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Abstract: Effective agricultural management in maize production operations starts with the early
quantification of seedlings. Accurately determining plant presence allows growers to optimize
planting density, allocate resources, and detect potential growth issues early on. This study provides
a comprehensive analysis of the performance of various object detection models in maize production,
with a focus on the effects of planting density, growth stages, and flight altitudes. The findings of
this study demonstrate that one-stage models, particularly YOLOv8n and YOLOv5n, demonstrated
superior performance with AP50 scores of 0.976 and 0.951, respectively, outperforming two-stage
models in terms of resource efficiency and seedling quantification accuracy. YOLOv8n, along with
Deformable DETR, Faster R-CNN, and YOLOv3-tiny, were identified for further examination based
on their performance metrics and architectural features. The study also highlights the significant
impact of plant density and growth stage on detection accuracy. Increased planting density and
advanced growth stages (particularly V6) were associated with decreased model accuracy due to
increased leaf overlap and image complexity. The V2–V3 growth stages were identified as the optimal
periods for detection. Additionally, flight altitude negatively affected image resolution and detection
accuracy, with higher altitudes leading to poorer performance. In field applications, YOLOv8n
proved highly effective, maintaining robust performance across different agricultural settings and
consistently achieving rRMSEs below 1.64% in high-yield fields. The model also demonstrated high
reliability, with Recall, Precision, and F1 scores exceeding 99.00%, affirming its suitability for practical
agricultural use. These findings suggest that UAV-based image collection systems employing models
like YOLOv8n can significantly enhance the accuracy and efficiency of seedling detection in maize
production. The research elucidates the critical factors that impact the accuracy of deep learning
detection models in the context of corn seedling detection and selects a model suited for this specific
task in practical agricultural production. These findings offer valuable insights into the application of
object detection technology and lay a foundation for the future development of precision agriculture,
particularly in optimizing deep learning models for varying environmental conditions that affect
corn seedling detection.

Keywords: unmanned aerial vehicle; maize seedling; object detection; counting

1. Introduction

Maize is among the world’s most widely cultivated and traded crops, serving various
purposes including human consumption, animal feed, and the production of adhesives [1].
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Maize yield is significantly influenced by factors like emergence rate and planting density,
necessitating growers to carefully observe their crops [2]. Inspections during the early
phases of maize cultivation allow growers to identify and reseed areas with no germination.
Therefore, the rapid detection and quantification of maize seedlings are key prerequisites
for ensuring a maximal yield. Current traditional methods of seedling detection rely on
manual visual assessments of selected plots. As global maize production shifts towards
large-scale operations, manual surveys are becoming increasingly time-intensive. This
method is also prone to human error, resulting in insufficient or inaccurate planting infor-
mation [3]. Alternatively, advancements in drone technology have enabled the rapid and
accurate collection of data on large-scale plantations. This information provides support for
intelligent decision-making regarding field management strategies. Additionally, precision
agriculture significantly increases efficiency while reducing time and labor costs [4].

Unmanned aerial vehicles (UAVs) are revered for their affordability, portability, and
flexibility. They can be equipped with a diverse array of sensors, such as RGB, multispectral,
hyperspectral, and LiDAR, to ensure robust data capture [5]. Initially, images captured
by UAVs required image processing techniques such as skeletonization algorithms and
multiple despeckling processes to extrapolate pertinent information, including seedling
counts [6]. While these approaches were effective, they necessitated intricate processing
workflows and high-quality images. As the technology behind image processing and anal-
ysis algorithms has evolved, the integration of computer vision algorithms into UAV image
analysis has significantly improved the efficiency and precision of crop counting. Peak
detection algorithms have especially improved the localization and enumeration of crop
rows and seedlings in high-resolution images [7]. Moreover, corner detection techniques
have enabled the effective counting of overlapping leaves, which tend to complicate data,
especially as plants mature [8].

UAV data extrapolation still relies on traditional image processing techniques, which
face many challenges such as complex target feature design, poor portability, slow op-
eration speed, and cumbersome manual design [9]. The ongoing development of deep
learning is continuously broadening the scope of agricultural applications [10]. Currently,
object detection technology presents one of the most practical methods of identifying plants
in various background environments. A variety of deep learning models have recently
been developed to enhance the accuracy and efficiency of crop detection. For instance, the
Faster R-CNN model has been incorporated into field robot platforms, enabling them to
accurately identify corn seedlings at different growth stages and distinguish them from
weeds [11]. Additionally, the model is able to automatically recognize and record different
developmental stages of rice panicles, a previously labor-intensive manual process [12].
The multiple complex processing stages required render R-CNN models relatively slow,
limiting their application potential in large-scale operations. Based on the improvements of
YOLOv4, Gao et al. proposed a lightweight model for seedling detection with an enhanced
feature extraction network, a novel attention mechanism, and a k-means clustering algo-
rithm. Results show that the harmonic mean, recall rate, average precision, and accuracy
rate of the model on all test sets are 0.95%, 94.02%, 97.03%, and 96.25%, respectively [13].
Zhang et al. further improved the efficacy and speed of maize male cob detection by
optimizing the feature extraction network and introducing a multi-head attention mecha-
nism, achieving an accuracy of 95.51% [14]. Later, Li et al. released an enhanced YOLOv5,
which included downsampling to improve the detection of small targets and introduced
a CBAM attention mechanism to eliminate gradient vanishing. The experimental results
show that the improved algorithm has an mAP of 94.3%, an accuracy of 88.5%, and a
recall of 98.1% [15]. Finally, a wheat head detection model was proposed by Zhang et al.
based on a one-level network structure, which improves accuracy and generalizability
by incorporating an attention module, a feature fusion module, and an optimized loss
function. When compared to various other mainstream object detection networks, this
model outperforms them, with a mAP of 0.688 [16].
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Although previous research has focused on optimizing algorithms and achieving
excellent accuracy, few have delved into the limitations of models and the factors affecting
them. This study primarily investigates key factors such as varying planting densities,
different growth stages, and multiple flight altitudes to comprehensively assess model
performance. We screened nine object detection models and selected four—YOLOv8n,
Deformable DETR, Faster R-CNN, and YOLOv3-tiny—based on their performance metrics
and architectural differences between one-stage and two-stage detection frameworks. After
conducting a thorough evaluation of these models under varied conditions, based on these
validation results, field validations will be conducted in farmers’ fields to further confirm
the practical applicability of the model. The main contributions of this paper are:

(1) Establishment of a comprehensive corn seedling dataset at different corn planting
densities, growth stages, and flight altitudes.

(2) Application of various object detection models to different datasets for validation and
comparison, assessing their performance under diverse conditions.

(3) Validation of the model’s detection effectiveness at different planting densities, growth
stages, and flight altitudes further identifies the most suitable growth stages for
detecting corn seedlings while also revealing the limitations of model detection.

(4) Field validation of the model in actual agricultural production environments confirms
its effectiveness and feasibility in practical applications.

2. Materials and Methods
2.1. Field Experiments

Field experiments were conducted during 2021 and 2023 in Tongliao City (43◦42′

N, 122◦25′ E) and Liaohe Town (43◦43′ N, 122◦10′ E) in Inner Mongolia (Figure 1). This
region features a semi-arid continental monsoon climate with 2500–2800 h of annual
sunshine, an average daily temperature of 21.0 ◦C, a cumulative ≥10 ◦C temperature of
3000–3300 ◦C·d, a frost-free period of 150–169 d, and an average annual precipitation of
280–390 mm during the maize growing season (11 May). Both fields consisted of sandy
loam soil and had previously been used for maize cultivation. A wide-narrow planting
pattern was implemented, with alternating rows spaced at 80 cm and 40 cm. Irrigation was
supplied through shallow, buried drip lines at a rate of 300 m3/ha. Base fertilizer with an
N, P, and K ratio of 13:22:15 was applied at a rate of 525 kg/ha through water-fertilizer
integration methods.

The maize variety Xianyu 335 was selected for the density experiment conducted in
Qianxiaili Village. Trials were planted on 10 May 2021 at densities of 30,000, 45,000, 60,000,
75,000, 90,000, 105,000, 120,000, and 135,000 plants/ha. Data were collected on 29 May
(2 leaves unfolded), 1 June (3 leaves unfolded), 5 June (4 leaves unfolded), and 16 June
(6 leaves unfolded).

The maize variety Dika 159 was selected for the flight altitude experiment conducted
in Dongsheng Village. Trials were planted on 8 May 2023 at a density of 90,000 plants/ha.
Data were collected on 27 May (2 leaves unfolded), 31 May (3 leaves unfolded), 4 June
(4 leaves unfolded), 7 June (5 leaves unfolded), and 11 June (6 leaves unfolded).

In 2021 and 2023, we carried out validation trials on the agricultural lands of local
farmers. These trials included three distinct types of cultivation areas: high-yielding fields
in 2021, agricultural cooperative plots in 2023, and peasant household farmland in 2021.
Maize varieties Jingke 968, Tianyu 108, and Dika 159 were planted in each plot at densities
of 100,000, 80,000, and 65,000 plants/ha. UAV visible light images were collected at noon
during the 3-leaf stage from 8 sample areas (5 m × 2.4 m) within each field. Additional
images were collected from 20 randomly selected sample areas (11.66 m²) in each field,
which were monitored at noon on 1 June 2021 (3 leaves unfolded) and 31 May 2023
(3 leaves unfolded).
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Figure 1. Experimental area.

2.2. UAV Image Collection

High-resolution images of maize seedlings were captured with a UAV-based RGB
camera mounted perpendicular to the ground onto a DJI M600 drone with a Ronin-MX
gimbal. GPS and barometers were used to control horizontal position and altitude within
approximately 2 m and 0.5 m, respectively. Drone images were collected every 3 days
between 10 a.m. and 2 p.m. for the duration of the experiment. Detailed image collection
information is listed in Table 1.

Table 1. UAV image collection parameters.

Year 2021 2023

Station Qianxiaili
Village

High-Yielding
Field

Peasant
Household

Dongsheng
Village

Agricultural
Cooperative Plots

Image acquisition stage
(leaves) 2, 3, 4, 6 3 3 2–6 3

Flight speed (m/s) 2.1 2.3 2.0 2.0 2.5
Photo interval (s) 1 2 2 2 2

Height above ground (m) 20 20 20 20, 40, 60 20
Overlap rate along tracks (%) 75 73 75 80 75
Overlap rate across tracks (%) 85 75 80 80 75

Images were collected with a Sony α7 II camera with a 35 mm sensor and a maximum
resolution of 6000 × 4000 pixels. Shutter speed was prioritized, and the ISO was set to
automatically adjust (1600 maximum value). RGB images were captured at a frequency of
1 Hz with an intervalometer-controlled camera.
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2.3. Data Construction and Preprocessing
2.3.1. Image Preprocessing

After RGB images were exported from the UAV, Agisoft Metashape Professional soft-
ware was used for image stitching. Feature points in each image were initially automatically
calculated and then matched in the image sequence through multiple iterations. Next,
dense point clouds were generated before the final images were produced (Figure 2a).
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Experimental fields were cropped and divided into multiple plots (Figure 2b). Original
high-quality maize seedling images were cropped to 1000 × 1000 pixels by a sliding step.
Poor-quality images, including those with large shooting angles, obvious occlusions, and
uneven illumination, were removed. Final images (1000 total) were categorized by quantity
of spreading leaves and quantity of straw (Figure 3). The location and size of each seedling
are labeled using LabelImg in each image. The location and size of each seedling are labeled
using LabelImg in each image. The dataset was then divided, with 90% of images used for
model training and 10% for validating model performance.
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Figure 3. Maize seedlings at (a) V2, (b) V3, (c) V4, (d) V5, (e) and V6 stages. (f) Low, (g) moderate,
and (h) high quantities of stover. Note: V2–V6 correspond to the 2-leaf stage (unfurled leaves), 3-leaf
stage (unfurled leaves), 4-leaf stage (unfurled leaves), 5-leaf stage (unfurled leaves), and 6-leaf stage
(unfurled leaves), respectively.

2.3.2. Data augmentation

Data augmentation is crucial for expanding the quantity and diversity of samples
and enhancing the training model’s ability to generalize across different conditions. This
process not only increases the robustness of the model by introducing a wider range of
scenarios but also helps prevent overfitting by simulating real-world variations. Images
were adjusted during the data augmentation process, including horizontal and vertical
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flipping, random contrast and hue adjustments, and resolution alterations (Figure 4). These
modifications were used to simulate the effects of varying lighting and environmental
factors during different times of day and flight altitudes. The final training dataset was
expanded to a total of 16,200 images.
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2.4. Overview of Object Detection Models

This study encompasses a range of advanced object detection models, categorized
into one-stage and two-stage models, to evaluate their performance across various types
of complex image datasets. The selection of these models was based on their processing
speed, accuracy, and capability to handle different types and complexities of objects and
scenes. One-stage object detection models such as YOLOv8n, YOLOv5n, YOLOv3-tiny, SSD
(Single-Shot MultiBox Detector), FCOS (Fully Convolutional One-Stage Object Detection),
and RetinaNet predict bounding boxes and class probabilities directly at the network
output layer, offering rapid detection speeds that are particularly suitable for real-time
processing requirements. In contrast, two-stage object detection models, including Faster
R-CNN, Cascade R-CNN, and Deformable DETR (Deformable End-to-End Transformer-
based Object Detection), first generate potential object candidates, then refine these through
more precise classification and bounding box regression to enhance detection accuracy.

2.4.1. One-Stage Object Detection Models

The YOLO series is renowned for its rapid detection speed and effective perfor-
mance balance. From the lightweight design of YOLOv3-tiny [17], optimized for resource-
constrained devices, to YOLOv5n, which features various sizes and training optimizations,
and the latest YOLOv8n, each version strives to find a better balance between detection
speed and accuracy. YOLOv8n further improves detection precision and speed through
an enhanced network architecture and more efficient training strategies. SSD performs
object prediction at multiple scales simultaneously, effectively capturing objects of varying
sizes [18]. FCOS, as an innovative anchor-free detection model, eliminates the complexity
of anchor choice, simplifies the training process, and enhances the model’s versatility and
flexibility [19]. RetinaNet addresses the issue of class imbalance with focal loss, significantly
improving performance in complex environments [20].
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2.4.2. Two-Stage Object Detection Models

Faster R-CNN, through its innovative Region Proposal Network (RPN), efficiently
generates high-quality candidate areas, significantly enhancing subsequent detection ac-
curacy [21]. Cascade R-CNN, with its unique multi-stage refinement strategy, effectively
improves recognition of occluded and small targets [22]. Deformable DETR utilizes a
deformable attention mechanism to optimize the handling of dynamic scenes and complex
backgrounds, resulting in superior performance on large-scale image datasets [23].

2.5. Assessment of Indicators

The maize seedling detection and quantification abilities of each model were evaluated
by calculating the Precision (Equation (1)), Recall (Equation (2)), F1-Score (Equation (3)),
AP (Equation (4)). and rRMSE (root mean square error) (Equation (5)) values according to
the following formulas:

Precision =
TP

TP + FP
× 100% (1)

Recall =
TP

TP + FN
× 100% (2)

F1 − Score =
2 × Recall × Precision

Recall + Precision
(3)

AP =
∫ 1

0
P(R)dR (4)

rRMSE =

√
1
n ∑n

n=1(yi − ŷi)
2

∑n
i=1 yi

× 100% (5)

True positive (TP) and false positive (FP) represent the number of correctly and
incorrectly detected maize seedlings, respectively, while false negative (FN) indicates the
number of those missed. F1 represents the harmonic mean of Precision and Recall. Average
Precision (AP) measures the average precision of the classification model at all Recall levels
and n denotes the number of samples. yi represents the actual value of each sample point,
ŷi denotes the predicted value of each sample point according to the regression model, and
y is the mean of the actual observed values of the dependent variable.

2.6. Test Parameter Setting and Training Process Analysis

The computer specifications and software environments used are described in Table 2.
The training parameters were tailored to the characteristics of the task dataset. The training
settings were tested with a batch size of 8, an image size of 640, a confidence threshold
(conf_thres) of 0.3, and an intersection over union threshold (iou_thres) of 0.2.

Table 2. Model training specifications.

Experimental Environment

Processor 12th Gen Intel(R) Core(TM) i5-12600KF3.69 GHz

Operating system Windows 10

Ram 64 GB

Graphics card NVIDIA GeForce RTX 3060

Programming language Python 3.8

Model YOLOv8n YOLOv5n Other

Deep learning libraries CUDA11.7 CUDA11.1 CUDA 10.2

Software Ultralytics = 8.0.105
Opencv = 4.7.0.72

Opencv = 4.1.2
Numpy = 1.18.5

Mmcv = 2.0.0
Mmdet = 3.0.0
Mmengine = 0.9.1
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3. Results
3.1. Model Comparison

To further validate the performance of YOLOv8n, multiple one-stage and two-stage
object detection models were trained and evaluated based on metrics such as AP50, AP50:95,
params, and FLOPs (Table 3, Figure 5).

Table 3. Comparison of object detection model performances.

Category Model Backbone Image Size AP50 AP50:95 Params FLOPs

One-stage

YOLOv8n New CSP-Darknet53 640 × 640 0.976 0.643 3.20 M 8.7 G
YOLOv5n CSP-Darknet53 640 × 640 0.951 0.510 1.90 M 4.5 G
SSD VGG16 416 × 416 0.942 0.526 23.75 M 137.1 G
FCOS Resnet50 640 × 640 0.922 0.493 31.84 M 78.6 G
YOLOv3-tiny Tiny-Darknet 640 × 640 0.919 0.452 8.44 M 13.3 G
RetinaNet Resnet50 300 × 300 0.861 0.411 36.10 M 81.7 G

Two-stage
Deformable DETR Resnet50 640 × 640 0.939 0.471 36.10 M 27.4 G
Cascade R-CNN Resnet50 640 × 640 0.884 0.565 68.94 M 80.1 G
Faster R-CNN Resnet50 640 × 640 0.882 0.529 41.12 M 78.1 GDrones 2024, 8, x FOR PEER REVIEW 9 of 16 
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The performances of YOLOv8n and YOLOv5n stand out among the single-stage
models, achieving AP50 values of 0.976 and 0.951, respectively, at an input image size of
640 × 640. Although SSD and FCOS also performed highly, their increased number of
parameters and computational requirements under the same conditions render them less
suitable for resource-constrained scenarios. YOLOv3-tiny and RetinaNet demonstrated
slightly reduced performances and are better suited to environments with limited resources.

Deformable DETR showed the highest performance out of the two-stage models,
achieving an AP50 value of 0.939 at an input image size of 640 × 640. Moreover, the
model has a reduced number of parameters and computational requirements, exhibiting an
optimal balance between performance and efficiency. Comparatively, Faster R-CNN and
Cascade R-CNN perform similarly at the same size but have more requirements, making
them less ideal for resource-limited situations.

Taking into account both performance and architectural differences (between one-stage
and two-stage detection frameworks), we have selected the top-performing YOLOv8n and
Deformable DETR, as well as the lower-performing Faster R-CNN and YOLOv3-tiny, for
further in-depth study.

3.2. Impact of Planting Density and Growth Stage on Seedling Detection

Planting density and growth stage were found to significantly affect the estimation
accuracy of maize seedling detection models. In this study, YOLOv8n, YOLOv3-tiny,
Deformable DETR, and Faster R-CNN were analyzed for key metrics such as accuracy rate,
miss rate, false detection rate, and rRMSE. Experimental validations were conducted across
four growth stages (V2, V3, V4, and V6) at eight different planting densities (30,000, 45,000,
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60,000, 75,000, 90,000, 105,000, 120,000, and 135,000 plants/ha). For each density, 20 images
were selected, resulting in a total of 640 images for inference.

Our findings demonstrate that as density increases, overall detection accuracy mea-
sured by the F1-score, rRMSE, Recall, and Precision declines (Figure 6). Moreover, our
analysis of V2–V6 growth stages revealed a trend of increasing and then decreasing detec-
tion performance. Performance seemed to improve up until the V3 stage but declined as
time progressed to the V6 stage.
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Our study showed that as planting density increases, YOLOv8n exhibits a relatively
stable rRMSE performance compared to YOLOv3-tiny, especially at higher densities (from
105,000 to 135,000). The Deformable-DETR model exhibited relatively steady performance
across different densities, with only minor fluctuations. In contrast, Faster R-CNN per-
formed poorly at high densities, with a significantly increased rRMSE. Taken together,
these results demonstrate the superior performance and stability of YOLOv8n across all
densities. Additionally, model performance was significantly impacted by the plant growth
stage (V2–V6). YOLOv8n and Faster R-CNN achieved their highest performances at the
V4 stage, while YOLOv3-tiny and Deformable-DETR peaked at the V3 stage. While the
optimal growth stage differed between the models, all displayed a similar trend of declin-
ing performance with increasing density in terms of Recall and Precision. These findings
highlight the performance variations between different models across various planting
densities and growth stages, providing a foundation for model selection based on growth
operation requirements.

3.3. Impact of Flight Altitude and Growth Stage on Detection

In this study, plant detection was conducted through UAV flights at various growth
stages (V2, V3, V4, V5, and V6) and altitudes (20 m, 40 m, and 60 m). Metrics such as
accuracy rate, miss rate, false detection rate, and rRMSE were calculated to explore potential
impacts. Twenty images per altitude across five growth stages were collected, resulting in a
total of 300 images for inference. Overall, changes in altitude were found to affect image
resolution and coverage area.

The performance metrics of all four models decreased across all growth stages (V2–V6)
as flight altitude increased. From Figure 7, it is evident that for YOLOv8n, at 20 m,
the performance across various stages remains strong, with F1-scores ranging between
97.82 and 99.62% and rRMSE staying below 5.36%. At 40 m, V3 to V5 still maintain
high detection performance, but V2 and V6 see a slight decline, with rRMSEs of 7.52%
and 15.85%, respectively. For 60 m, V6 significantly drops, with the F1-score falling to
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54.55% and rRMSE rising to 62.73%. YOLOv3-tiny shows a gradual decrease in detection
effectiveness at 20 m as leaf age increases, with its F1-score dropping from 99.00% in V2
to 89.48% in V6, and rRMSE increasing from 2.47% in V2 to 17.33% in V6. At 40 m, the
F1-score remains above 90% from V2 to V5, but drops to 85.96% in V6, with rRMSE also
rising to approximately 22.23%. At 60 m, the F1-score significantly decreases to 35.19%,
with the rRMSE increasing to 78.38%. Deformable DETR demonstrates good performance
at a flight altitude of 20 m. At 40 m, the F1-score significantly decreases to between 55.60
and 67.35%, with similar trends observed in Recall and Precision and a notable increase
in rRMSE, reaching 56.68% in V2. At 60 m, there is a further decline, with the F1-score
dropping from 40.31% to 19.17%, especially notable in Recall, which falls from 25.72% to
10.37%. rRMSE further increases from 74.42% to 89.36%. For Faster R-CNN at 20 m, the
F1-score and rRMSE show a trend of initial increase followed by a decrease, peaking in
V3 at 95.59% and 8.6%, respectively. At 40 m, the model’s F1-score, Recall, and rRMSE
significantly decrease, with V2 being the worst at 11.37%, 6.07%, and 94.15%. At 60 m, the
decline in F1-score and Recall is even more pronounced, with V2 performing the worst at
0.96% and 0.48%, respectively. rRMSE remains exceedingly high, exceeding 91.3% across
all leaf stages.
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3.4. Validation of the YOLOv8n Seedling Counting Algorithm

To validate the applicability and accuracy of YOLOv8n, the model’s performance was
comprehensively evaluated under various planting conditions in active growing operations
across different years and locations. This evaluation process involved six total repetitions,
each consisting of the acquisition of 20 images from one location at a flight altitude of
20 m, cumulatively amounting to a total of 120 images. The model exhibited outstanding
performance across all planting methods, with notably significant results in high-yield
fields characterized by high-density planting conditions.

Our analysis illustrates that predicted values are closely aligned with the actual values,
maintaining a highly consistent, near 1:1 line (Figure 8). Exceptional performance was
observed in high-yield fields 1 and 2, with rRMSE values of roughly 1.64% and 1.33%,
respectively. The Recall, Precision, and F1 scores all exceeded 99%. Stellar performance
was also observed under cooperative and individual farmer planting conditions; rRMSE
values are all below 1.23%. Together, these results affirm the model’s stability and accuracy.
The consistency between the algorithm’s predicted planting density and the actual planting
density further validates the model’s reliability and precision.
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4. Discussion

Our model comparison experiments indicate that one-stage models generally outper-
form two-stage ones. This is potentially due to the direct collection of target location and
category information in an end-to-end manner, eliminating the need for candidate box
generation. This direct transmission of position, scale, and category information between
targets through the supervision signal also allows for a more simple and rapid way of
determining relationships between targets, thereby achieving better detection results [24].
YOLOv8n showed the highest detection performance, followed closely by YOLOv5n, then
YOLOv3-tiny. The two-stage Deformable DETR model also exhibits high performance,
which may be attributed to the introduction of a modified transformer with local and
sparsely efficient attention mechanisms [23]. The YOLO deep learning series was found
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to be highly accurate, with fast detection speeds and small sizes. YOLOv8n contains a
decoupled head instead of the coupled one employed by YOLOv5, potentially contributing
to its increased accuracy. Attempting to perform classification and localization on the same
feature map may lead to a “misalignment” problem and poor results [25]. Instead, the
decoupled head uses distinct branches for computation, thus improving performance [26].
Contrary to expectations, Faster R-CNN was less accurate in detecting small objects. This
is likely due to the low resolution of the feature maps generated by the backbone network,
which causes the minute features to blur or lose their clarity during processing. Addition-
ally, the RoI generation method may not be accurate enough for small object localization.
In addition to small object sizes, background noise may also affect detection accuracy.
Moreover, Faster R-CNN may lack the ability to adapt to large-scale target changes when
processing small objects, making it difficult for the model to capture and recognize object
size variations or changes [24].

Plant density was found to have the most significant influence on the accuracy of
maize seedling quantification. Our results indicate that increased overlapping between
leaves is responsible for much of the declining accuracy [27]. However, YOLOv8n was less
affected by planting density compared to the other models, and its detection capability only
destabilizes when density surpasses 105,000 plants/ha. Increased density is a persistent
challenge to the efficacy of various plant detection methods [28], representing an important
direction for future research. Dense planting techniques have been increasingly favored due
to their higher crop yields, especially regarding maize cultivation. For instance, the average
maize planting density in regions like Xinjiang, China, has already passed 105,000 plants/ha.
This represents a major hurdle in the application of this technology in an agricultural setting.
To tackle the challenge of detecting corn in high-density fields where plant occlusion is
significant, it is crucial to adopt strategies that enhance the ability to differentiate individual
plants despite heavy overlap. Employing three-dimensional imaging technologies, such
as LiDAR or structured light scanning, can provide depth information, enabling more
accurate differentiation between overlapping plants [29]. Enhancing machine learning
models with algorithms designed to process 3D data [30] or recognize patterns in occluded
environments can improve detection accuracy [31]. This study explores the limits of model
detection at high densities, providing a basis for future research and development. Our
results reveal variations in detection performance characteristics between different models,
highlighting the need to match the model to the growing operation.

Detection accuracy varies greatly between maize growth stages, highlighting the
importance of timing drone image-capturing operations. If images are captured too early,
the seedlings may be too small for detection, but if captured too late, there is increased
leaf presence and overlapping, which can lead to a decline in detection performance [32].
Significant overlapping was documented during the V6 stage in this study, causing notable
difficulties in plant detection [7]. Plants often fail to germinate or grow in a production
setting, necessitating additional plantings to fill in gaps and maximize crop yield. The
optimal replanting period is during the 2–3 leaf stage—missing this short window may
negatively impact crop growth and yield. YOLOv8n and Deformable-DETR were found to
be more effective than other models in detecting small targets, with rRMSE and F1-scores
at the V2 stage of 2.19% and 5.52%, and 99.34% and 97.32%, respectively.

Image ground resolution is mainly determined by the UAV sensor and the flight
altitude. We tested flight altitudes of 20, 40, and 60 m to comprehensively evaluate their
effects on detection accuracy. Increases in flight altitude were correlated with decreases in
seedling detection. This phenomenon is not only caused by the decrease in image ground
resolution but also by the reduction of details in the acquired images [33,34]. Such a loss
of detail may blur the features of the seedlings, directly affecting the model’s ability to
recognize them. Changes in flight altitude can affect the visibility of maize features in
collected images, putting a higher demand on dataset construction.

During this study, we worked directly with farmers to explore the practical applica-
tions of this technology in agriculture. Previous studies have validated the field use of this
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technology by exploring its efficacy in various soil types, meteorological conditions, and
growing operations. The existing models could be utilized in future studies to construct a
maize emergence quality assessment model, which currently lacks an assessment index.
UAVs have been increasingly used for precisely assessing maize seedling emergence and
quality [35]. These assessments can provide growers with information crucial for making
intelligent management decisions. These decisions can have dramatic impacts on crop
growth, yield, and quality [28].

5. Conclusions

This study analyzed the performance of various object detection models used in maize
production. Additionally, we explored the impacts of planting density, growth stages,
and flight altitudes on model accuracy. Our results show that one-stage models such
as YOLOv8n and YOLOv5n, with AP50 scores of 0.976 and 0.951, respectively, generally
outperformed two-stage models in quantifying maize seedlings while maintaining lower
resource demands. SSD and FCOS, though effective, required higher computational re-
sources with FLOPs of 137.1G and 78.6G, respectively, which may limit their practical
use. YOLOv3-tiny and RetinaNet, while more resource-efficient, achieved lower perfor-
mance efficiencies. Among two-stage models, Deformable DETR achieved an AP50 of
0.939, indicating strong performance, whereas models like Faster R-CNN and Cascade
R-CNN, though less resource-efficient, provided useful data. Based on their performance
and architectural features, YOLOv8n, Deformable DETR, Faster R-CNN, and YOLOv3-tiny
were selected for further detailed exploration.

Plant density and growth stage significantly impacted the seedling detection accuracy
of all models. An increase in either factor complicated the obtained image and decreased
accuracy. The V6 growth stage was especially difficult to quantify, as the increase in leaf
overlap leads to detection difficulties. The optimal detection period was identified as the
V2–V3 stages. YOLOv8n was the most stable model, only losing detection abilities at plant-
ing densities of more than 105,000 plants/ha. Additionally, flight altitude was negatively
correlated with image resolution and detection results, causing decreased detection at
higher altitudes.

In practical field applications across diverse agricultural settings, YOLOv8n demon-
strated high accuracy and robustness. Specifically, in high-yield fields 1 and 2, the model
achieved rRMSEs of only 1.64% and 1.33%, respectively. Furthermore, it consistently ex-
ceeded expectations, with Recall, Precision, and F1 scores all surpassing 99%. The model
also performed exceptionally well in both cooperative and individual farmer scenarios,
with all rRMSE values remaining below 1.23%.

Taken together, these results provide the framework for the application of UAV im-
age collection models in an agricultural setting and highlight potential areas of future
research. Lower flight altitude was favorable to maintaining good detection results, and
the performance of the model gradually decreased with increasing altitude.
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