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Abstract: Unmanned aerial vehicles (UAVs) provide benefits through eco-friendliness, cost-effectiveness,
and reduction of human risk. Deep reinforcement learning (DRL) is widely used for autonomous UAV
navigation; however, current techniques often oversimplify the environment or impose movement
restrictions. Additionally, most vision-based systems lack precise depth perception, while range
finders provide a limited environmental overview, and LiDAR is energy-intensive. To address these
challenges, this paper proposes VizNav, a modular DRL-based framework for autonomous UAV
navigation in dynamic 3D environments without imposing conventional mobility constraints. VizNav
incorporates the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm with Prioritized
Experience Replay and Importance Sampling (PER) to improve performance in continuous action
spaces and mitigate overestimations. Additionally, VizNav employs depth map images (DMIs) to
enhance visual navigation by accurately estimating objects’ depth information, thereby improving
obstacle avoidance. Empirical results show that VizNav, by leveraging TD3, improves navigation,
and the inclusion of PER and DMI further boosts performance. Furthermore, the deployment of
VizNav across various experimental settings confirms its flexibility and adaptability. The framework’s
architecture separates the agent’s learning from the training process, facilitating integration with
various DRL algorithms, simulation environments, and reward functions. This modularity creates a
potential to influence RL simulation in various autonomous navigation systems, including robotics
control and autonomous vehicles.

Keywords: reinforcement learning; autonomous navigation; unmanned aerial vehicle; drone; depth
map images; off-policy RL; Prioritized Experience Replay; deep learning; visual navigation framework

1. Introduction

The advent of autonomous unmanned aerial vehicles (UAVs) has led to significant
advancements due to their diverse applicability ranging from package delivery to military
operations, traffic collision response, search and rescue missions, and communication
network support [1,2]. However, training these autonomous UAVs for navigation poses
significant challenges, primarily due to their limited computational resources, power supply,
and the economic implications of component replacements resulting from collisions [1].

Research attempts have predominantly focused on applying deep reinforcement learn-
ing (DRL) within 3D virtual environments for UAV navigation training, leveraging Markov
decision processes (MDP) or partially observable MDP (POMDP) to manage dynamic
decision-making [3,4]. MDP, being fully observable [3], offers a practical alternative to
POMDP, which, while enabling planning in complex problems, faces challenges, including
the high computational cost [5] and the curse of ambiguity arising from difficulties in quan-
tifying exact transition probabilities [4]. Using MDP thus reduces complexity, accelerating
the learning process [3,4,6,7].
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RL-based autonomous UAV navigation methods frequently resort to oversimplifica-
tions of the environment, such as navigating flat terrain or avoiding obstacles represented
as simple geometric shapes, compromising the realism and practical applicability of the
navigation model [8–15]. Furthermore, conventional environment representations like
grid-cell or 1D/2D formats fail to accurately portray the intricate characteristics of real-
world environments, including complex terrains, diverse obstacles, and dynamic elements.
The discordance between training and application conditions can consequently lead to a
performance gap.

Moreover, restrictions are often imposed on UAVs’ maneuverability, such as limiting
the UAV to operate within a fixed plane or to adhere to predefined waypoints [16–20].
Such restrictions significantly curb the UAV’s potential for genuine autonomy, as they
do not accurately reflect the dynamic and unpredictable scenarios encountered in real-
world operations.

Navigating environments without accurate object depth estimation constitutes an
inherent challenge in UAV visual navigation, often leading to collisions [21]. This issue
remains largely unaddressed in numerous existing UAV navigation methodologies, particu-
larly those reliant on RGB images [10,16,18]. Although existing research proposed defining
depth information through techniques such as range finders or LiDAR [16,20,22], these
methodologies encounter their respective limitations. Despite their utility, range finders
provide object distance only in specific directions, requiring multiple range finders for a
comprehensive spatial overview. Conversely, LiDAR, albeit providing depth information,
has high energy consumption and exhibits susceptibility to environmental conditions,
including light and weather [23]. Depth map images (DMIs) present a promising technique
to overcome these constraints by offering pixel-wise depth-enhancing object perception in
3D environments characterized by complex visual textures and features [24,25].

In the realm of training UAVs in complex environments, the choice of the learning
algorithm is paramount and hinges on the specific nature of the environment and the task
at hand. UAV navigation in highly stochastic environments using a continuous action
space is time-consuming and could extend over several days depending on the chosen
RL algorithm and technique. In this context, the policy type is essential in stabilizing
UAV training. On-policy algorithms have been known to be sensitive to hyperparameters
and require extensive training time due to their reliance on the current policy to make
decisions [26,27].

Conversely, off-policy algorithms have shown significant promise for such tasks.
Unlike on-policy methods, off-policy algorithms can learn from past experiences and
adjust future actions based on these experiences [27,28]. This inherent ability allows them
to handle highly stochastic or non-stationary environments more effectively, improving
training, especially when combined with techniques such as Experience Replay (ER) [29]
and Prioritized ER with Importance Sampling (PER) [30]. Twin Delayed Deep Deterministic
Policy Gradient (TD3) [31], an off-policy RL algorithm, has emerged as an appropriate
selection, given its compatibility with the continuous action space and unlimited states
integral to UAV navigation [32].

To overcome the limitations posed by oversimplified environmental representations
and the imposed restrictions on UAV maneuverability while leveraging depth images,
this paper proposes a modular RL-based navigation framework, VizNav, which leverages
the TD3 algorithm with DMIs obtained from a front-facing camera while adopting PER.
The DMIs are processed and interpreted by VizNav to provide the agent with a more
accurate and comprehensive depth perspective, improving navigation in complex environ-
ments. Moreover, VizNav incorporates PER with TD3, introducing a bias towards critical
experiences during the learning process for improved UAV navigation results.

The modular design of the VizNav framework allows each module to execute spe-
cific tasks independently, ensuring adaptability and enabling seamless modifications or
enhancements to individual modules without affecting others. Components, including the
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RL algorithms, can be replaced with new ones as they become available, without changing
other components.

By decoupling the training and learning processes, VizNav streamlines the training of
various RL agents. Moreover, it allows straightforward adjustment of reward functions
and hyperparameters via configuration files and integrates seamlessly with various nav-
igation environments. Thus, VizNav not only addresses the specific navigation problem
examined in this study but also positions itself as a versatile platform for various RL-based
navigation challenges.

This paper’s main contributions are as follows:

• VizNav trains the agent to navigate complex environments using depth map im-
ages (DMIs) from a front-facing camera, providing a more accurate and compre-
hensive depth perspective. This approach enhances the realism of training environ-
ments and promotes genuine autonomous capabilities, overcoming the limitations of
traditional models.

• VizNav utilizes TD3, an off-policy algorithm known for its stability and efficiency in
handling continuous actions and reducing overestimations in value functions, making
it a robust choice for the proposed navigation task.

• VizNav incorporates Prioritized Experience Replay (PER) to enhance TD3’s perfor-
mance by focusing the agent’s learning process on key transitions, enabling improved
training results and faster model convergence.

• VizNav is a modular and adaptable framework that can train different RL agents
seamlessly, facilitate easy hyperparameter tuning, and that can integrate with various
navigation environments.

The remainder of the paper is organized as follows: Section 2 introduces various
RL concepts, Section 3 discusses the related work, Section 4 formulates the navigation
problem, Section 5 presents the proposed framework and its modules, Section 6 describes
experiments and discusses findings, and, finally, Section 7 concludes the paper.

2. Background

This section introduces the concepts and algorithms based on the proposed framework.

2.1. MDP and Deterministic Policy

Reinforcement learning (RL), elucidated through a Markov decision process (MDP),
can complete various tasks without prior knowledge. MDP uses an agent that receives a
state s from the environment, performs an action a according to the state, and then receives
a reward r, which is used to judge the success or failure of the action. The performed action
causes a change in the environment’s current state, resulting in a new state s′. The MDP
objective described in Equation (1) is to maximize the reward R obtained from actions
performed over several time steps, focusing on the reward received from the current time
step and decreasing the weight of rewards gained from future time steps using a discounted
factor γk, where γ ∈ [0, 1], and k denotes the time step.

Gt = E

[
∞

∑
k=0

γkRt+k+1

]
(1)

In general, RL agent behavior, known as policy π, explains how the agent acts (select
actions a) in different situations (states s). The policy can be either stochastic π—described
in Equation (2), which returns the probability distribution across actions for the same state,
or it can be deterministic µ, which is similar to stochastic policy but always delivers the
same action for a given state.

Qπ(s, a) = Eπ

[
∞

∑
k=0

γkRt+k+1 | St = s, At = a

]
(2)
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Silver et al. [33] prove that the deterministic policy gradient of MDPs exists and is
a special case of the stochastic policy gradient if the stochastic policy satisfies certain
conditions. Deterministic policies are typically more efficient and easier to implement than
stochastic policies. Moreover, the objective of autonomous UAV navigation is frequently
to determine a safe and efficient route between a starting point and a destination, where
the surroundings may be dynamic and the UAV must avoid obstacles. Therefore, the UAV
must make consistent, predictable decisions in such situations to explore the environment
safely and effectively.

2.2. Off-Policy vs. On-Policy RL

The RL agent learns two policies; the first is the target policy θ(a|s), wherein the
agent learns through the value function to determine the expected return [32]. In contrast,
the second policy is the behavior policy β(a|s) that the agent uses to select actions when
interacting with the environment [1]. Based on these two policies, an RL algorithm can be
classified as either an off-policy or an on-policy RL algorithm.

In an on-policy algorithm, the behavior policy follows the target policy θ(a|s): the
same policy is used to collect the training samples and to determine the expected return.
In contrast, an off-policy algorithm collects the training samples in accordance with the
behavior policy β(a|s), whereas the expected reward is generated using the target policy
θ(a|s) [1].

In general, off-policy algorithms use various Experience Replay (ER) techniques to
improve the stability and efficiency of learning. ER [29] is a technique where the agent
stores the generated experiences over time in a replay buffer, then uses the replay buffer to
uniformly sample a batch of experiences for agent training. Prioritized Experience Replay
(PER) [30] extends ER by associating each experience with a priority value determined
according to the magnitude of the temporal difference error that regulates the probability
of sampling the experiences. PER uses importance sampling to reduce the contribution of
high-priority experiences, since the model is more likely to sample experiences with high
priorities, which might result in overestimating their actual importance, allowing the model
to acquire knowledge more precisely [30]. On the other hand, on-policy algorithms do not
require ER because the agent learns directly from the actions it takes in the environment [1].

Although on-policy algorithms are more efficient and easier to implement than off-
policy algorithms, they require more training time and are sensitive to the learning rate
and other hyperparameters [26,27]. Consequently, VizNav promotes off-policy algorithms
because they perform better in highly stochastic or non-stationary environments [27,28],
which makes them a better fit for autonomous UAV navigation in dynamic environments.

2.3. DDPG vs. TD3

Actor–critic (AC) algorithms employ deterministic off-policy RL compared to other
policy gradient methods, which often utilize on-policy RL. Overall, actor-critic approaches
offer a more efficient and stable learning algorithm than policy gradient methods, and they
are commonly employed in DRL [27,34–38].

Actor–critic often utilizes two networks, the actor and the critic [34]. The actor network
is responsible for determining the optimal deterministic policy µ(s), whereas the critic
network applies an action-value function Qπ

w(st, at) parameterized by w and the temporal-
difference (TD) approach [33] to evaluate the actor-selected action and the quality of the
new state [1].

Deep Deterministic Policy Gradient (DDPG) [39] is a deterministic off-policy AC
algorithm that can operate over continuous action spaces. DDPG is based on the De-
terministic Policy Gradient (DPG) algorithm [33], where it employs experience replay
techniques and the target networks (doubling technique) for the actor and critic to prevent
the overestimation problem.

On the other hand, the Twin Delayed Deep Deterministic (TD3) algorithm [31] extends
DDPG by incorporating the following improvements: (1) it employs two critics to compute
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the temporal difference error (TD-error) and considers the minimum value between the
critics to reduce overestimation bias, and (2) it applies delayed policy updates to reduce
per-update error and improve the performance. Therefore, VizNav adopts TD3 for UAV
autonomous navigation and compares the results to DDPG.

3. Related Work

Autonomous navigation of unmanned aerial vehicles (UAVs) through RL hinges on
three fundamental factors: the mechanism governing UAV movement (action), the input
types formulated as environment states (e.g., front-facing camera, range finder, LiDAR),
and the specific RL technique used to train the agent [1]. Existing methodologies vary based
on these parameters, creating different strategies for maneuvering UAVs while avoiding
obstacles or selecting necessary waypoints to reach a destination.

3.1. Navigation Using 1D/2D Environments or Restricted Actions

Approaches in this category simplify either the environment or action representation.
For instance, Wang et al. [16] employed an improved Recurrent Deterministic Policy Gra-
dient (RDPG) [40] called Fast-RDPG, which is designed for handling continuous states
and action spaces. The model uses range finders to estimate the distance to the UAV’s
surroundings. However, it restricts UAV movement to the x and y planes without con-
sidering camera images for training. Other research [17–19] applied a grid world and
discrete actions to simplify the environment. Anwar and Raychowdhury [41] simplified
action representation by dividing the scene into (N× N) squares/cells, restricting the UAV
movement to one of the scene cells.

Despite the advancements in autonomous UAV navigation through DRL presented
in these studies [16–19,41], they impose limitations such as operating in a fixed plane,
using restricted UAV movement, or simplifying the environment. Furthermore, their action
spaces do not align with actions employed to control UAVs in real-world scenarios.

3.2. UAV Navigation Using Front-Facing Cameras

In this category, approaches rely on front-facing camera images to guide navigation
and evade obstacles. Depth map images (DMIs) enable the agent to perceive depth in
its environment, a critical aspect of autonomous navigation. For example, He et al. [42]
constructed DMIs from two frames produced by a monocular camera, supporting UAV
navigation in a fixed plane by controlling the velocity and yaw angle.

Boiteau et al. [43] addressed UAV navigation in environments lacking GPS and visibil-
ity through a POMDP framework tested in cluttered indoor settings. While this is pivotal
for search and rescue operations, VizNav extends these capabilities by incorporating contin-
uous action spaces and enhanced depth map imaging, thus improving UAVs’ navigation in
dynamic and unstructured environments.

Singla et al. [44] utilized conditional generative adversarial networks (cGANs) to
generate DMIs. They employed deep recurrent Q-networks (DRQN) [45] with a temporal
attention mechanism, thereby introducing a time-aware component to process DMIs. This
approach allowed the recurrent network to retain depth information across multiple time
steps and learn temporal dependencies, while the temporal attention mechanism weighs the
importance of recent observations. However, the use of DRQN permitted UAV movement
control through discrete actions only, thus imposing a limitation on the UAV movement.

In contrast, Bouhamed et al. [10] used DDPG to control UAV movement in a continuous
action space with no DMI employed, lacking objects’ depth information. Furthermore,
the action space allowed the UAV to travel a radial distance using inclination and elevation
angles, which do not reflect the commands used to fly UAVs in real-life situations (pitch,
roll, and yaw).

Despite the varied methodologies employed in the aforementioned studies [10,42,44],
common limitations persist. Some methods do not leverage DMIs, thereby lacking depth
information about objects, while others impose restrictions on UAV maneuverability.
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3.3. UAV Navigation Frameworks

This category encompasses frameworks facilitating RL agent training in navigating
physical or virtual environments. These frameworks employ RL algorithms combined with
other methods and techniques, enabling agents to navigate the environment and reach a
specific goal.

Walker et al. [46] proposed a modular framework in which modules communicate
with each other. However, while controlling the yaw angle, the framework confines UAV
movement to a fixed plane in the x and y directions. Another framework suggested by
Bouhamed et al. [47] uses spatiotemporal scheduling to accommodate the maximum num-
ber of prescheduled events spread spatially and temporally across a specific geographical
region over a given time horizon. Unlike other frameworks, this framework [47] did not
employ images, focusing instead on selecting different locations in an area of interest.

Camci et al. [48] suggested a two-stage training process where, in the initial phase,
the agent learns motion primitives for various scenarios and, in the second stage, applies
these primitives for swiftly planning maneuvers such as waypoint navigation, take-off,
and landing. Although this framework enables the UAV to navigate using roll, pitch,
and yaw rate, it assumes prior knowledge of the environment. Therefore, the UAV operates
along a predetermined path and does not use images for training.

Exploring the limitations of traditional navigation frameworks in forest environments,
Lee et al. [49] focus on color segmentation to identify navigable spaces using discrete action
space. In contrast, VizNav introduces a more flexible approach utilizing continuous action
space and depth map images.

Advancements in object detection for drone-to-drone interactions presented by
Ye et al. [50] aim to enhance detection capabilities using adjacent frame fusion techniques.
However, this approach does not integrate simulation and UAV control. VizNav addresses
these gaps by emphasizing spatial awareness and incorporating continuous action mecha-
nisms, significantly enhancing UAV adaptability and operational performance in dynamic
environments. Moreover, Wang et al. [51] proposed a DRL system focusing on simulated
environments for UAV obstacle avoidance using static object detection techniques and
discrete action space. In contrast, VizNav extends these concepts by employing depth map
images and continuous actions, providing a more adaptable navigation solution capable of
handling complex environmental dynamics.

Addressing resource-constrained platform challenges, Zhang et al. [52] utilize lightweight
CNNs for depth estimation on nano-drones in static environments and discrete action
space. In contrast, VizNav uses dynamic simulations to enable adaptive decision-making,
transcending the limitations inherent in static dataset-driven methods.

Another framework suggested by Yang et al. [8] proposed a UAV navigation with
Double DQN and PER to circumvent obstacles in a dynamic environment, enabling the
collaborative control of multiple UAVs. However, the environment representation was
oversimplified to a vector of raw pixels, and discrete actions influenced the UAV movement,
hence using Double DQN.

While existing frameworks [8,46–52] have made noticeable strides in autonomous
UAV navigation, they also harbor some limitations. Among these, the most prominent is
the neglect of depth map images (DMIs), thereby lacking comprehensive depth information.
Coupled with oversimplifications of environment representations and restrictions on UAV
maneuverability, these drawbacks compromise their real-world applicability. Moreover,
the predominance of methodologies that favor discrete action spaces over continuous
ones further widens the gap. Thus, a critical need exists for a more robust framework that
seamlessly integrates DMIs, promotes continuous action spaces, and alleviates assumptions
of prior environment knowledge.

3.4. RL Algorithm for UAV Navigation

In UAV navigation, the stochastic nature of the task and environment necessitates
a strategic choice of the RL algorithm. The preference often leans towards off-policy
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algorithms because they learn from past experiences to adjust future actions, optimizing
the exploration–exploitation trade-off, which is beneficial for UAV navigation in complex
environments [10,16].

Within the realm of off-policy algorithms, actor–critic methods stand out due to their
inherent structure and ability to handle continuous action spaces. They employ an actor
for decision-making based on the policy and a critic for evaluating decisions via estimated
value functions. This dual approach improves the learning process and ensures a balanced
exploration–exploitation trade-off.

In a recent study, AlMahamid and Grolinger [1] proposed a process for algorithm
selection according to the problem formulation. This leads us to a subset of off-policy, single-
threaded, actor–critic algorithms that support unlimited states and continuous actions,
such as DDPG [39], TD3 [31], SAC [38], DAC [53], and ACE [54].

Each of these algorithms exhibits unique characteristics influencing their suitability
for UAV navigation tasks using DMIs. For example, SAC employs entropy regularization,
enhancing exploration–exploitation balance, but its inherent stochasticity could limit its
application in time-critical tasks such as UAV navigation [38]. ACE and DAC hold promise
but may impose additional computational requirements, potentially slowing decision-
making in real-time continuous environments [53,54].

Considering these factors, the Twin Delayed Deep Deterministic Policy Gradient (TD3)
algorithm emerges as a suitable choice for UAV navigation. TD3 offers robust performance
in continuous action spaces, reduced sensitivity to hyperparameters, and mitigation of
overestimations [31]. Its ability to provide more stable learning makes it particularly suited
for navigating complex 3D environments using DMIs.

4. Problem Formulation

This section formulates the UAV navigation in 3D dynamic environments using MDP,
provides state and action space specifications, and describes the engineered rewards.

4.1. VizNav Navigation

VizNav conducts UAV navigation training in a 3D dynamic environment with the main
objective of the UAV to move from a starting point A(Xstart, Ystart, Zstart) to a destination
point B(Xdest, Ydest, Zdest) while avoiding obstacles using RGB images and DMI, along with
other UAV-related information such as velocity and orientation.

UAV maneuverability is controlled by employing continuous flight control commands
based on Euler angles—(1) pitch (angleΘ), (2) roll (angleΦ), and (3) yaw (angleΨ)—that
control the rotation around the three axes, as shown in Figure 1. The flight command also
uses the throttle (ThrottleΩ) value, which contains the engines’ thrust.

4.2. State and Action Space Specifications

VizNav formulates the navigation problem as MDP. The states might look similar in a
3D dynamic environment, impacting the agent’s learning. Thus, VizNav uses a complex
state to describe the UAV’s unique conditions and status, which improves the agent’s
learning. The state contains the following:

RGB ImageIRGB is produced by the UAV front-facing camera capturing the UAV cur-
rent scene.
Depth Information IDepth is a 2D array that contains the estimated distance between all the
points from the captured scene and the current UAV position. The 2D array is converted to
a single-channel gray-scale image.
Angular Velocity V(XΘ, YΦ, ZΨ) is the rate of rotation of a rigid body (here, UAV) relative
to its center of rotation and independently of its origin, which is provided by the inertial
measurement unit (IMU).
Linear Acceleration A(XΘ, YΦ, ZΨ), also measured by IMU, refers to the rate of change in
velocity without a change in direction.
Orientation O(Wq, Xq, Yq, Zq) measures the UAV’s orientation relative to the NED (North,
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East, Down) coordinate system using quaternion instead of Euler angles.
Current Position Pcurrent(X, Y, Z) measures the current UAV position using the NED coor-
dinate system.
Destination Position Pdest(X, Y, Z) refers to the destination point using the NED coordi-
nate system.
Remaining Distance Dremain is the remaining distance from the current position Pcurrent(X, Y, Z)
to the destination point Pdest(X, Y, Z) measured in meters.
Angle to Destination Dangle measures the angle between the UAV’s current orientation
O(Wq, Xq, Yq, Zq) and the destination point Pdest(X, Y, Z). As shown in Figure 2, the angle
is computed by defining two unit vectors, υ̂1 and υ̂2. The first unit vector υ̂1 from the
UAV’s current position Pcurrent(X, Y, Z) to the destination point Pdest(X, Y, Z) defines the
destination direction, whereas υ̂2 defines the unit vector of the UAV’s facing direction
O(Wq, Xq, Yq, Zq) with respect to the NED coordinate system. Equation (3) shows how
the unit vector, also known as a normalized vector, is computed by dividing the direction
vector (V⃗) by its norm/magnitude (∥V∥), whereas Equation (4) shows how the angle Dangle
between the UAV’s current position and destination point is computed.

Figure 1. The UAV control mechanism demonstrates regulating the UAV’s movement through the
rotation angle around three axes—pitch, roll, and yaw—while the throttle adjusts the engines’ thrust.
Rotation around the roll axis, highlighted in green, directs the UAV left or right. Rotation around
the pitch axis, shown in blue, moves the UAV forward or backward. Rotation around the yaw axis,
depicted in orange, enables clockwise (CW) or counterclockwise (CCW) rotation.

υ̂ =
V⃗
∥V∥ (3)

Dangle = arccos

(
V⃗1

∥V1∥
· V⃗2

∥V2∥

)
= arccos(υ̂1 · υ̂2)

(4)
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Figure 2. UAV orientation angle with respect to the destination point. The angle is measured
using two vectors: the destination vector υ̂1, which points from the UAV’s current location to the
destination point, and the direction vector υ̂2, which points in the forward direction of the UAV.

The features/scalars are combined in a single vector IFeatures as follows:

IFeaturest =
{

Vt(XΘ, YΦ, ZΨ),

At(XΘ, YΦ, ZΨ),

Ot(Wq, Xq, Yq, Zq),

Pcurrent(X, Y, Z),

Pdest(X, Y, Z), Dremain, Dangle

}
.

(5)

Vector IFeatures is combined with IRGB and IDepth to form the state

St =
{

IRGBt , IDeptht , IFeaturest

}
. (6)

On the other hand, the action space At{∆angleΘ, ∆angleΦ, ∆angleΨ, ∆ThrottleΩ} ∈ A
represents the amount of change in pitch, roll, and yaw angles, as well as the throttle value.
Therefore, the flight command represents the agent’s selected action At added to the current
pitch, roll, yaw, and throttle values, as shown in Equation (7).

angleΘt = angleΘt−1 + ∆angleΘt

angleΦt = angleΦt−1 + ∆angleΦt

angleΨt = angleΨt−1 + ∆angleΨt

ThrottleΩt = ThrottleΩt−1 + ∆ThrottleΩt

(7)

4.3. Reward Engineering

Reward engineering plays a vital role in the agent’s learning. The reward can be
sparse or non-sparse. A sparse reward used commonly [8,46,55,56] in navigation tasks
has a simple formalization that awards the agent with a constant reward depending on
the failure or success of the action causing long convergence times [16]. Alternatively,
a non-sparse reward incorporates domain knowledge and considers even slight changes
in the state, assuring policy invariance. Nevertheless, the non-sparse reward must be
engineered to support the learning objective.

Therefore, VizNav employs an engineered complex and compound non-sparse reward
that incorporates domain knowledge to control UAV navigation. The award consists of
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the following sub-rewards: (1) Collision Reward rcollision, (2) Distance Reward rdistance,
(3) Orientation Reward rorient, and (4) Time-Step Reward rstep.

The Collision Reward rcollision encourages the UAV to avoid obstacles, utilizing mainly
the depth images IDepth, by keeping a safe distance from objects. If the UAV collides,
the collision reward function awards a constant penalty ρc. However, if no collision occurs,
the reward function finds the minimum distance to the obstacles using IDepth and compares
it to a safe distance threshold ξc. If the minimum distance is less than ξc, the reward
function generates a reward equal to −(1/min(IDepth)), and if it is greater or equal to the
threshold ξc, it grants a positive reward λc, as described in Equation (8).

rcollision =


ρc , collided = True

−
(

1
min(IDepth)

)
, min(IDepth) < ξc

λc , min(IDepth) ≥ ξc

(8)

The Distance Reward rdistance awards a constant positive λd if the UAV’s remaining
distance Dremain to the destination is less than or equal to the γd threshold. This means that
the UAV is considered to have reached the destination if it is within a radius equal to γd
from the destination point. On the other hand, if the UAV gets closer to the destination,
which is defined by finding if the new remaining distance Dremaint+1 is smaller than the
previous remaining distance Dremaint , the reward is generated as αd × e(βd×Dremain), where
αd and βd are defined constants. Finally, a negative reward is generated if the UAV gets
away from the destination point, as described in Equation (9). Providing a negative reward
if the UAV gets away from the destination point helps the agent not to alternate between
the forward and backward movement to maximize the reward.

rdistance =


λd , Dremain ≤ γd

αd × e(βd×Dremain) , Dremaint+1 < Dremaint

− αd × e(βd×Dremain) , Otherwise

(9)

The Orientation Reward rorient encourages the UAV to reach the destination point
while front-facing, which helps the UAV capture the images required to find the obstacles as
it moves towards the destination. This reward computes the orientation angle Dangle in de-
grees (as explained in Section 4.2) and applies a penalty/reward according to Equation (10)
if the Dangle is bigger/smaller than the angle threshold ξo.

rorient =

{
αo1 × e(βo1×Dangle) , Dangle ≤ ξo

− αo2 × e(βo2×Dangle) , Otherwise
(10)

Finally, the Time-Step Reward rstep encourages the UAV to reach the destination
faster by applying a penalty that increases at each episodic time step stept, as described in
Equation (11).

rstep = αs ∗ log(stept) (11)

The final reward r at step t is the summation of all rewards, as shown in Equation (12).

rt = rcollision + rdistance + rorient + rstep (12)

5. VizNav Framework

This section discusses the VizNav framework modules, their interactions, the deep neu-
ral network architecture, and the UAV navigation training. VizNav is explicitly designed to
support UAV visual navigation training in a 3D environment by facilitating the interactions
between the DRL agent, UAV Controller, the 3D environment, and the flight simulator.
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5.1. Framework Modules

The VizNav framework depicted in Figure 3 adopts MDP for UAV navigation training
in a 3D environment using deterministic off-policy DRL with experience replay techniques
such as Prioritized Experience Replay (PER). The framework has the following modules.

Figure 3. VizNav framework showing interactions between various modules using the TD3 algorithm
with PER. Loading the configurations and 3D environment helps to execute various experiments
depending on the needs.

5.1.1. Training Manager

The Training Manager represents the core module of the framework. It is responsi-
ble for loading the experiment configurations, initializing all other modules using the
loaded configurations, and starting the 3D environment with the flight simulator software.
The experiment configurations are stored in a configuration file, which defines the various
parameters related to the UAV, DRL agent, replay buffer, 3D environment, and reward
function. For example, the DRL agent settings stored in the configuration file are the
learning rate, the maximum steps allowed for each episode, and the update interval for
the TD3 algorithm. Other settings contained in the configuration file are the UAV settings,
such as the start location, the destination point, initial UAV orientation, and the maximum
and minimum allowed values (thresholds) of the pitch, roll, yaw, and throttle rates.

Once the environment is fully loaded and all the modules are initialized, the training
manager starts the agent’s main training block (agent trainer), where it either explores or
exploits the environment according to the ϵ-greedy strategy. The environment exploration
is created by generating random actions, collecting the states and rewards, and then saving
the learned experiences to the replay buffer. On the other hand, environment exploitation
is formed by initiating the learn function of the DRL agent, which utilizes the replay buffer
to stabilize the training. Environment exploration/exploitation requires executing actions
and collecting the new UAV state to/from the UAV Controller, respectively, and collecting
the generated reward from the Reward Generator based on the new state.
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5.1.2. Replay Buffer Manager

The Replay Buffer Manager is responsible for storing and sampling experiences accord-
ing to the selected memory replay technique specified in the configurations. The Replay
Buffer Manager supports two types of memory replay techniques: (1) Experience Replay
(ER) and (2) Prioritized Experience Replay with importance sampling (PER).

5.1.3. DRL Agent

The DRL Agent denotes the off-policy RL algorithm that uses mini-batches sampled
from the replay buffer to train the agent every time step that the Training Manager ex-
plores/exploits the environment. The DRL Agent instantiates the neural network archi-
tecture defined in the Neural Network module, which defines the neural network (NN)
architecture adopted by the actor/critic.

Additionally, the DRL Agent provides the Training Manager with the exploitation/
exploration actions required to build experiences, receives a mini-batch of experiences
required for training from the Replay Buffer Manager, and updates the priorities of the
experiences in the replay buffer if PER is employed.

5.1.4. UAV Controller

The UAV Controller is responsible for controlling the UAV movements by transferring
the agent’s action to a flight command (angleΘt , angleΦt , angleΨt , ThrottleΩt), as explained
in Equation (7). Furthermore, the UAV Controller is responsible for providing all the
information related to the current UAV state, including collision information and other
information required by the Reward Generator to generate the reward. The UAV Controller
uses the AirSim APIs to control and collect information regarding the UAV from the
3D environment.

5.1.5. Reward Generator

The Reward Generator is responsible for generating a reward after each time step the
Training Manager explores/exploits the environment. The final reward rt is the summation
of four different rewards: (1) Orientation Reward, (2) Time-Step Reward, (3) Distance
Reward, and (4) Collision Reward, which are explained in Section 4.3. To perform the
reward calculation, the Reward Generator inquires UAV Controller about the UAV state, such
as collision information, current position, and orientation.

5.2. Deep Agent Architecture

The neural network (NN) plays a vital role in RL agent training. Actor–critic algo-
rithms mainly have two networks: the actor network receives the state and produces the
action values, while the critic network receives the state and the actions produced by the
actor and produces a state value to criticize the action made by the actor, as illustrated in
Figure 4.

Figure 5 shows the actor NN architecture using three streams: (1) RGB stream, (2) DMI
stream, and (3) features stream. RGB and DMI streams both use four 2D convolutional
layers and seven fully connected layers. The NN first processes the RGB image, depth
map image, and the linear features as separate steams. Then, the fourth linear layer (FC4)
performs a concatenation between the scene’s convolved images (RGB & DMI) and other
linear inputs of the UAV state information. The concatenated information is then passed
through fully connected layers, as shown in Figure 5.

The critic shares a very similar architecture as the described actor NN, except that the
critic has extra linear inputs denoting the actions produced by the actor. Also, the critic
has a single output: the Q-value (state value). The actor and critic NNs’ architectures are
instantiated while initializing the DRL Agent module.
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Figure 4. Actor–critic architecture showing that the actor receives the state and produces the actions.
The critic network receives the state and the actions produced by the actor and produces a state value
to criticize the action made by the actor.

Figure 5. DRL neural network architecture showing three streams for processing state information:
(1) RGB stream, (2) DMI stream, and (3) features stream. The concatenation layer FC4 fuses the data
received from the three streams.

5.3. VizNav Navigation Training

In addressing the challenges of UAV navigation in dynamic environments, Algorithm 1
(VizNav Training) introduces several key innovations that distinguish it from existing meth-
ods. Notably, it decouples the learning processes from UAV control execution, enhancing
the system’s robustness by allowing updates to learning algorithms without affecting flight
operations. Additionally, the algorithm features advanced configuration management, en-
abling smooth integration and straightforward adaptation of experimental settings, reward
functions, and control parameters. This flexibility ensures that changes to the UAV’s opera-
tional goals or methods can be implemented without altering the core learning algorithm.
Together, these features improve the adaptability and scalability of the UAV navigation
training, making it well-suited for real-world applications in simulation environments
where experimental conditions and operational controls frequently change. The following
outlines the key steps involved in executing Algorithm 1:

1. Initialization (Lines 1–8):

1.1. Experiment Configurations (Line 2): The algorithm starts by loading predefined
settings that detail the UAV’s operating parameters and environmental setup.

1.2. 3D Environment Launch (Line 3): A simulated 3D environment is initialized
using Unreal Engine, creating a realistic navigation space.

1.3. UAV Initialization (Line 4): The UAV’s starting position and control commands
—pitch, roll, yaw, and throttle—are initialized according to the predefined settings
in the configuration file to ensure a standardized baseline for each training session.

1.4. DRL Agent Initialization (Lines 5–8): The replay buffer is initialized to store
experiences of size M (Line 5), the reward generator is initialized to start calcu-
lating the reward (Line 6), and the DRL agent’s neural networks, i.e., policy
and target networks, are initialized for both the actor and critic networks
(Lines 7–8).
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2. Main Training Loop (Lines 9–24):

2.1. Episode Initialization (Lines 10–12):

2.1.1. Reset UAV (Lines 10–11): At the start of each episode, the UAV is reset
to its initial position and orientation. Following the reset, the UAV’s
initial state is captured, including its position, orientation, and sensor
data, to establish the starting point for the episode. This ensures that
each episode begins under consistent conditions.

2.1.2. Reset Collision Status (Line 12): The collision status is reset at the
beginning of each episode. If a collision has occurred in a previous
episode, the UAV status is reset to enable learning from mistakes
without carrying over error states.

2.2. Episode Processing (Lines 13–23): For each step in the episode, the following
tasks are performed. The episode will end either by reaching the terminal state
(i.e., target reached or collision occurred) or upon reaching a limit of τ number
of steps:

2.2.1. Exploration and Exploitation (Lines 14–16):

• Action Selection (Line 14): Actions are selected using a decaying
ϵ-greedy strategy, which helps the UAV balance exploring new
actions and exploiting known beneficial ones.

• Noise Addition and Clipping (Lines 15–16): To encourage ex-
ploration, random noise N (0, σ) is added to the selected actions
(Line 15), then the actions are clipped at Line 16 according to the
configured threshold values [amin, amax] to ensure they remain
related and safe for execution.

2.2.2. Action Execution and Feedback (Lines 17–19):

• Flight Command Execution and State Observation (Lines 17–18):
The selected action is converted into UAV flight commands (i.e.,
adjustments in pitch, roll, yaw, and throttle) and executed, which
moves the UAV in the simulated environment. After executing
the action, the agent observes the new state, including the image
captured using the front-facing camera, position, orientation,
and environmental interactions.

• Reward Calculation (Line 19): A reward is generated based on
the observed new state, influencing future actions.

2.2.3. Learning from Experience (Lines 20–21):

• Experience Storage (Line 20): The experience (comprising the
previous state, action taken, reward received, and new state) is
stored in the replay buffer. These data are crucial for learning, as
they provide a historical record of actions and outcomes.

• State Update (Line 21): After executing the action and observing
the new state, the new state becomes the current state for the
next step in the episode.

2.2.4. Agent’s Learning (Line 22): At each training step, the DRL agent
refines its decision-making model by learning from a batch of expe-
riences sampled from the replay buffer, progressively improving its
action selection (policy) based on accumulated knowledge.

Building upon the training framework established by Algorithm 1, Algorithm 2
commences its execution at Line 22 of Algorithm 1. This transition initiates the deep
reinforcement learning phase for the UAV agent. Algorithm 2 primarily employs the
TD3 method [31] suited for environments with continuous action spaces. Nevertheless,
the algorithm’s structure allows for substituting TD3 with other off-policy algorithms such
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as DDPG, providing flexibility based on specific needs or preferences. The main operations
in Algorithm 2 include:

Algorithm 1 VizNav Training

1: function TRAIN(Configurations C)
2: Load Experiment Configurations C
3: Launch 3D Environment
4: Initialize UAV U
5: Initialize Replay Buffer B according to the

Experience Replay type
6: Initialize Reward GeneratorR
7: Initialize DRL Agent: Actor µθ , Critics Qω1 , Qω2
8: Initialize Target Networks: µ′θ , Q′ω1

, Q′ω2
9: for i = 1 to N do

10: Reset U
11: st ← State(U )
12: collision← False
13: while (t ≤ τ) and (st /∈ terminal state) do
14: Select exploration/exploitation action at using

decaying ϵ-greedy
15: Add noise N (0, σ) to action at

16: Clip action at according to at
⊥amax
⊤amin

17: Transform at to a flight-command
(Θt, Φt, Ψt, Ωt)

18: Execute flight-command action at and observe
the new state st+1

19: Generate the reward rt usingR(at, st+1)
20: Store experience e(at, st, rt, st+1) in B
21: Update st to st+1
22: Call the agent’s learning method learn()
23: end while
24: end for
25: end function

1. Check for Adequate Experiences (Line 2): The algorithm first checks if the replay
buffer contains enough experiences to form a batch of size N. If it does, it proceeds to
the sampling step; otherwise, it waits until there are enough experiences to form a
batch of size N.

2. Sampling from Replay Buffer (Line 3): Extracts a mini-batch of N experiences from
the replay buffer.

3. Importance Sampling for PER (Lines 4–6): If PER [30] is employed, the algorithm
retrieves importance sampling weights (Line 5) to focus on significant experiences.

4. Target Action and Q-value Calculations (Lines 7–10): The algorithm computes the
target actions using the policy network of the target model (Line 7), adds exploration
noise (Line 8), and clips the actions to ensure they are within acceptable bounds (Line
9). It then calculates the target Q-values from the target critic network.

5. Policy and Critic Network Updates (Lines 11–20): The critic networks are updated
based on the loss between computed Q-values and the target Q-values (Lines 11–15),
adjusting the model to predict value estimates better. This includes updating priorities
in the replay buffer if PER is used (Lines 14–15).

6. Policy Network Update (Lines 21–22): The policy network is periodically updated
using a deterministic policy gradient approach.

7. Soft Update of Target Networks (Lines 23–26): This step applies a soft update rule to
gradually merge the trained network weights into the target networks, ensuring the
stability of learning updates.
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Algorithm 2 leverages a configuration management system initiated in Algorithm 1 at
Line 7 to load essential DRL settings, such as learning rate, action noise thresholds, update
intervals, and batch sizes. This mechanism standardizes initialization and operational
parameters and facilitates adjustments to varying training conditions without necessitating
modifications to the algorithm itself. The integration of Algorithms 1 and 2 forms a
strategy for UAV training that merges direct environmental interaction (Algorithm 1) with
reinforcement learning mechanisms (Algorithm 2). This combination addresses challenges
such as adapting to new environments and optimizing responses to varied simulation
conditions, providing a flexible framework for UAV navigation.

Algorithm 2 TD3 Agent Learning

1: function LEARN( ) ▷ µθ , Qω1 , Qω2 , µ′θ , Q′ω1
, Q′ω2

networks are initialized in the train
method, Algorithm 1

2: if len(B) ≥ N then
3: Sample mini-batch of N experiences from B
4: if PER is used then
5: Retrieve Importance Sampling Weights λ
6: end if
7: Extract all experiences (a, s, r, s′) ∈ E
8: Compute target actions ã using µ′θ(s

′)
9: Add noise N (0, σ) to ã

10: Clip target actions ã according to ã⊥amax
⊤amin

11: Compute target critics Q-value q̃′ using

min
(

Q′ω1
(s′, ã) , Q′ω2

(s′, ã)
)

12: Find target critics optimal Q-value q′∗ for
all non-terminal states using r + γ.q̃′

13: Compute critics expected Q-value q̃1 & q̃2 for
Qω1(s, a) and Qω2(s, a), respectively

14: if PER is used then
15: Update Critic 1 ∇ω1 J(ω1) using

argminω1
N−1 ∑ λ(q′∗ − q̃1)

2

16: Update B priorities using |q′∗ − q̃1|
17: Update Critic 2 ∇ω2 J(ω2) using

argminω2
N−1 ∑ λ(q′∗ − q̃2)

2

18: else
19: Update Critic 1 ∇ω1 J(ω1) using

argminω1
N−1 ∑(q′∗ − q̃1)

2

20: Update Critic 2 ∇ω2 J(ω2) using
argminω2

N−1 ∑(q′∗ − q̃2)
2

21: end if
22: if t % d then
23: Update ∇θ J(θ) deterministic policy gradient

using −N−1 ∑ Qω1(s, µθ(s))
24: Soft update all target networks:
25: θ′ ← τθ + (1− τ)θ′

26: ω′1 ← τω1 + (1− τ)ω′1
27: ω′2 ← τω2 + (1− τ)ω′2
28: end if
29: end if
30: end function

6. Evaluation

This section describes the experimental setup, presents the results with performance
analysis, and discusses the findings.
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6.1. Experimental Setup

Simulation environments are described in this subsection, followed by data collection
methodology and configuration.

6.1.1. Simulation Environment

UAV training typically requires virtual 3D environments due to constraints such as
limited computational resources, power supply limitations, and the high costs associated
with UAV damage from collisions. This study conducted simulations using Microsoft Air-
Sim flight simulator [11] and the Unreal 3D graphics engine [57]. For a clear demonstration
of the environments used in the simulations, Figure 6 presents two types of visual repre-
sentations:

• 3D View Snapshot provides a sample view of the UAV in the environment, captured
from a third-person perspective.

• Voxel Grid offers a simplified 3D view of the environment, where the environment
is divided into a 3D grid of cubes (voxels), with each voxel representing whether
the space is occupied. These grids provide a view of the complete environment,
showcasing the complexity of the environment; nevertheless, the realistic 3D rendering
(as in 3D view) is employed in simulations.

These two visual representations are used in Figure 6 to illustrate the two distinct
outdoor environments designed using the Unreal Engine for UAV navigation experiments:

• Neighborhood Environment features a small neighborhood block including residen-
tial buildings, roads, and vegetation. This is a static environment used for basic UAV
navigation.

• City Environment captures a complex urban setting with high-rise buildings, moving
cars, and pedestrians. The dynamic nature of this environment poses advanced
challenges for UAV navigation, requiring strategies that adapt to moving obstacles.

6.1.2. Data Collection Methodology

Data are collected directly from the simulation in real-time, including recording UAV
positional data, sensor outputs (from the onboard camera and IMU), and outcomes of
the interaction with environmental objects. The DRL agent learns from these data as they
arrive, continuously improving knowledge through episodes. For each episode, the data are
collected and recorded in CSV files, allowing for detailed post-simulation analysis to assess
learning progress and algorithmic performance over time. This structured data capture,
which includes timestamps, control inputs, sensor readings, and navigation outcomes,
facilitates a thorough performance analysis.

Moreover, the reward structure is standardized across all experiments to establish
comparable performance metrics. The reward parameters, outlined in Section 4.3 and
detailed in Section 6.1.3, were consistently applied in all test scenarios. This uniform
application of reward calculations ensures that differences in UAV behavior and learning
progress can be attributed to the intended changes of the experimental setup, such as
changes in the replay buffer strategy or the use of depth imaging.
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(a) Neighborhood 3D view. (b) Neighborhood voxel grid.

(c) City 3D view. (d) City voxel grid.

Figure 6. An overview of the two simulation environments used for the UAV navigation experiments
summarizing spatial layout and obstacle distribution for illustrative purposes. Panels (a,b) show the
neighborhood’s 3D view and voxel grid, respectively. Panels (c,d) show the city block’s 3D view and
voxel grid, respectively.

Similarly, a uniform DRL neural network architecture ensures comparability across
all experiments, as shown in Figure 5. This architecture processes both RGB and depth
information, along with scalar inputs. However, depth information is omitted in RGB-
only experiments. Maintaining the same network structure across all trials increases the
similarity of experiments and enables the focus on variables under consideration, such as
algorithm choice or the use of experience replay.

Adhering to a consistent neural network architecture and reward system controls
these variables, allowing for a fair comparison of results across different setups. This
methodological consistency supports the integrity and reliability of our findings and
enhances the validity of our conclusions.

6.1.3. Experiment Configurations

The ultimate goal of all experiments is for the UAV to reach the destination point with
the fewest required steps while the UAV is front-facing the destination. The destination
point is selected at 100 m from the start point, and no restrictions are imposed on the
direction or orientation of the UAV’s movement. The DRL agent used a decaying ϵ-greedy
strategy for action selection where, at the initial 1500 episodes, the agent is primarily



Drones 2024, 8, 173 19 of 27

exploring the environment. In contrast, exploiting actions are dominant in the later stages,
as shown in Figure 7.

Figure 7. The average exploration/exploitation action ratio during the UAV training shows that
the DRL agent initially explores the environment, whereas exploiting actions are dominant in the
later stages.

The DRL agent adopts episodic RL training with a maximum of 10 steps per trajectory,
as configured in the configuration file. Achieving one of the following is considered a
terminal state and results in resetting the UAV/agent to its initial settings: (1) reaching
the destination, (2) colliding with the objects in the environment, and (3) reaching the
maximum number of episodes.

Configuration files are employed to specify each experiment setting. The following val-
ues are used to generate various reward parts described in Section 4: the Collision Reward
rcollision(λc = 1, ρc = −100, ξc = 2), the Distance Reward rdistance(λd = 200, αd = 100,
βd = 0.1, γd = 15.0), the Orientation Reward rorient(αo1 = 10, βo1 = 1, αo2 = 10, βo2 = 0.01,
ξo = 0.349066), and the Time-Step Reward rstep(αs = 10). These values have been deter-

mined through experiments.
The UAV settings restrict the UAV to fly at a maximum altitude of 10 m to stay within the

virtual environment boundaries. The maximum/minimum value of pitch, roll, and yaw an-
gles in radians are: angleΘ = ±0.785398, angleΦt = ±0.785398, angleΨt = ±0.785398, and the
throttle value between 0 and 1 ThrottleΩt = [0, 1]. The selected values help to stabilize the
UAV maneuvers, as moving without limiting the angles can cause the UAV to flip and
crash, as we have observed in the experiments. However, these values can be changed in
the configuration files to support different experiment requirements and goals.

6.2. Performance Analysis

This section examines TD3 and DDPG algorithms for training the DRL agent using
two different environments (neighborhood and city), employing two types of replay buffer
techniques: Experience Replay (ER) and Prioritized Experience Replay with Importance
Sampling technique (PER). Moreover, two imaging techniques are considered: color images
(RGB) and depth map images (DMI) combined with RGB images (DRGB). Therefore, there
are four different experiments for each combination of the algorithm and environment:
1. Using ER and RGB images (ER RGB);
2. Using PER and RGB images (PER RGB);
3. Using ER with RGB and DMI (PER DRGB);
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4. Using PER with RGB and DMI (PER DRGB).
Evaluations are based on the average discounted reward Equation (1), which quantifies

the total expected reward a UAV can collect over time, adjusted by a factor that decreases
the value of future rewards.

All experiments, including different algorithms, different buffering and imaging
techniques, are examined in two environments, to introduce environment diversity and to
consider static and dynamic environments. A direct comparison with reported performance
metrics in other studies is not feasible because, as noted by AlMahamid and Grolinger [1],
there is a lack of standardized benchmarking approaches in RL-based UAV navigation.
Nevertheless, the two environments introduce varying levels of navigation complexities,
and consideration of different algorithms and variants shows the contributions of various
improvements. Moreover, we compare TD3 with the DDPG algorithm to demonstrate
the impact of the algorithm selection on the overall navigation. The two algorithms were
selected because they support unlimited states and continuous actions and, as discussed in
Section 3.4, are suitable for UAV navigation.

The following subsections examine the overall behavior of the TD3 and DDPG algo-
rithms. Next, they discuss the algorithm variants and investigate the impact of the replay
buffer type and depth images.

6.2.1. TD3 and DDPG Results

The comparative analysis of the TD3 and DDPG algorithms is detailed in Figure 8,
illustrating how these algorithms perform under different experimental conditions. The
first row of the graphs depicts results obtained using the city environment, while the second
row depicts results obtained using the neighborhood environment. This figure compares
the algorithms’ (DDPG vs. TD3) performance in the static neighborhood environment and
the dynamic city environment, exploring the impact of varying data input techniques (RGB
vs. DRGB) and experience replay strategies (ER vs. PER).

As shown in Figure 8, TD3 outperformed DDPG in all experiments for both envi-
ronments. TD3 achieved noticeably better results for all experiments in all environments,
except for ER using RGB only, where TD3 slightly outstrips DDPG.

Comparing the two environments, TD3 achieved slightly higher rewards operating
in the neighborhood environment compared to its performance in the city environment.
The city environment is more challenging because humans and cars move dynamically in
the city, and the agent needs to accommodate this.

Furthermore, the comparative results presented in Figure 8 illustrate that, while TD3
and DDPG achieve similar outcomes with ER and RGB images (as shown in the first
column of graphs), distinct performance differences emerge when DMI is utilized (refer to
the second and fourth columns) or when ER is substituted with PER (visible in the third and
fourth column). Notably, TD3 consistently surpasses DDPG, particularly when combining
PER and DMI, indicating its superior efficacy in these configurations.

6.2.2. Examining Variants of TD3 and DDPG

All TD3 experiments for the two environments are compared in Figure 9. Using PER
with DMI outperformed all other methods for both environments and yielded a better
reward. Changing from ER to PER resulted in an increased reward; however, adding depth
images produces a larger improvement, as observed from the two top lines corresponding
to the approaches with DMI. While PER helped the agent learn significant experiences,
using DMI enabled the agent to understand the surroundings’ depth better and improved
obstacle avoidance, resulting in a higher reward. However, TD3 required more convergence
time when employing DMI than RGB images.
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Figure 8. Comparativeanalysis of DDPG and TD3 algorithms across the four experiments: ER with
RGB, ER with DRGB (depth images), PER with RGB, and PER with DRGB. Each row presents the
results for one environment: (a) Results for the city environment show that TD3 with PER and
DRGB achieves higher average reward than the other approaches. (b) Results for the neighborhood
environment confirm that TD3 using PER combined with DRGB yields better results.

Figure 9. Comparisonof TD3 algorithm results across two environments with different setups—ER
with RGB, ER with DRGB, PER with RGB, and PER with DRGB: (a) Results for the city environment
show that inclusion of DRGB has a higher impact than replacing ER with PER. (b) Results for the
neighborhood environment confirm that PER and depth images (DRGB) improve navigation.
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While Figure 9 presents results for TD3, Figure 10 does the same for DDPG. Generally,
DDPG results follow the same patterns as the TD3 results, with PER and DMI improving the
UAV training. An exception is when using ER versus PER with RGB images only: for the
city environment, DDPG achieved very similar results with ER and PER. Furthermore, like
TD3, DDPG requires more time to converge when using DMI than when using RGB images.

Figure 10. Comparison of DDPG algorithm results across two environments with different setups—ER
with RGB, ER with DRGB, PER with RGB, and PER with DRGB: (a) Results for the city environment
show that inclusion of DRGB has a higher impact than replacing ER with PER. (b) Results for the
neighborhood environment confirm that PER and depth images (DRGB) improve navigation.

6.2.3. Examining the Impact of DMI and PER

This subsection focuses on examining the impact of DMI and PER using TD3, as
TD3 overall achieved better results than DDPG, as discussed in Section 6.2.1. Moreover,
the results for DDPG follow the same patterns as those for TD3.

Figure 11 compares TD3 variants with and without depth information to examine the
impact of the depth information. The experiments reveal that DMI considerably enhanced
UAV training compared to utilizing RGB images alone, regardless of the environment or
the replay buffer type (ER vs. PER). Nevertheless, the agent took around 4000 episodes to
converge utilizing DMI compared to around 2000 episodes using RGB images. The signifi-
cant increase in the convergence time is reasonable owing to the knowledge the agent must
acquire about the object depth information.
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Figure 11. Comparison of TD3 algorithm results illustrating the impact of DMI (DRGB) in two
navigation environments: (a) In the city environment, incorporating DMI enhances performance
under both ER and PER conditions. (b) Results for the neighborhood environment have a similar
pattern but slightly later stabilization.

The impact of PER on TD3 in the two environments is examined in Figure 12. It can be
observed that employing PER compared to using ER enhanced the UAV training for both
environments and was irrelevant if RGB or depth images were employed because PER
prioritizes experiences and reuses more relevant experiences, which assists the agent in
learning and leading to a higher reward. The improvement in PER reward is more evident
when using DMI in the city environment. Comparing Figure 11 and Figure 12, it can be
observed that introducing depth images has a more significant impact on the reward than
changing from ER to PER.

Figure 12. Comparison of TD3 algorithm results showing the impact of PER over ER in two navigation
environments: (a) In the city environment, incorporating PER enhances performance with both RGB
and DRGB image inputs. (b) Results for the neighborhood environment have a similar pattern but
slightly later stabilization.
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6.3. Discussion

The presented results demonstrate that the proposed VizNav framework can train
the agent to navigate to the destination point while avoiding obstacles using the TD3
algorithm. The proposed approach does not simplify the environment as demonstrated
through two complex simulated environments: the neighborhood and the city. Moreover,
the agent employs continuous action space with unlimited states, resulting in realistic
UAV movements and enabling navigation in complex environments. Using an off-policy
algorithm in experiments TD3 and DDPG enables the agent to employ experience replay
strategies to improve the stability of learning [30].

The VizNav framework, as shown in Figure 3, enables an easy change of the RL al-
gorithms and changes to the framework modules. Moreover, the use of configuration
files supports straightforward experiment setup without changes to the framework itself.
The presented experiments have taken advantage of this modularity to examine different
RL algorithms, experience buffer strategies, depth images, and behavior in various envi-
ronments. Moreover, such a modular approach will enable substituting the currently used
DRL algorithms with new ones as they emerge, supporting the fast adaptation of the latest
RL research in UAV navigation.

Experiments, as shown in Figure 8, demonstrated that the TD3 algorithm outper-
formed DDPG in all experiments irrelevant to the environment, confirming the work of
Fujimoto et al. [31], which demonstrated that TD3 improves DDPG by employing two
critics and applying delayed policy updates. While TD3 performed better than DDPG,
the difference between the two algorithms varied depending on the type of replay buffer
and the use of depth information.

When TD3 was used with PER and DMI, the results were better than when TD3 was
used with ER or RGB images, as seen in Figure 9. The same was observed for DDPG
in Figure 10, demonstrating the need to employ experience replay and depth images.
Figures 11 and 12 further examined the impact of DMI and PER and showed that the DMI
has a more significant effect on the improvement of the navigation than PER.

While the evaluation demonstrated that depth information improves UAV navigation,
it is vital to notice that this requires different cameras and may be prohibitive based on
cost, the type of drone, or other reasons. Still, the proposed VizNav framework can operate
without such information. Moreover, depth information results in a longer convergence
time, as shown in Figures 9 and 10, which can be explained by the need to learn from more
complex data.

Experiments presented in this study employed DRL neural network architecture
shown in Figure 5: this structure captures RGB, depth information, and scalar information.
Depth information is not used in RGB-based experiments. The same network structure is
employed for all experiments. It is important to note that tuning this structure for each
algorithm and each environment could potentially improve the overall results; however, we
have kept the network architecture fixed to analyze the performance of the algorithms and
the impact of depth images and experience replay. Similarly, the reward structure presented
in Section 4.3 with parameters described in Section 6.1.1 was consistent throughout the
experiments to facilitate the comparison of results.

Overall, the presented experiments demonstrated that the proposed VizNav provides
a flexible approach to navigation in dynamic environments. Moreover, the experiments
showed that TD3 outperforms DDPG and that using DMI and PER improves navigation.

7. Conclusions

This paper proposes the VizNav framework, a novel approach to UAV navigation
that utilizes deterministic off-policy deep reinforcement learning (DRL) with Prioritized
Experience Replay (PER). The framework facilitates vision-based autonomous navigation
in dynamic environments with continuous action space by leveraging a front-facing camera
that provides depth map images (DMI) to augment RGB scenery images with detailed
depth information. The evaluation in dynamic environments demonstrated that integrating
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TD3 with PER and DMIs outperforms navigation with TD3 and improves upon the DDPG
algorithm. While adding depth information had a more significant impact than employing
PER, it resulted in longer convergence times.

Unlike conventional navigation methods, VizNav does not impose restrictions on UAV
maneuverability nor simplifies the training environment, thereby reflecting more realistic
and complex operational scenarios. The control scheme employed using pitch, roll, yaw,
and throttle closely mimics real-world UAV controls, enhancing the practical applicability
of our approach.

The modular and adaptable design of the VizNav architecture allows for the separation
of learning and training processes, the customization of simulation environments and
reward functions, and the ability to update and tailor the controller managing the UAV.
This flexibility enhances the framework’s utility not only for UAV navigation but also for
broader applications in RL simulations for autonomous systems, including robotics control,
autonomous vehicles, and operations in industrial and agricultural sectors.

It is essential to recognize the difficulties of transitioning from simulations to the
real world. To start with, obtaining accurate depth images is not only difficult, but the
specialized equipment also increases cost, and the added weight reduces the battery life.
Moreover, the generalization of RL algorithms to unseen environments is still limited
and could result in crashes and damage to the drone. Nevertheless, the presented study
represents a step towards autonomous RL-driven UAV navigation.

Future work will expand the VizNav framework’s capabilities by incorporating ad-
ditional sensor information, such as LiDAR, to enrich environmental data inputs. We
also aim to explore the framework’s generalization and sensitivity to various parameters.
These steps will pave the way toward autonomous RL navigation and deployments on
real-world drones and other autonomous robotic platforms, pushing the boundaries of
what is possible in autonomous navigation and control.
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