithm can plan feasible and optimal routes in extremely
complex environments.

The Dubins path [19,20] ensures that the drone can smoothly turn in the shortest path,
improving the efficiency of mission planning for long-distance flights. Based on the Dubins
path, the authors of [21] implemented a path-planning method under the constraints of
restricted areas and directional constraints to achieve the goal of planning the shortest
path under complex constraints. In [22], the authors used the wolf algorithm to optimize
the angle control of the drone under the requirements of the Dubins path, resulting in a
minimum cost. Similarly, the authors of [23] also used a quadratic differential approach to
achieve optimal control of the platform under the constraints of the Dubins path.

The Dijkstra algorithm [24,25] is similar to a greedy algorithm. It iteratively searches
for points that are closer to itself to optimize the path. The literature [26] combined
the Dijkstra algorithm with the Delaunay triangulation method to design a method for
finding the optimal path on a curved surface. The authors of [27] further combined the
Dijkstra algorithm with the Ahuja algorithm and also used it in tandem with the Delaunay
triangulation method to design a path-planning method suitable for cruise missiles. In [28],
researchers constructed a backward-labeled Dijkstra algorithm, to minimize the time
required to complete the task.

The method based on swarm intelligence optimization mainly converts the path-
planning problem into an optimization problem and then uses intelligent algorithms to
solve it, that is, by constructing a mathematical model to quantify the objective function
during the execution of the task. At the same time, considering the motion characteristics,
environmental factors, and task requirements of the drone, constraints are set. Since the
problem to be optimized is usually NP-Hard, it is necessary to use intelligent optimization
algorithms to solve and obtain the path of UAVs. Typical intelligent optimization algorithms
mainly include particle swarm optimization (PSO) [29], ant colony optimization (ACO) [30],
genetic algorithm (GA) [31], and so on.

Path planning based on the PSO algorithm is mainly addressed in [32–37]. The
authors of [32] designed a distributed search method to address the problem of PSO being
prone to local optimization. This method allows particles to exchange information in
clusters, thereby improving the search accuracy of the area and enhancing the efficiency of
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collaborative search for UAV swarms. The authors of [33] improved PSO using the artificial
potential field method, which improved the quality of path optimization and reduced the
optimization time of the algorithm. In another study [34], the improved A* algorithm
was combined with the PSO algorithm, which planned a path with good anti-interference
performance and a shorter journey. In [35,36], PSO and a model predictive control or
genetic algorithm were combined, respectively, making the optimized path more suitable
for solving corresponding problems. The authors of [37] constructed an improved quantum
particle swarm algorithm, which improved the safety of the path and shortened the total
length of the path.

The use of ACO for path planning has also achieved good results [38–42]. The authors
of [38] combined fuzzy logic with an improved ACO algorithm to optimize more effective
and safer paths. The authors of [39] designed a fallback strategy based on the changing
characteristics of pheromones to improve algorithm performance. The improved ACO
algorithm can significantly improve the efficiency of path planning. In [40], time windows
were combined with ACO to achieve path planning in complex three-dimensional envi-
ronments. The authors of [41] used the artificial potential field method to improve ACO
to enhance the convergence speed of the algorithm, thereby improving the efficiency of
path planning. The authors of [42] constructed a two-level optimization architecture based
on the combination of the A* algorithm and the ACO algorithm, using two strategies to
improve the speed of path planning.

There are also many research results on using GAs for path planning [43–46]. The
authors of [43] integrated a GA and ACO to achieve the integrated scheduling of dual
tasks of UAV task allocation and path planning. The proposed method can realize the
whole process from task publishing to path planning. In [44], the GA method and the
Cuckoo algorithm were combined to ensure a smooth path while taking into account
the safety of the path. The authors of [45] combined a GA with a distributed estimation
algorithm to improve the search performance of the GA and enhance the efficiency of
the collaborative search of the task platform. The authors of [46] used a GA to achieve
multiobjective optimization in path planning, which enabled the task platform to better
avoid obstacles.

At the same time, in order to comprehensively consider and refine the constraints
of drones during flight further, scholars have constructed geofencing to achieve real-
time optimization and control of the motion parameters of drones. In [47], an explicit
reference governor framework was designed to ensure that drones can successfully reach
predetermined locations. The authors of [48] utilized geofencing to ensure that drones did
not fly into no-fly zones while maximizing the capacity of airspace. The authors of [49]
constructed a self-adapted difference multiobjective optimization algorithm under the
constraints of geofencing to improve the safety of drone flight.

Studies at this stage have made outstanding contributions to improving the efficiency
of the path planning of UAVs and also provide reference ideas and research frameworks for
subsequent research. However, there are still contents to be further analyzed and studied.

When planning the path of a drone swarm, the atmospheric impact is not considered or
set as a constant. Obviously, this is not consistent with the actual situation, and atmospheric
parameters have a significant impact on drones.

The atmospheric conditions studied in this article are mainly divided into two cate-
gories. One is wind, and the other is mobile extreme weather.

This article draws on internationally accepted wind classification standards and di-
vides wind into weak, strong, and extreme wind based on its impact on the stability of
the drone. Weak wind will have a cumulative impact on the drone’s heading. A drone
subjected to weak wind will have a slight deviation in its path. Over time, this deviation
will increase, which may lead to the drone deviating or getting lost. Strong wind will
directly affect the stability of the drone, causing harm to the drone itself. Extreme wind
refers to extreme weather that has a devastating effect on the drone.
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Extreme weather mainly includes thunderstorm clouds and severe convective weather.
Once the drone approaches these two types of weather, it is highly likely to lose control
and even crash. Thunderstorm clouds are not static clouds, and they can move and expand.
Therefore, it is necessary to study and predict the path and trend in order to avoid their
threats in advance. Severe convective weather itself is not observable optically. Therefore,
it is important to pay attention to the impact of such weather on drone swarms.

To this end, this article involves an analysis of environmental parameters. The main
research focuses on the impact of wind and mobile extreme weather on drones, thereby
weakening the impact of weather or avoiding the harm of the atmosphere to drones as
early as possible.

The main contributions of this article are as follows:

(1) A deep learning-based atmospheric parameter prediction method is constructed.
Based on the prediction results, the path of the drone swarm is optimized and adjusted,
ensuring that the drones can fly according to the set path, avoid severe weather, and
ensure their own safety.

(2) A method for predicting atmospheric parameters using deep learning is proposed.
Compared to existing theoretical models, such methods can accurately characterize
the deeper coupling relationships between more parameters, thereby improving the
accuracy of prediction.

(3) Mathematical models of wind, static threats, and mobile threats are constructed, and
objective functions and beam conditions are designed for path optimization under
various threats and mission completion conditions, thereby establishing a complete
path optimization process and method.

(4) Combining the problems to be optimized and the deficiencies of the prediction net-
work itself, we improved the deep network from two aspects: method applicability
and network parameter adjustment. The proposed methods and ideas can be used to
improve other deep networks.

The problem of path optimization under the influence of the atmospheric environment
is introduced in Section 2. The mathematical models of three typical threats to UAVs in the
actual flight process are constructed in Section 3. After that, the climatic characteristics of
wind, thunderstorm clouds, and severe convective threats are analyzed, and it is clear that
these atmospheric parameters are time series data with high spatial correlations. The LSTM
network is improved, and the atmospheric parameters are predicted by deep learning in
Section 4. Then, the route planning process based on parameter prediction is constructed
in Section 5. Finally, the algorithm is simulated to verify its response to dynamic threats in
Section 6, and conclusions are drawn in Section 7.

2. Problem Description
2.1. The Threat of Wind and Sudden Weather to UAVs

Wind has the most extensive and lasting impact on the stability of drones, and it also
poses the greatest threat to drones. The power and direction of fixed-wing drones mainly
rely on wind, and the impact of wind is self-evident. The impact of wind on drones during
flight is shown in Figure 1.

As shown in Figure 1, wind affects the stability and motion state of UAVs. When the
wind field is unstable, the stability of the drone will inevitably decrease, which will affect
the flight safety of the drone.

For a single UAV, the influence of wind is persistent. If the wind factor is not con-
sidered, and the state and path of the UAV are not corrected, the UAV will deviate from
its path over time. For a UAV swarm, without considering the impact of wind on the
UAVs, different individuals will be affected by different winds, resulting in the swarm
configuration chaos and even the risk of UAV collision in the swarm.

When the drone is performing tasks at sea, due to the influence of ocean currents and
the atmosphere, there is a possibility of sudden changes in climate conditions. Extreme
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weather such as thunderstorms and severe convective weather may occur in the task area.
The impact of severe weather on the drone is shown in Figure 2.

Figure 1. Wind field of rotor UAV.

Figure 2. Simulation of the impact of severe weather on drones: (a) the distribution of the airfield of
the UAV during normal flight; (b) the distribution of the airfield of the UAV in severe weather.

As can be seen from Figure 2, when encountering severe weather, the airfield of the
drone undergoes significant changes. As can be seen from Figure 2b, the stability of the
drone is significantly affected at this time, even threatening the safety of the drone itself.

Thunderstorm clouds are observable, while severe convective weather is difficult to
observe with the naked eye.

Therefore, it is necessary to predict wind and sudden weather conditions, so as to
adjust the motion parameters of UAVs in advance and reduce their impact on these systems.
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2.2. Influence of Environmental Parameters on the UAV Path

Considering the course of an actual flight, the effect of wind on the drone is shown in
Figure 3.

Figure 3. Schematic diagram of sudden threat.

As shown in Figure 3, during the actual flight of the drone, sudden threats may arise
at any time. When the drone flies to the target point according to a predetermined path,
it may encounter a no-fly zone or thunderstorm cloud, which is represented by the red
circle in Figure 3. In this case, the drone cannot fly according to the planned path and must
adjust its own route. At the same time, winds will also affect the stability of the drone. It
is possible that the drone is blown off its original route and then adjusted, as shown in
Figure 3. From Figure 3, it can be seen that when there is a sudden threat, the drone’s path
needs to be adjusted in real time to weaken the impact of the threat.

Although these threats are sudden, they are not completely unpredictable. For ex-
ample, the parameters of the wind, which change relatively smoothly and have a certain
regularity, can be predicted in the short term. At the same time, by studying environmental
parameters, it is also possible to predict the trajectory of thunderstorms and avoid them.

Therefore, it is necessary to predict the parameters of the atmospheric environment in
order to consider and quantify these factors during the path-planning process. Ultimately,
this will weaken the impact of atmospheric changes on the drone and ensure that it can
safely reach the mission area.

2.3. Difficulties in Predicting Atmospheric Parameters and Applicability of Deep Learning

Through the study of environmental factors and historical data, a simulated distribu-
tion map of the wind field can be constructed, which can then quantify the wind parameters
that cannot be observed optically. However, it is clear that quantification is only the first
step in studying and utilizing wind. In order to minimize the impact of the atmosphere on
the performance of the drone swarm, it is necessary to further predict the specific condi-
tions of wind parameters near the path points at subsequent times. At present, prediction
methods for atmospheric parameters can be mainly divided into four categories, as shown
in Figure 4.

The physical model method is a predictive model of atmospheric parameters that is
constructed based on domain knowledge. Such models include the well-known Dryden
model, the Davenport model, and the Mann model in the atmospheric field. The advantage
is that the model has good interpretability, meaning that each formula is supported by
professional background knowledge, making it easy to understand, improve, and refine. Its
disadvantage is that the accuracy of parameter fitting affects the performance of the model.
The atmospheric system is a complex system, and the relationships between parameters
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are generally nonlinear, which is difficult to effectively characterize. For the purpose of
analysis and optimization, the physical model-based method often adopts some ideal
assumptions or approximates some relationships as linear relationships. In the short term,
parameters can be approximately equivalent, but as time goes on, the nonlinear relationship
between parameters becomes more prominent, resulting in deviations in the accuracy of
the constructed model.

Figure 4. Main methods for predicting atmospheric parameters.

Statistical model methods are mainly divided into parametric and nonparametric
methods. The parametric method is relatively mature, mainly including Gaussian mixture
models and regression models. The idea of Gaussian mixture models is to treat data as
a mixture of different parameter Gaussian models and determine the parameters of each
Gaussian model to obtain a description of the original parameters. Regression models are
based on least squares, treating the original data as monadic or multidimensional superpo-
sition models, and by determining the highest order and corresponding parameters, we can
obtain a regression model to describe the corresponding sequence. Nonparametric methods
are more based on assumptions to determine the distribution state of the target parameters
and then determine the corresponding parameters. Such methods are completely based
on mathematical models and probability theory, with a long research history and solid
foundation, as well as good interpretability and research depth. However, as mentioned in
this paragraph, the accuracy of such methods is also related to the accuracy of the model.
The relationships between atmospheric parameters involve high-dimensional coupling and
constraint associations, which are difficult to effectively describe based on statistical model
methods. Therefore, such methods are more used for single-variable prediction, while for
high-dimensional data, the method performance is significantly limited.

The time series method considers the time series characteristics and spatial–temporal
correlations within the atmospheric data sequence to make predictions. The most rep-
resentative method in this category is Kalman filtering and its improved versions. By
constructing the Kalman equation set, the recursive relationship between parameters is
obtained, thus achieving the filtering of the original data and determining the abnormal
data. Due to its solid theoretical foundation, Kalman filtering has been widely applied in
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many fields. Scholars continue to improve and refine it to further enhance its performance.
However, the performance of Kalman filtering is highly correlated with the parameters in
its recursive formula. These parameters are learned from samples, but it is difficult for this
method to learn data with large samples and different distribution types, which leads to
performance bottlenecks. Moreover, its performance does not significantly improve with
the increase in learning data.

Deep learning-based methods have the advantages of the aforementioned time series
methods; that is, by mining the original data, the internal logic and time series relationships
can be obtained, and the parameters can be adjusted accordingly. At the same time, such
methods can obtain high-dimensional features of atmospheric data through nonlinear
activation functions. In terms of performance and prediction accuracy, their effects have
obvious advantages. However, there are also obvious deficiencies. The first is a lack of
interpretability. Although good results have been achieved in obtaining high-dimensional
features of data, the meaning of this feature itself is not interpretable. The second deficiency
is that hyperparameters affect network performance. Even with the same network architec-
ture, different internal layer numbers, node numbers in a certain layer, or hyperparameters
such as learning rate can affect network performance. However, there is no clear optimal
value method for these hyperparameters, and it is more common to perform iteration
and trial and error to continuously adjust them and build a detection network with good
performance. The third is the large amount of computation.

Considering the problem of parameter prediction studied in this article, it can be seen
that the parameters of wind have a high degree of spatial and temporal correlation, and
there is a high-dimensional coupling between data. The spatial correlation refers to the fact
that the parameters of wind are not only related to parameters such as temperature and
altitude near a certain point but also to the wind direction and speed of other points. The
temporal correlation refers to the fact that the parameters of wind in a certain area have a
certain periodic variation pattern, which can be obtained through the analysis of historical
data. Therefore, the essence of predicting atmospheric parameters is to predict sequences
with spatial and temporal correlation.

Combining the problem requirements and method characteristics, we used deep
learning to predict wind parameters. By learning the historical parameters in each small
region of the entire task area, a parameter prediction network is constructed to achieve
accurate prediction. This method can construct high-dimensional mapping relationships. It
can obtain deeper parameter relationships with other factors, such as altitude, tempera-
ture, light intensity, and air humidity. Compared to other methods, its performance has
obvious advantages.

3. Modeling of Typical Threats
3.1. The Threat of Wind

In this article, wind is treated as a vector, where the vector direction is the wind
direction, and the vector length is the wind speed. This facilitates quantitative analysis
and modeling.

When the wind blows on the drone, it will change its motion state. This change is
called the bias current, as shown in Figure 5.

Figure 5. Schematic diagram of bias current.
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Figure 5 is a typical vector synthesis diagram; vu is the speed of the drone, and vw is
the wind-induced drift. The magnitude of vw is related to the wind speed itself and the
aerodynamic layout of the aircraft. According to vector synthesis, vc is the true speed of the
drone after being affected by the wind.

Obviously, without considering the influence of the atmosphere, the drone will fly
according to the parameters corresponding to vu and will also obtain the corresponding
trajectory. However, due to the influence of wind, the drone deviates from the optimal route
during flight. As time accumulates, the deviation becomes larger and larger, eventually
leading to a deviation from the established route.

However, wind speed is not a random variable but a typical time series. It is possible
to predict its short-term variation pattern. If the wind speed and direction corresponding
to each path point can be predicted and then taken into account in path planning, the
optimized path will be closer to the actual one, making it more practical.

3.2. Static Threats

Static threats mainly refer to two factors: mountains and no-fly zones. Among them,
no-fly zones can be considered as a special form of mountains. Therefore, this section
focuses on modeling mountains and quantifying their impact on flight.

Due to the limited lift of the drone, the higher the flight altitude, the lower the
temperature and pressure, and the greater the wind speed, which is not conducive to the
safety and stability of the drone. Therefore, the drone is set to fly at a fixed altitude, but it is
still under the threat of mountains, as shown in Figure 6.

Figure 6. The threat of mountains: (a) terrain section at the highest flight altitude; (b) topographical
top view; (c) topographical top view at the highest flight altitude.
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UAVs usually fly at a constant altitude, as shown in Figure 6. Generally, the highest
altitude is set because there are relatively few obstacles at this time, making it safer. Main-
taining a constant altitude also reduces the need to adjust flight height, which has certain
advantages in reducing drone energy consumption. However, as shown in Figure 6, there
is still a threat from the mountains. These mountains are the red areas in Figure 6c and are
impassable areas.

To characterize these regions, a three-step process is generally used for quantification,
as shown in Figure 7.

Figure 7. A quantitative method of mountain threat detection: (a) determining the center point and
farthest point of the section; (b) constructing the threat circle; (c) constructing the threat cylinder.

As shown in Figure 7, first a section is created at the highest flight altitude H. Then, the
mountain peak is approximated as a triangle, and the coordinates of its highest point (X0,
Y0) are determined, as well as the coordinates of the furthest intersection point between the
section and the mountain peak outline (Xm, Ym) at point P.

When H is set, the curve intersecting the plane and the mountain peak is also de-
termined. The coordinates (Xm, Ym) of the point furthest from the point (X0, Y0) can be
obtained. The distance R between the two points is as follows:

R =

√
(Xm + X0)

2 + (Ym + Y0)
2 (1)

where R is the radius of the threat area. Finally, take (X0, Y0) as the center of the circle, R
as the radius, and Y0 as the height to make a threat cylinder. This cylinder represents the
quantized threat value of the mountain.

A mountain threat model means that the drone cannot fly within the cylinder range.
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3.3. Mobile Threats

The mobile threats studied in this section mainly refer to the threats that may expand
or move over time, namely thunderstorm clouds and convective zones.

3.3.1. The Threat of Thunderstorm Clouds

The typical thunderstorm cloud threat model is shown in Figure 8.

Figure 8. Quantitative method of thunderstorm cloud threat: (a) determining the center and radius
of thunderstorm cloud; (b) constructing the threat cylinder.

The process of creating a threat cylinder mainly consists of four steps.
Firstly, the thunderstorm cloud region is rasterized, as shown in Figure 9.

Figure 9. Task area rasterization.

Then, the grid set containing the thunderstorm cloud areas is measured as follows:

Ωt = [Ω(1, 1), Ω(1, 2), . . . Ω(i, j), . . .] (2)

where Ω(i, j) represents the portion of the grid in the i-th row and j-th column that contains
thunderstorm clouds. Any grid containing the thunderstorm–rainstorm area, no matter
how many, is deemed to meet the recording requirements.

Then, the three-dimensional array (xs, ys, rs) of the center and radius of the circum-
scribed circle are determined. Obviously, due to the irregular shape of the thunderstorm
cloud, there is no method or approach to determine its minimum circumscribed circle.
Therefore, the objective function is set to F, which satisfies the following formula:

F = min rs
s.t. ∀Ω(i, j) ∈ Ωr

(3)
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The meaning of Formula (3) is that through optimization, the center (xs, ys) and radius
rs of the circumscribed circle are obtained, such that the circle can encompass all the areas of
the thunderstorm cloud, and the minimum radius rsmin satisfying the condition is obtained.

Finally, taking the cloud top height of the cloud cluster as the height, a cylinder is
generated, which is the threat cylinder of the thunderstorm cloud in Figure 8b. Generally,
the radius of the circle rsmin is increased by 10% to improve safety.

The movement and expansion speeds of the thunderstorm are relatively slow. This
allows for the prediction of the location of thunderstorms at subsequent times when
planning the path of drones, thereby avoiding thunderstorms.

3.3.2. The Threat of Strong Convection Zone

A strong convection zone is generally an irregular strip zone, as shown in Figure 10.

Figure 10. Quantitative method of thunderstorm cloud threat.

The threat is often quantified through regional blocking, which means that a certain
area cannot be passed through, as shown in Figure 11.

Figure 11. Quantitative method of strong convection zone threat: (a) blocking the area; (b) construct-
ing threat cylinder.

As shown in Figure 11, for the strong convection area, first, the area is divided into
blocks, and then the corresponding threat area is constructed using the cylindrical construc-
tion method to obtain the threat field of the entire area. The specific process is as follows:

Firstly, the task area is also rasterized to obtain the following:

Zs = [Z(1, 1), Z(1, 2), . . . Z(i, j), . . .] (4)

The meaning of Zs is similar to that of Ωt in the previous section and will not be
repeated here.

Then, we need to determine the number of external circles n, the center position (xz,
yz) of each circle, and the uniform radius rz. Set the objective function G as follows:

G = min
(
nπr2

z − ∑ Sc
)

s.t. ∀Z(i, j) ∈ Zrz
(5)
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where Sc is the sum of the areas of the two overlapping circles in Figure 11a. Since the
center and radius of each circle are known during the optimization process, this process
involves only simple geometric calculations, which are not detailed in this article. Zrs is the
area enclosed by all the circles, satisfying the following formula:

Zrz = Zr1 ∪ Zr2 ∪ · · · ∪ Zrn (6)

Formula (5) is difficult to understand, but if it is simplified, its meaning becomes
very clear.

G = min
(
nπr2

z − ∑ Sc − Ss
)

s.t. ∀Z(i, j) ∈ Zrz
(7)

where Ss is the area of the strong convection region. This value does not need to be
calculated and can be easily estimated by counting the number of grid cells. This makes
the objective function of Equation (5) very clear. In other words, by optimizing the number
of circles, the location of the center, and the radius, we can minimize the wasted area in
Figure 11a while ensuring that the convection region is completely enclosed within the
circle. In this way, the threat cylindrical cluster can be obtained.

Obviously, due to the large number of parameters involved, the results can be opti-
mized by designing a two-level cyclic optimization method; that is, the value of n is used as
the outer loop, and the inner loop continuously optimizes the center coordinates and radii
of n circles. The optimal values obtained for different n values are recorded and compared.
In this way, the optimal solution can be obtained.

However, this process is relatively complex. Generally, it is possible to manually
set the range of n values and set the center of the circle on the grid point. Although this
optimization has poor accuracy, it can fully meet practical needs.

Similarly, the movement and expansion speeds of strong convective areas are rela-
tively slow, and their basic movement parameters can be obtained through meteorological
departments. In this way, the location of the strong convection zone at subsequent times
can be predicted.

4. Atmospheric Parameter Prediction Method Based on Improved LSTM
4.1. Timing of Parameters

The parameters of wind are regular periodic parameters, which are also a typical time
series. The wind vector parameters are shown in Figure 12.

Figure 12. Schematic diagram of wind vector.

The length of the arrows in Figure 12 indicates the strength of the wind, and the
direction indicates the direction of the wind. From Figure 12 and related knowledge, it can
be understood that the parameters of the wind are not only related to those at previous
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moments but also to those in the vicinity; that is, the parameters of the wind have a high
degree of temporal correlation.

To this end, the space is gridded, and each grid is represented by its center point
coordinates (xi, yj, zk). Assuming that the wind direction and speed within the grid at time
t are denoted as wd(t) and wv(t), respectively, then they satisfy the following:

[wd(t), wv(t)] = f (x, y, z, t) (8)

That is, given the spatial coordinates and corresponding time, the wind direction and
speed at that location can be determined. Obviously, what needs to be constructed in this
study is the mapping relationship f () between coordinates, time, and wind parameters.

The parameters of the wind are not only a time series but also have a high degree
of spatial correlation. Therefore, we chose the long short-term memory network (LSTM),
which has strong processing capabilities for time series, to learn and mine historical data to
obtain the corresponding mapping relationship.

4.2. The Principle and Deficiency of LSTM
4.2.1. The Principle of LSTM

The network architecture of LSTM is shown in Figure 13.

Figure 13. The network architecture of LSTM.

The relationship between the input and output of LSTM in Figure 13 is shown in
Formulas (9) to (14):

ft = σ
(

W f · [ht−1, xt] + b f

)
(9)

it = σ(Wi · [ht−1, xt] + bi) (10)

at = tanh(WC · [ht−1, xt] + bC) (11)

Ct = ft · Ct−1 + it · at (12)

σt = σ(Wo · [ht−1, xt] + bo) (13)

ht = ot · tanh(Ct) (14)

where t represents time t, and ft, at, it, and ot are intermediate variables introduced in the
three gates for ease of understanding and derivation. Figure 13 shows a single unit, where
the output of a single unit is Ct. After serializing multiple units in Figure 13, the output of
LSTM is ht. W and b are the weights and biases corresponding to each module, respectively;
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tanh( ) is the hyperbolic tangent function, and σ( ) is the sigmoid function, and they are,
respectively, expressed as follows:

tanh(x) =
ex − e−x

ex + e−x (15)

σ(x) =
1

ex + 1
(16)

LSTM has strong time series processing ability and good network stability. Addi-
tionally, there are also many mature open source codes on the GitHub website. By just
fine-tuning the parameters according to the needs, we can achieve the desired functionality.
Therefore, this article will not go into too much detail.

4.2.2. The Deficiency of LSTM

During the training process of LSTM, the setting of its hyperparameters directly affects
the efficiency of training. Hyperparameters mainly include the number of network layers,
the number of nodes in each layer, the number of training iterations, and the learning rate.

The number of network layers and the number of nodes in each layer determine the
network architecture. However, there is currently no clear method to provide a network
structure and corresponding parameters with good performance. The number of network
layers generally depends on the volume of training data and can only give an empirical
range, which is determined as follows:

M =
√

NI + NO + C (17)

where NI and NO are the dimensions of the input and output data, respectively, and C is a
positive integer with any value between 1 and 10.

It can be seen that the two parameters related to the network structure are determined
only based on experience, which seriously affects the network’s performance.

All parameters can affect or even determine network performance. However, there
is no way to provide a specific optimal solution, mainly because the setting of network
parameters is highly related to the problem to be solved; that is, it is necessary to adjust the
above hyperparameters based on existing training data and the problem to be optimized to
ensure network performance.

4.3. Optimization of Hyper Parameters of LSTM Based on Artificial Bee Colony Algorithm

Adaptively adjusting parameters to achieve optimal network performance can be
translated as finding the optimal parameters to maximize network performance.

In this paper, the problem of adjusting network hyperparameters is transformed into
a typical optimization problem. This allows us to use intelligent algorithms to solve it. To
this end, in this section, an optimization strategy is developed based on the artificial bee
colony algorithm (ABC) to optimize the LSTM network parameters.

The main reason for using the ABC algorithm is that it has two advantages and one
shortcoming that can be compensated for. The first advantage is that the ABC algorithm has
an efficient information-sharing mechanism within the population, which can significantly
reduce the possibility of the algorithm falling into local optima. This is very important
for finding the hyperparameters of the network. The second is that the algorithm itself
requires fewer parameters to be set. There is no need to set parameters such as mutation
operators or learning factors that affect the performance of the algorithm, thus ensuring
that the algorithm can run well. The operation is simpler and can be directly applied to
the training of network parameters. At the same time, its shortcoming is that compared to
other methods, the convergence time of the ABC algorithm is longer. However, the process
of training the network is a process that consumes considerable computing resources. The
computational resource consumed by ABC optimization is less than one-tenth of that
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required for training the network. Therefore, the shortcomings of the algorithm can be
compensated for.

4.3.1. Artificial Bee Colony Algorithm

The ABC algorithm considers the population characteristics and social structure of
bees and has good solving effects for many optimization problems. It has been applied in
many fields, and a large number of studies show that its performance is better.

The ABC algorithm is mainly divided into four steps.
Step 1: Initialize the population and randomly generate M particles. In the first

generation of particles, the parameter of the m-th particle in the k-th dimension is generated
according to Formula (18), which is as follows:

x1
m,k = x1

min,k + z∆x1
range,k (18)

where z is a random number between 0 and 1 that follows a uniform distribution. The mean-
ing of Formula (18) is that the parameters in the k-th dimension are uniformly distributed
and randomly generated within their parameter range.

Step 2: Hire Bee Search. Its search iteration follows Formula (19), which is as follows:

xn+1
m,k = xn

m,k + r
(

xn
m,k − xn

n,k

)
(19)

where n is the iterative algebra, and r is a random number uniformly distributed between
−1 and 1.

Step 3: Select a honey source. After searching for multiple advantageous honey sources
with the employed bees, the roulette method is used to select the optimal honey source.

Step 4: The bees are reborn. If the bee is hired to search multiple times and no better
honey source is found, it will return to Step 1 and regenerate the bees to search again, while
the newly generated z needs to satisfy the recurrence relation of the Tent chaotic sequence,
which is as follows:

zn+1 =

{
2zn , 0 ≤ zn ≤ 1

2
2(1 − zn), 1

2 < zn ≤ 1
(20)

If z is a fixed point of chaos, its calculation formula is as follows:

yn+1 = yn · rand(0, 1) (21)

The above process is the process of using chaos theory to modify the ABC algorithm.
The Tent sequence in Step 4 has ergodicity, which ensures that the bees can search the
whole space, thus increasing the probability of finding the global optimum.

4.3.2. Adaptive Improvement

This article also improves the ABC algorithm in combination with the problems to
be solved. Before introducing the improvement strategy, first, the fitness function fit that
is set during the optimization process is introduced using the ABC algorithm, which is
as follows:

Fit =
1

Ntr

Ntr

∑
n=1

∣∣∣∣yn
Ltr − yn

tr
yn

tr

∣∣∣∣+ 1
Nte

Nte

∑
n=1

∣∣∣∣yn
Lte − yn

te
yn

te

∣∣∣∣ (22)

where Ntr and Nte represent the number of samples in the training set and test set, respectively;
yn

Ltr and yn
Lte represent the output of the trained LSTM network corresponding to the n-th

training set and test set; and yn
Ltr and yn

Lte represent the original actual outputs, respectively.
The meaning of Formula (22) is to minimize the gap between the training samples

and the actual output. A good network should capture the internal relationship of the data
as much as possible, resulting in more accurate output parameters. Therefore, the fitness
function shown in Formula (22) is constructed.

The optimization process of LSTM hyperparameters is shown in Figure 14.
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Figure 14. Optimization process of hyperparameters.

The flow of Figure 14 can be described as follows:
Firstly, initialize the hyperparameters. Then, train the LSTM networks corresponding

to different hyperparameters. Next, calculate the corresponding fitness functions and use
the ABC algorithm to iteratively optimize based on the fitness functions obtained from
the trained networks. Finally, adjust the hyperparameters of the network and perform the
next iteration.

In combination with the training process described above, this section proposes adap-
tive improvements to the ABC algorithm.

As training progresses, the network performance corresponding to some particles
may no longer improve. At this point, Step 4 of the ABC algorithm is executed, which is
the rebirth of the bees, while the bees will regenerate their own parameters according to
Formula (18) in Step 1. However, it is clear that according to Formula (18), bees will be
randomly generated throughout the domain.

The bees generated by this strategy have a higher probability of not obtaining a
good fitness function. Therefore, in this section, Formula (18) for reborn bees is modified
as follows:

x1
m,k = xopt + r (23)

That is, the reborn bee is close to the global optimal particle xopt at this time. This
allows for a more detailed search in the region where xopt is located, leading to a higher
probability of improving network performance.

4.3.3. Parameter Optimization Process Based on ABC Algorithm

Combining the previous discussion, the ABC-based parameter optimization process is
shown in Figure 15.

Figure 15. Process of parameter optimization.

The flow in Figure 15 can be expressed as follows:



Drones 2024, 8, 171 18 of 31

Step 1: Divide the wind parameters into training and testing groups and normalize
the data.

Step 2: Initialize network parameters and ABC algorithm parameters.
Step 3: Construct the fitness function shown in Formula (22) to facilitate the optimiza-

tion and comparison of the ABC algorithm.
Step 4: Use the improved ABC algorithm to optimize the parameters and determine

whether they have reached the optimal value. If not, continue training. When the optimal
value is reached, perform Step 5.

Step 5: The training is over, and the optimization result at this time is the optimal
parameter of the LSTM network.

The above is the network hyperparameter optimization process based on the improved
ABC algorithm. The trained network can be used to predict environmental parameters
more accurately.

5. Planning Process Based on Parameter Prediction
5.1. Objective Function

The path-planning objective function constructed in this section mainly consists
of three parts, namely the distance reward function, cumulative deviation degree, and
threat function.

The distance reward mainly refers to the distance between the planned drone swarm
at time t and the target point, that is, the degree of proximity to the target point. Assume a
total of U UAVs; let the coordinates of the u-th drone at time t be Pu(t) = (xu(t), yu(t), zu(t)),
and the target point be PT = (xT, yT, zT).

Then, the distance reward function is as follows:

R(t) =
U

∑
u=1

(∥Pu(t + 1)− PT∥2 − ∥Pu(t)− PT∥2) (24)

where || ||2 is the 2-norm of the distance.
In other words, the purpose of planning is to make the drone approach the target

point as soon as possible.
Based on model predictive control (MPC), Formula (24) is further adjusted to the following:

R(t) =
U

∑
u=1

H

∑
h=1

(∥Pu(t + h)− PT∥2 − ∥Pu(t + h − 1)− PT∥2) (25)

where h is the prediction step size, and H is the total number of prediction steps.
The cumulative offset degree is the cumulative number of UAVs being affected by

wind and deviating from the planned path. Based on the MPC, the cumulative offset degree
can be expressed as follows:

T(t) =
U

∑
u=1

H

∑
h=1

∥Pu(t + h)− Pus(t + h − 1)∥2 (26)

where Pus(t) represents the location where the drone should appear at time t.
The damage threat Td is the sum of the mountain threat Tm, the thunderstorm cloud

threat Tt, and the strong convection zone threat Ts. These objective functions are as follows:

Tm =
α

[D(Pu(t), (Xm, Ym))− R]2
(27)

Tt =
β

[D(Pu(t), (xs, ys))− rs]
2 (28)
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Ts =
γ[

minD
(

Pu(t),
(
xi

z, yi
z
))

− rz
]2 (29)

Td = Tm + Tt + Ts (30)

where α, β, and γ are constants. D() represents the distance between any two points.
D(Pu(t),(Xm,Ym)) represents the distance from the drone to the center point of the mountain.
D(Pu(t),(Xm,Ym)) − R represents the distance between the drone path and the boundary
of the mountain. The square is used in the denominator to reflect that the closer to the
boundary, the greater the threat. Therefore, the planned flight path will be as far away from
the threat area as possible.

Finally, the objective function can be expressed as follows:

Q =
T

∑
t=1

(k1P − k2T − k3Td) (31)

where k1, k2, and k3 are the parameters that adjust the magnitude. This ensures that when
one parameter has a large magnitude, it will not be optimized alone.

5.2. Constraints

The main constraints are the mountain threat, the thunderstorm cloud threat, and the
severe convection threat mentioned earlier, which are defined as no-fly zone constraints.
This article also involves the construction of collision avoidance constraints, communication
constraints, and communication topology switching.

At the same time, it is assumed that the UAV flies at a constant speed, and its adjustable
flight angle range is α.

5.2.1. No-Fly Zone Constraint

Assuming that the coordinate of the u-th drone at time t is Pu(t) = (xu(t), yu(t)), it
should satisfy the following: 

D(Pu(t), (Xm, Ym)) ≥ R
D(Pu(t), (xs, ys)) ≥ rs

minD
(

Pu(t),
(

xi
z, yi

z
))

≥ rz

(32)

That is, the distance between the drone and the threat center cannot be less than the
radius of the threat cylinder.

5.2.2. Collision Avoidance Constraints

Due to strong winds, the flight path of the drone may deviate. Therefore, it is necessary
to set a minimum safe distance Ds between drones, which is as follows:{

D
(

Pi(t), Pj(t)
)
≥ Ds

D
(

Pi(t + 1), Pj(t + 1)
)
≥ Ds

(33)

That is, for any two drones at this moment, the distance between them and the
coordinates optimized for the next moment cannot be less than the safety distance Ds. This
will ensure that no collision occurs between drones.

5.2.3. Communication Constraint

There is a need for communication between drones. However, due to the limited load
capacity of drones, their communication range is also limited.

Assuming that the distance between drones i and j is D(Pi(t), Pj(t)), and the upper
limit of communication distance between drones is RCmax, the following equation should
be satisfied: {

D
(

Pi(t), Pj(t)
)
≤ RCmax

D
(

Pi(t + 1), Pj(t + 1)
)
≤ RCmax

(34)
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The communication constraint is that, for any one drone, as long as there are two other
drones with a distance less than RCmax, it is considered to meet the communication constraint.

5.2.4. Communication Topology

A communication topology needs to be designed between drones to ensure the stability
of communication.

The design principle of communication topology is to ensure that when any two
drones lose contact with each other, data transmission can be achieved through relay
communication with other drones.

Taking five drones as an example, we designed a communication topology, which is
shown in Figure 16.

Figure 16. Communication topology.

Suppose that when using topology A for communication, drones 3 and 4 lose contact
with each other. At this point, it is possible to switch to topology E and use drone 1 as a
communication relay to achieve communication. Topology switching is related to the lost
drone. Based on the lost drone number, the corresponding switching topology is obtained,
as shown in Table 1.

Table 1. Topology switching table.

Unable to
Communicate Topology Unable to

Communicate Topology

1, 2 B 2, 4 B
1, 3 C 2, 5 A
1, 4 B 3, 4 E
1, 5 C 3, 5 C
2, 3 A 4, 5 F

At this point, effective communication between drones can be guaranteed.

5.3. Optimization Process

Based on the objective function, constraints, and corresponding methods constructed
in the previous section, in this section, we construct a path optimization method, whose
process is shown in Figure 17.
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Figure 17. The process of path planning.

The steps in Figure 17 can be refined as follows:
Step 1: Construct three objective functions based on the situation and task information.
Step 2: Construct mathematical models corresponding to various threat fields based

on environmental information, thereby constructing the constraints.
Step 3: Combine the characteristics of each objective function and the requirements of

the task to construct the overall objective function.
Step 4: Use the ABC algorithm to optimize the objective function and obtain the

optimal path of the drone swarm.
Step 5: Input the optimal path into the improved LSTM network to obtain the wind

direction and wind speed at each path point and provide the corresponding adjustment
strategy.

Step 6: Judge the navigability of the path; that is, judge whether the drone can
overcome the influence of wind and maintain the original path. If the path can be corrected,
it is considered feasible, and Step 7 is executed. Otherwise, return to Step 4 for replanning.

Step 7: Output the optimal path of the drone swarm.
The LSTM network used in Step 5 is obtained through learning historical data. The

network has the ability to predict atmospheric parameters.

6. Simulation Verification
6.1. Path Considering Wind Influence

To verify the impact of wind on the path of a drone, in this section, we compare the
optimal path planning with and without wind, thus reflecting the effect of wind on the
drone.

We first set the task area and use the planning method in Section 5 to optimize the
UAV path, resulting in the path shown in Figure 18.
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Figure 18. The optimal path without considering the influence of wind: (a) three-dimensional path;
(b) path top view.

The red rectangular area is a no fly zone. The individual yellow circles represent peaks
or thunderstorm clouds. The yellow circle represents the area of strong convection. Next,
assuming there are weak and strong winds in the negative direction along the Y-axis, the
UAV flies along the ideal path. When it is unable to avoid the obstacle zone, secondary
planning is performed on the UAV path, and the results are shown in Figures 19 and 20.

Figure 19. Optimal path with the influence of weak wind: (a) three-dimensional path; (b) path
top view.

Figure 20. Optimal path with the influence of strong wind: (a) three-dimensional path; (b) path top
view.
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Comparing Figures 18 and 19, it can be seen that the drone can still fly along the route
in the initial stage. However, as time accumulates, its error gradually becomes prominent.
This makes it difficult for the drone using the path in Figure 19b to fly past the obstacle
at (20, 30) like in Figure 18b. At this point, if the aircraft continues to fly in the original
direction, it will inevitably hit the thunderstorm area at (20, 30). Therefore, it is necessary
to re-plan the path of the drone, resulting in the path shown in Figure 19.

As can be seen from the comparison between Figures 18 and 20, the drone is affected
by strong winds, and it is difficult for the drone to fly over the thunderstorm area at (20,
30). It is also necessary to conduct path replanning. Due to the influence of strong winds in
subsequent stages, when using the method proposed in this paper for planning, the aircraft
no longer flies over the path with a short distance between the two circles at (40, 40) but
flies below it, thus ensuring the safety of the drone.

The result of route planning using the method in this article is shown in Figure 21.

Figure 21. Replanning UAV path in strong wind: (a) three-dimensional path; (b) path top view.

As can be seen from Figure 21, the replanned path is longer than that in Figure 19; also,
the corresponding cost function is inevitably increased. However, from the perspective of
flight safety, this flight path is safer and closer to reality.

Through the simulation experiments in this section, it can be seen that wind has a
significant impact on the path and may even prevent the planned path from being used.
Therefore, when planning the path, it is necessary to consider the impact of wind on the
drone to ensure that the path is feasible.

6.2. Path Planning Considering Wind and Mobile Threats

Assuming that there are moving obstacles during the flight of the UAV swarm, other
simulation conditions remain unchanged. The optimization results obtained using the
method in this article are shown in Figure 22.

In Figure 22, point C is the starting point of the thunderstorm cloud. The thunderstorm
cloud moves in the positive direction of the X-axis and the negative direction of the Y-axis.
As can be seen from Figure 22, if the drone at point G follows its original path, which is
indicated by the yellow dotted line, it is likely to enter the thunderstorm area and affect
its own safety. At this time, by predicting the path of the thunderstorm cloud, the drone
adjusts its path and operates in the direction of point G → point D → point A → point C to
avoid the thunderstorm cloud.

At the same time, this can also show the advantage of the UAV swarm; that is, when
there is a problem with the path of a drone, the drone only needs to fly as close as possible
to other drones to ensure its relative safety.

To further characterize the decision-making process of the drone, only the path of the
drone is plotted, as shown in Figures 23 and 24.
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Figure 22. Path of UAV swarm.

Figure 23. The detection of the mobile threat.

Figure 24. Optimization of the anti-collision path.

As shown in Figure 23, when the drone is located at point G, a thunderstorm cloud
swarm forms at point C, and its location is known through meteorological information. It
is predicted that there is a risk of collision between the original path of the drone and the
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path of the thunderstorm cloud. Therefore, the drone adjusts its own direction to move
closer to other safe drone paths to avoid the impact of moving obstacles.

Through the simulation verification in this section, it can be seen that when there is a
moving obstacle, if the space where its path has appeared is completely avoided, it is more
difficult to obtain good optimization results. It is necessary to optimize the path based
on the time window and motion characteristics of each platform so as to ensure better
planning results while avoiding threats.

6.3. Comparison of Path-Planning Methods

To further compare the performance of path-planning methods, the simulation condi-
tions remain unchanged, and the algorithms in this paper are compared with those in the
literature [12,37,46].

Based on the simulation results in Sections 6.1 and 6.2, three sets of experiments were
conducted. The first set was conducted under weak wind conditions without mobile threats.
The second set was conducted under strong wind conditions without mobile threats. The
third set was conducted under wind conditions with mobile threats.

Each group of experiments involved 50 Monte Carlo simulation experiments, with
4 drones dispatched each time, for a total of 200 dispatched drones. The following five
parameters were statistically analyzed as metrics:

Pa: The proportion that arrived at the target point.
Pl: The influence of wind on UAV flights resulted in deviation, and ultimately, a

proportion of flights did not find or fly near the target point. Alternatively, the UAV was
affected by a moving threat zone, oscillating in front of the threat zone and unable to leave
the area. This is often referred to as the trap space in the RRT algorithm.

Pm: The proportion of sorties that flew into the threat zone.
Ds: The total distance flown in a single sortie. According to whether the UAV reached

the target point, we used two methods to record the total flight distance of the UAV. The
first was to record the distance flown directly after the drone reached the target point. The
second was to record the maximum distance flown among all recorded distances if the
drone flew into a threat zone or could not reach the target point.

Tc: The total optimization time for obtaining path results.
Experiments were conducted under conditions of no mobile threats and weak wind

conditions, and the results are shown in Table 2.

Table 2. Experimental results under weak wind conditions without mobile threats.

Pa/% Pl/% Pm/% Ds/km Tc/s

Algorithm in this paper 100 0 0 876.71 62.95
Algorithm in [12] 100 0 0 737.03 23.90
Algorithm in [37] 99 1 0 826.22 49.46
Algorithm in [46] 100 0 0 869.97 60.25

From the first set of comparison results, the method in the literature [12] has better
performance. This is because the method is based on RRT for improvement, achieving the
shortest path search. In particular, the two indicators Ds and Tc are better because RRT
itself does not require a large number of particles for optimization and iteration. Therefore,
the time consumed for optimization is significantly better than other methods.

The remaining three methods have their own advantages and disadvantages in terms
of results. The method in this paper takes longer and plans a longer route. This is because
the method in this paper needs to revise the path based on the effect of wind, which requires
a lot of time. At the same time, in order to offset the influence of wind, the distance is
also longer. In [37], the PSO algorithm was used to plan the path. Due to the lack of
consideration of the influence of wind, there were two losses of sorties. However, due to
its use of the PSO algorithm, its algorithm speed is faster than other swarm intelligence
algorithms. The authors of [46] used a genetic algorithm to optimize the multiobjective
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function in path planning. It makes real-time decisions based on perception results, which
takes a longer time. Additionally, because it is not a global plan, the planned route is
also longer.

Next, we conducted an experiment under strong wind conditions without mobile
threats, and the results are shown in Table 3.

Table 3. Experimental results under strong wind conditions without mobile threats.

Pa/% Pl/% Pm/% Ds/km Tc/s

Algorithm in this paper 100 0 0 905.16 63.42
Algorithm in [12] 92.5 2 5.5 786.49 29.08
Algorithm in [37] 69.5 7 23.5 953.57 50.22
Algorithm in [46] 98 0 2 893.64 66.13

As shown in Table 3, when there is strong wind, the performance of different meth-
ods varies.

The method constructed in this article is relatively stable because it considers the
impact of wind and performs secondary corrections on the path to ensure that the UAV
can reach the target point. However, this comes at the expense of the total mileage of
the UAV flight and the algorithm optimization time. The shortcomings of the method
in [12] also begin to manifest. This is mainly due to the impact of strong winds on the UAV,
making it impossible to use the path planned along the edge of the threat area. Instead, it
is blown into the threat area by the wind, resulting in a large Pm. At the same time, due
to the influence of wind, there is also the problem of RRT’s own trap space, which means
that it oscillates within a certain area and cannot leave it. The method in [37] has limited
consideration for the impact of the atmosphere. This causes the UAV to be affected by
strong winds and blown into the threat area or unable to reach the target point, resulting
in significant increases in its Pl and Pm. Similarly, the success rate of executing tasks is
not high, resulting in a rapid increase in its Ds. The method in [46] is real-time decision
making, so the distinction between strong and weak winds is not obvious. However, due
to insufficient consideration of the impact of wind, there have been cases where drones
have been blown into the threat zone.

Finally, we conducted an experiment with mobile threat and wind conditions, and the
results are shown in Table 4.

Table 4. Experimental results under wind conditions with mobile threats.

Pa/% Pl/% Pm/% Ds/km Tc/s

Algorithm in this paper 99 0 1 936.72 67.34
Algorithm in [12] 92 4.5 3.5 897.59 32.20
Algorithm in [37] 67.5 6 26.5 1037.28 52.23
Algorithm in [46] 96.5 2 1.5 952.82 70.47

As shown in Table 4, compared with other methods, the performance of the proposed
method in this paper in complex environments is superior, which can ensure the completion
of tasks to the greatest extent. The method in [12] has a trap space that often occurs in RRT
algorithms due to the influence of dynamic threats and wind, resulting in an increase in Pl.
Moreover, due to the ability to fly along the edge of the threat area, it is easily blown into
the threat zone by the wind, resulting in an increase in Pm. Similarly, the method in [46] also
has the potential for local oscillations due to real-time decision making based on perception
results, resulting in an increase in Pl.

Through the comparison of the three sets of experiments and results, it can be seen
that the method proposed in this paper has certain advantages and disadvantages. Com-
pared with the method in [12], the method proposed in this paper can independently
design the objective function according to the task requirements and has good scalability.
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Additionally, the method in this article will not be constrained by the trap space. Com-
pared with [37], it can be seen that the ability of the UAV to successfully perform tasks
is significantly improved considering the atmospheric and motion threats. The research
results are more closely related to practical applications. Compared with the method in [46],
the method proposed in this paper can be planned offline and does not require excessive
sensing equipment.

However, correspondingly, the shortcomings of this method are also obvious. Firstly,
the planned path is longer, which limits the applicability of this method when it comes to
quickly reaching the task area or saving energy. Secondly, the time required for planning is
significantly longer than other methods, which means that more computing power or time
is required to support it. Thirdly, and most importantly, this method requires a large volume
of atmospheric data as the underlying support to characterize and predict atmospheric
parameters in order to ensure algorithm accuracy.

6.4. Comparison of Optimization Algorithms

To further compare the performance and verify the prediction performance of the
algorithm, the improved LSTM in this paper, the classic LSTM, the improved PSO-LSTM
in [50], and the GA-LSTM in [51] were compared.

After training the improved LSTM network and the other three network parame-
ters, we randomly selected 500-length data from the public dataset (DOI: 10.5281/zen-
odo.1443511, accessed on 15 March 2017) and input it into the four networks. We tested the
prediction results 30 times and took the average, obtaining the comparison results shown
in Figures 25 and 26.

Figure 25. Comparison chart of predicted results: (a) the prediction results of the method in this article;
(b) the prediction results of PSO-LSTM; (c) the prediction results of GA-LSTM; (d) the prediction
results of LSTM.
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Figure 26. Comparison chart of error: (a) comparison chart with PSO-LSTM; (b) comparison chart
with GA-LSTM.

By comparing the results of Figures 25 and 26, it can be seen that the algorithm
in this paper has certain advantages over other methods. Compared with LSTM, the
improved LSTM has improved performance due to the optimization of the corresponding
network parameters. The method proposed in this paper makes adaptive improvements
to the ABC algorithm, and its optimization performance is better than that of the PSO
algorithm. Therefore, this method improves the network prediction accuracy better than
the PSO-LSTM method in the literature [50]. At the same time, compared with the GA-
LSTM algorithm, only one parameter, learning rate, is optimized in the corresponding
study [51], and the performance improvement is limited compared to the results presented
in this paper.

To quantitatively compare the performance of the four algorithms, the root-mean-
squared errors (RMSEs) of the four algorithms were determined.

From the parameters in Table 5, it can also be seen that our algorithm outperforms
other algorithms in terms of performance. There are two other reasons for this result.

Table 5. RMSE comparison table.

Algorithm Method in This Paper PSO-LSTM GA-LSTM LSTM

RMSE/10−3 0.5031 0.9057 1.1069 1.7361

The first is the ABC algorithm, which can effectively avoid falling into local optima
through information sharing and local search strategies, thus having global optimization
capabilities. At the same time, modifying the ABC algorithm using chaos theory ensures
that the ABC algorithm can search for global optima with a higher probability. However,
both the PSO algorithm and the GA have inherent deficiencies in being unable to escape
local optima.

The second reason is that the algorithm parameters have little impact on the ABC
algorithm. The performance of the PSO algorithm is related to two learning factors. The
values of these two learning factors directly affect the speed of algorithm convergence
and even whether it is premature. The performance of the GA is related to selection and
mutation factors. These two parameters affect the ability of the algorithm to search globally
and locally, but there is a contradiction between them. If too much emphasis is placed on
a global search, the search accuracy in some areas will be reduced, making it difficult to
find the optimal solution. Conversely, it is easy to fall into local optimization. However, the
ABC algorithm mainly adjusts the position of the bees, which has a limited impact on the
efficiency of the algorithm.

However, the ABC algorithm also has its shortcomings, mainly due to its slow conver-
gence time. During each iteration of the algorithm, the ABC algorithm is more complex than
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the PSO algorithm and the GA. The amount of computation per iteration is significantly
higher than the other two methods. In order to ensure that the algorithm can search for
the global optimum, the ABC algorithm requires more iterations. Through experiments, it
can be seen that the optimization time required by the ABC algorithm is approximately
3.27 times that of PSO and 2.41 times that of GA.

It can be seen that when the computational power and time are sufficient, it is recom-
mended to use the ABC algorithm to obtain a higher-quality solution.

7. Conclusions

This study aimed to solve the problem of neglecting the influence of actual environ-
mental factors such as wind and moving thunderstorms when planning the path of a drone
cluster, which leads to potential safety and feasibility hazards in the planned path. To this
end, the authors constructed a trajectory planning model under the influence of wind and
severe weather on drones. Through theoretical analysis and simulation experiments, it can
be seen that the research results presented in this article ensure that the drone cluster can
still fly according to the planned path under wind conditions and can avoid severe weather
in advance.

The authors used deep learning to construct a method for the trajectory planning of
UAV clusters based on parameter prediction. This method can predict and avoid wind
and moving obstacles in advance, making the planned trajectory more realistic and thus
improving the safety and efficiency of the UAV’s mission execution.

The authors proposed a deep learning-based method for predicting meteorological
parameters. Such methods can consider more factors and explore deeper nonlinear cou-
pling relationships between parameters. The factors considered in this study are more
comprehensive, and the prediction results are more accurate.

At the same time, the objective function of the deep network was used as the fitness
function of the optimization algorithm, achieving deep coupling between intelligent algo-
rithms and predictive networks. This hyperparameter optimization process has a reference
value for improving the performance of other networks.
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