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Abstract: This paper presents a vision-based adaptive tracking and landing method for multirotor
Unmanned Aerial Vehicles (UAVs), designed for safe recovery amid propulsion system failures that
reduce maneuverability and responsiveness. The method addresses challenges posed by external
disturbances such as wind and agile target movements, specifically, by considering maneuverability
and control limitations caused by propulsion system failures. Building on our previous research
in actuator fault detection and tolerance, our approach employs a modified adaptive pure pursuit
guidance technique with an extra adaptation parameter to account for reduced maneuverability, thus
ensuring safe tracking of moving objects. Additionally, we present an adaptive landing strategy that
adapts to tracking deviations and minimizes off-target landings caused by lateral tracking errors and
delayed responses, using a lateral offset-dependent vertical velocity control. Our system employs
vision-based tag detection to ascertain the position of the Unmanned Ground Vehicle (UGV) in
relation to the UAV. We implemented this system in a mid-mission emergency landing scenario,
which includes actuator health monitoring of emergency landings. Extensive testing and simulations
demonstrate the effectiveness of our approach, significantly advancing the development of safe
tracking and emergency landing methods for UAVs with compromised control authority due to
actuator failures.

Keywords: multirotor UAVs; moving target; vision-based landing; pure pursuit; emergency landing

1. Introduction

Unmanned Aerial Vehicles (UAVs) are witnessing a rise in applications, with a notable
rise in consumer use in industries like agriculture and construction leverage UAVs for tasks
such as crop monitoring and infrastructure inspections. Delivery services are exploring
UAVs for more efficient transportation, especially in remote areas. UAVs play a crucial role
in emergency services, aiding in search and rescue missions, disaster response, and envi-
ronmental monitoring. Military applications continue to advance, focusing on surveillance,
reconnaissance, and defense [1].

The importance of this technological progress goes beyond just these applications.
Mastering the skill of tracking and landing on moving targets is crucial for UAVs, particu-
larly multirotor, as it enhances mission capabilities and improves versatility and efficiency,
as shown in Figure 1 [2]. This proficiency proves essential in various scenarios. In search
and rescue operations, envision a UAV autonomously landing on a moving ship in rough
seas [3]. The ability to track and land on moving platforms enables UAVs to navigate and
operate in dynamic environments that are otherwise inaccessible by conventional means. In
military operations, UAVs can strategically land on moving bases or vehicles for tasks such
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as refueling, rearming, or data exchange, thereby extending their operational range and
enhancing flexibility in combat situations [4]. In logistics and delivery, precise landings on
moving platforms, like trucks or trains, has the potential to revolutionize last-mile delivery,
especially in remote or disaster-stricken areas [5]. Additionally, this capability is invaluable
in dynamic surveillance scenarios, where UAVs can track and land on moving objects, such
as wildlife or criminal suspects, providing real-time aerial footage from unique vantage
points. Furthermore, the concept extends to autonomous refueling, where UAVs can land
on refueling stations, effectively prolonging their flight time and enabling continuous
operation for extended periods.
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Figure 1. Application of UAV tracking moving object.

Various researchers propose methods for multirotor UAV tracking and landing on
moving objects. A visual-aided landing approach utilizes designated markers for tracking
and landing based on the vehicle’s state. Detecting the moving object on the ground and
estimating its pose are crucial initial steps in this process. Visual markers such as April tags
and deep learning-based models like YOLO for detecting landing pads and safe landing
zones have been implemented for this purpose [6,7]. Once the ground vehicle’s pose
is identified, to accurately track, different researchers suggest various methods. In [8],
a vision-based guidance technique utilizing pure pursuit algorithms for tracking UGVs
and a logarithmic polynomial closing velocity controller for landing on moving UGVs is
proposed. However, this approach does not account for the varying movement conditions
of UGVs, which demand different levels of maneuverability and responsiveness from
the UAV. In [9], an algorithm for autonomous landings on moving platforms employs a
single camera and unfolds in three phases—search, homing, and landing, coordinated via
a ‘safety sphere’. Utilizing backstepping control, it enhances landing safety. The study
in [10] introduced a robust deep neural network for object detection and tracking. It further
enhanced the original Kalman filter by developing an iterative multi-model-based filter to
predict unknown motion dynamics of the target. The system’s effectiveness was confirmed
through tests in complex scenarios using ROS Gazebo. However, all the above-mentioned
techniques are proposed by assuming the UAV system is in a nominal state, without
considering midflight control degradations and maneuverability loss.

Multirotor UAVs are susceptible to propulsion system failures, including issues with
motors, propellers, and electronic speed controllers (ESCs). To address these challenges
that limit UAV integration into civilian airspace, various researchers have proposed meth-
ods to safely handle emergency situations. These methods are designed to enhance the
resilience of UAVs, allowing them to maintain operation or perform controlled landings in
the event of component failures, thereby ensuring safer integration into populated areas.
A key focus is enabling UAVs to execute emergency landings, paralleling the emergency
protocols of manned aviation. This capability is crucial for safe UAV operations in over-
populated areas, mitigating risks during emergencies. Conventionally, UAVs are guided to
predetermined safe zones, requiring up-to-date databases and constant communication
with operators [11,12]. Alternatively, proposed solutions suggest equipping UAVs with
technology to autonomously process information and select appropriate landing sites [x6].
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Complementing this, our research is based on another emergency landing strategy: en-
abling UAVs to detect and land on moving platforms, such as Unmanned Ground Vehicles
(UGVs), and we aim to propose safe tracking and landing algorithms.

Numerous studies, including our prior research, have demonstrated the ability to
partially regain control authority in certain types of multirotor UAVs during mid-flight
propulsion system failures [13–15]. Specifically, the hexarotor configuration noted in [16]
exhibits enhanced resilience to actuator failures. Our assessments of multirotor UAV
controllability during such events reveal a decrease in force and moment output, thereby
restricting maneuverability [17]. This diminished controllability presents challenges for
emergency response tactics that demand high maneuverability and the ability to cope with
disturbances [18]. For example, as depicted in Figure 2, when following a ground vehicle
(UGV), the UAV might need to perform more intense maneuvers and exert additional force
in situations where the UGV executes sharp and quick movements. Meeting these demands
becomes challenging due to reduced control authority. Furthermore, external factors like
wind during landing can cause the UAV to deviate from its intended path, leading to an
inaccurate landing. Consequently, in this paper, we introduce an adaptive tracking and
landing algorithm that compensates for propulsion system failures and the consequent
loss of control, ensuring safe tracking and landing on moving platforms. We specifically
address the following identified challenges:
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Figure 2. The figure presents the problem definitions as follows: (a) The impact of rotor failure on
UAV dynamics and tracking performance; (b) the influence of tracking perturbations caused by wind
during landing on a moving UGV.

Problem 1: Ensuring safe UAV tracking and landing on a moving object despite limited
maneuverability and an inability to counteract external disturbances like wind gusts (refer
to Figure 2a).

Problem 2: Tackling the challenge of landing on a moving object amidst tracking
disturbances caused by wind, and slower response times due to degraded control authority,
resulting in off-target landings (refer to Figure 2b).

The primary objective of this research is to enhance the safety and effectiveness of
UAVs in tracking and landing on moving targets such as UGVs during scenarios where the
propulsion system fails, leading to reduced maneuverability and control. This malfunction
significantly hampers safe UAV recovery. Previous studies have focused on developing
methods to detect, isolate, and partially compensate for such control degradations. Build-
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ing on this, we aim to develop adaptive tracking and landing algorithms that can handle
reduced maneuverability and ensure safe engagements with moving objects. These algo-
rithms will improve UAV emergency protocols by providing alternative recovery options,
such as landing on moving targets, in addition to returning to a predefined location or
searching for safe landing zones.

Specifically, our approach employs a modified adaptive pure pursuit guidance tech-
nique with an extra adaptation parameter to compensate for reduced maneuverability, thus
ensuring safe tracking of moving objects. Additionally, in between landing processes, track-
ing perturbation is addressed by introducing an adaptive landing technique. This adaptive
landing strategy adapts to tracking deviations and minimizes off-target landings caused
by lateral tracking errors and delayed responses, using a lateral offset-dependent vertical
velocity control. To obtain accurate ground vehicle pose estimation, we employ and test
with both April tag detection and YOLOv5 deep learning model for landing tag detection,
complemented by a Kalman filter to ensure smooth tracking, even during moments of
occlusion. Extensive testing and simulations were conducted in a simulated environment
with a UGV equipped with an integrated tag and a UAV with an integrated camera to
validate the efficacy of our method. Additionally, our strategy was implemented on a hard-
ware platform, yielding compelling results in detecting and estimating the ground vehicle’s
state during dynamic tracking scenarios. This approach reduces accident risks, adapts to
control limitations, and advances tracking and emergency landing for fault-tolerant UAVs,
especially in actuator failure scenarios, significantly enhancing mission success rates.

Key contributions of this paper include the following:

• Implementation of modified adaptive pure pursuit guidance technique with an extra
adaptation parameter to compensate for reduced maneuverability, thus ensuring safe
tracking of moving objects.

• Adaptive landing strategy that adapts to tracking deviations and minimizes off-target
landings caused by lateral tracking errors and delayed responses, using a lateral
offset-dependent vertical velocity control.

• Implementation of the proposed system in a mid-mission emergency landing sce-
nario (Bring Back Home mission), which includes actuator health monitoring to trigger
emergency landing and estimate resulting limitations in the system dynamics.

The paper is structured as follows. Section 2 provides a detailed description of the
UAV and UGV system, encompassing their control architecture and mathematical model,
which includes the assessment of control authority degradation in the UAV. In Section 3,
the UAV’s tracking and landing strategy on a moving UGV, along with vision-based UGV
pose estimation, is presented. The integrated architecture’s test results are subsequently
discussed and summarized in Section 4. Finally, Section 5 contains the conclusions of
this work.

2. UAV and UGV System

The proposed system comprises two agents: a UAV, a 6DOF aerial vehicle, and a
UGV, a 3DOF ground vehicle. This section will first discuss the modeling and control
system of each individual component before delving into the description and analysis of
the integrated cooperative system.

2.1. Multirotor UAV System

Multirotor UAVs, characterized by their use of multiple fixed-pitch rotors, employ
a propulsion system for controlled flight. This system, consisting of propellers, motors,
Electronic Speed Controllers (ESCs), and batteries, generates thrust forces perpendicular to
the rotor planes, determined by their spin direction and rate. The resulting reaction torques
counter rotor rotations, requiring precise control for stabilization and maneuverability.
This combination of force and torques grants multirotor UAVs exceptional agility and
hovering capabilities.
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2.1.1. Dynamics of UAV System

Developing a mathematical model for UAV flight involves assumptions like treating
the centroid as the center, assuming rigidity without deformations, neglecting air resistance
for low-speed scenarios, and maintaining constant mass and moment of inertia throughout
the analysis [19].

Therefore, the thrust Ti and torque τdi generated by the ith propeller spinning at a
rotational speed ωi, as shown in Figure 3, can be expressed as follows:

Ti = kt,iω
2
i (1)

τdi = kd,iω
2
i (2)

where kt,i and kd,i are generalized thrust and drag coefficients that depend on propeller geometry.
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For propellers arranged systematically about the z-axis of the body frame Fb in order to
form a multirotor configuration system, the total thrust generated from n propellers situated
with angle θz,i about body z-axis from positive x of the Fb and with tilting angles θy,i and
θx,i about propeller coordinate y-axis and x-axis, respectively, that form the configuration
can be given as

T =
n

∑
i=1

T′i (3)

where T′i =
[

T′xi T′yi T′zi

]
is the transformed thrust due to propeller tilting by the rotation

matrix, given as
T′i = Ti

(
RZb(θzb,i)RYp

(
θyp,i

)
Rxp

(
θxp,i

)
e3

)
(4)

Rotation moment is generated through the application of the differential thrust princi-
ple. This principle entails adjusting the speeds of individual rotors to control the rotation
of the UAV. Independent control of each rotor’s thrust is achieved by varying its angular
velocity. The resulting differential thrust creates a torque imbalance, facilitating precise and
responsive rotation due to its offset position from the center. The overarching principle of
torque balance, achieved by adjusting rotor speeds to manage the total torque acting on the
UAV, is fundamental for stability and controlled flight.

Let us denote the location of each rotor at distance li from the center rotor, which can
be described as

Li =
[
lix liy liz

]T
=

cos θzb,i
sin θzb,i

0

× li (5)

The moment force about the body frame is generated due to propeller placement,
influencing thrust and drag dynamics.

τ =
n

∑
i

pi × Ti + τdi (6)
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where drag torque τd,i

τd,i =

{
−kd,iω

2
i counter clock wise, ccw

kd,iω
2
i clock wise, cw

(7)

Generally, the above formulation can be written compactly by using the effectiveness
matrix, B, that maps actuator space to moment space Rn −→ Rm as

T
τϕ

τθ

τψ

 = B
(
l, θzb, θyp, θxp, kd, kt

)ω2
i

...
ω2

n

 (8)

The equation of the UAV motion can be given as

.
x = Vucos θcos ψ (9)

.
y = Vucos θsin ψ (10)

.
z = −Vusin θ (11)

..
x = (cosψsinθcosϕ + sinψsinϕ)

T
m

(12)

..
y = (cosϕsinθsinψ− cosψsinϕ)

T
m

(13)

..
z = −go + (cosθcosϕ)

T
m

(14)

.
ψ =

ah
Vcos θ

(15)

.
θ =

av

V
(16)

..
ϕ =

(
Iy − Iz

Ix

)
qr +

τϕ

Ix
(17)

..
θ =

(
Iz − Ix

Iy

)
pr +

τθ

Iy
(18)

..
ψ =

(
Ix − Iy

Iz

)
qr +

τψ

Iz
(19)

where Vu is the velocity of the UAV, ah is the horizontal velocity of the UAV, av is the vertical
acceleration of the UAV, and I =

[
Ix, Iy, Iz

]
, UAV rotational moment.

2.1.2. Actuator Failure and Control Degradation

An actuator failure in a multirotor UAV can lead to reduced control authority, asym-
metric moments, unintended movements, and potential saturation of remaining operational
actuators. This compromises stability, maneuverability, and overall control capabilities,
while also increasing vulnerability to external disturbances and altering the Attainable
Moment Envelope.

2.1.3. Control Degradation Assessment

In aviation, the attainable moment set represents the range of achievable moments
or torques within a system, indicating the system’s maximum capacity in generating mo-
ment force through permissible control inputs. This analysis is crucial for understanding
the UAV’s capabilities, limitations, and responsiveness to external forces or disturbances.
The AMS significantly affects system performance, imposing limits on achievable time
derivatives of states, constraining maneuverability, agility, and disturbance rejection capa-
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bility. Limited AMS, particularly due to propulsion system failure, risks safe operation by
degrading control authority [20].

From Equation (8), the effectiveness matrix that depends on the propulsion and
configuration parameters can be rewritten as

B = f (kt, kt, θ, γ, l) (20)

Thus, the set of all attainable moments in its three axes (roll τϕ, pitch τθ , yaw τψ) is
denoted by the Attainable Moment Set (AMS) Λ ∈ R3, generated within admissible control,
which can be given as

Λ =
{

m ∈ Rm×1
∣∣∣m = Bu, umin < u < umax

}
(21)

where B ∈ Rm×n is the effectiveness matrix determined by design parameters, mapping
actuator control input to moment space, and u is admissible control within the operational
range of actuators.

The effectiveness matrix B of the healthy configuration is adjusted by removing the
column associated with the failed actuator, expressed as

B f = Bχ (22)

where B f is the resulting matrix with the failed actuator contribution excluded, and χ is
the actuator fault flag indicating the location of the failure. The achievable moment in all
three axes, roll τϕ f , pitch τθ f , yaw τψ f , after actuator failure can be given by modifying
Equation (21). Therefore, the resulting operational envelope can be used to estimate and
tune tracking parameters like that of the minimum lookahead distance to ensure that the
UAV remains within the operational envelope, avoiding scenarios where the required
moment exceeds its degraded capabilities.

2.2. UGV System

This study employs a six-wheel ground vehicle with a tag for detection to guide
the UAV and serving as an emergency landing platform. In this section, the guidance,
navigation, and control strategy is described to drive the UGV to the approximate location
of the UAV emergency area and navigate to the destination.

2.2.1. UGV Kinematics

Each wheel is independent and independently driven so that each wheel can be
controlled. The six driving wheels are not steering wheels; turns are made by changing the
rotational speeds of the six wheels, and cornering radii vary depending on the rotational
speed of the drive wheels and the indices of adhesion to the ground, the slip indices. The
six-wheel UGV is shown in Figure 4.
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Figure 4. UGV model.

Differential drive robots are also called differential wheeled robots, and they involve
calculating the appropriate speeds and directions for each wheel based on the desired
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movement of the robot, such as going forward, turning at a specific angle, or following a
predefined path [21]. 

.
X
.
Y
.
ψ

 =

cos ψ 0
sin ψ 0

0 1

[Vg.
ψ

]
(23)

where Vg and
.
ψ are the tangential and the angular velocities of the vehicle:[

Vg.
ψ

]
= f

[
ωr
ωl

]
(24)

where ωr is the right-side wheel’s rotation rate, assuming ωr1 = ωr2 = ωr3, ωl is the left-
side wheel’s rotation rate, assuming ωl1 = ωl2 = ωl3, and f is a geometrical information
matrix depending on the distribution of the wheels in the system and wheel parameters.

2.2.2. UGV System Guidance Navigation and Control (GNC)

In robotics GNC, guidance plans optimal paths, and navigation monitors real-time
positioning [22]. The Waypoint Navigation Method (WPN) sequentially guides the robot
through waypoints. In our case, the waypoint list includes the UAV’s approximate position
for visibility to the UAV vision system and triggering tracking mode. Waypoints commence
at the UGV home, pass through the UAV’s emergency hovering location, and return home,
as shown in Figure 5.
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To achieve smooth turning paths and generate trajectories between waypoints, we
employed the Cubic Spline interpolation method. Cubic Spline interpolation constructs
continuous curves that pass through or near given waypoints, creating a refined trajectory
for the robot. It utilizes piecewise third-order polynomials, ensuring they pass through a
set of n control points [23]. A function f (x) on [a, b] becomes an interpolated cubic spline
function if the following two conditions are met.

yd =


f1(xd) x0 ≤ xd ≤ x1
· · · · · ·

fi(xd) xi−1 ≤ xd ≤ xi
· · · · · ·

fn(xd) xn−1 ≤ xd ≤ xn

(25)

where each fi(x) = ai + bix + cix2 + dix3, di ̸= 0, i = 1, · · · , n.
Let us suppose that at some time instant t, the robot position is given by the coordinates

x and y. Also, let us assume that at the time instant t, the orientation of the robot body is
given by ψ. Our goal is to steer the robot to the point d with the coordinates (xd, yd) on the
planned path. To arrive at the target, the velocity vector of the robot should rotate to ψd
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such that it is in the direction of the line connecting the center of the robot and the target
point d.

ψd = archta2
(

yd − y
xd − x

)
(26)

Using the proportional controller, the direction of the UGV velocity vector can be
controlled as follows. .

ψ = Kψ(ψd − ψ(t)) (27)

where ψ(t) is the current value of the orientation of the robot and Kψ is the proportional
control gain for orientation control.

Vg = Kv

√
(xd − x(t))2 + (yd − y(t))2 (28)

where Kv is the proportional constant for controlling the robot’s velocity.

3. Tracking and Emergency Landing Scenario on Moving Object
3.1. Emergency Landing Scenario

In this section, we develop the method for tracking using a 2D image obtained from
the camera mounted on the UAV. Unfortunately, while the UAV is in action, if one of its
actuators fails unexpectedly, it results in a reduction in control capability. This limits the
UAV’s ability to maneuver effectively, potentially causing the mission to come to a halt.
As explained in Section 2, the hexarotor UAV considered in this study can maintain null
controllability even with a single actuator failure. This is achieved by redistributing the
control command to the remaining healthy actuators. Upon detection of a failure by the
FDI system in the UAV health monitoring system, the typical immediate response is to
enter the recovery phase, where the UAV hovers and attempts to regain stability. After
achieving stability, if the UAV is unable to return home or continue its mission due to
degraded control, the vision and landing tag detection system is activated to initiate the
search for safe landing options.

The architecture of the integrated system of UAV-UGV for making emergency landing
on a moving UGV is presented in Figure 6. In the very beginning, the UAV with all
components working fine is given a mission to perform in scenarios like that of surveying or
urban traffic monitoring. During this operation, unintended component failure, specifically
actuator failure, will result in controllability degradation that limits the maneuverability,
hence halting mission completion. Once the occurrence of the failure is detected by the FDI
system of the UAV health monitoring system, the immediate action commonly taken is
hovering and trying to regain stability, which is known as the recovery phase. The real-time
fault detection and isolation system is adopted from our previous work, as described
in [24]. As discussed in Section 2, the type of hexarotor UAV under consideration has the
capability of null controllability for a single actuator failure in the system by redistributing
the control command to the other healthy ones. In the meantime, the vision and landing
tag detection system is triggered by this signal and starts searching for the existence of safe
landing options.

Once the UAV system decides to search around for emergency landing, the approxi-
mate location of the current UAV location is sent to UGV. This request activates the UGV
system and includes the sent location point from the UAV into the waypoint list that guides
and returns the UAV home by generating a trajectory. The UGV navigates to the UAV loca-
tion upon triggering the tracking mode when seen by the UAV camera. Despite degraded
control authority, the tracking algorithm parameters are reconfigured to accommodate the
loss of controllability and reduce the required turning rate.

Once the UAV accurately tracks the UGV, it enters landing mode, descending while
maintaining precise tracking. The proposed strategy employs adaptive landing logic,
adjusting descending speed based on tracking precision. If tracking precision decreases, the
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logic slows the descent; conversely, if the UAV precisely tracks the UGV, the logic increases
the descending speed.
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3.2. UGV Pose Estimation

In the tracking process, the precise and swift detection of the landing pad is crucial.
This study employs two types of landing tags, namely April tags (see Figure 7) and standard
H-type landing pads (see Figure 8), for estimating the UGV pose. While the primary focus
is not an exhaustive examination and comparison of the performance of these markers, the
proposed framework was tested with both April tags and standard H-type landing pads to
ensure the generality and applicability of the system.
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April tag, a widely used fiducial, utilizes 2D coded information on a tag to provide
the camera with the marker’s position and orientation. It identifies four-sided regions with
a darker interior, computes pixel gradients, groups them into components, and fits lines
using a weighted least squares technique. These lines form quads with a valid code scheme,
and the system extracts the 6-DOF pose of the tag in the camera frame using homography
and intrinsic estimation. April tag is advantageous for its low cost and computational
simplicity. However, its use as a localization system may result in erroneous localization
due to factors such as viewing angle, distance, and camera rotation [25].

Furthermore, in this investigation, the UGV’s state is ascertained utilizing standard
landing helipads through the implementation of YOLOv5, a rapid and highly accurate
object detection algorithm using a deep learning model developed in PyTorch. The selected
deep learning model is trained with a diverse dataset that extends beyond helipads to
encompass persons and cars. This comprehensive approach ensures versatile and precise
state estimation, combining standard helipad tags, April tags, and a machine learning
model. The dataset encompasses various helipad tags, illustrating their variations, along
with drone images from different perspectives, as depicted in Figure 7. The dataset,
comprising 901 images (including 223 person images, 433 helipad images, and 245 car
images), undergoes labeling and augmentation using the Roboflow API and is partitioned
into 70% training and 30% test images.

The relative location of the detected helipad relative to the UAV COG was computed
and subsequently transformed from camera frame to UAV body frame. The estimation
of 3D pose of the helipad on the moving UGV with respect to the camera is summarized
in Figure 9. If (X, Y, Z) is a 3D point in known local coordinate space, we can calculate in
the camera coordinate system ( xc, yc, zc) by the rotation matrix R and translation matrix t
as follows: xc

yc
zc

 = [R|t ]


X
Y
Z
1

 (29)

In the absence of radial distortion, the coordinates (Xc, Yc) in the image coordinates
are given by [26–32] Xc

Yc
1

 = s

 fx 0 cx
0 fy cy
0 0 1

xc
yc
zc

 (30)

where fx, and fy are focal length,
(
cx, cy

)
is the optical center, and s is the scaling factor.

After obtaining the coordinate of the bounding box from the detection result, the center
of the tag was calculated and transformed to the camera coordinates, followed by transfor-
mation to the UAV body coordinate frame. Subsequently, for tracking purposes, the relative
position and orientation of the tag will be transformed to the local coordinate system.
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However, there are scenarios that make the position and orientation noisy and inter-
mittent in estimation, as a result of occlusion. During the landing process, the target may
be partially or fully occluded, or may move out of the field of view. Hence, we use Kalman
filter (KF) to estimate the target parameters. A Kalman filter is designed to predict the
position of the UGV at the next time step. This helps in cases of temporary loss of image
or target occlusion. The Kalman filter determines the position whether it is detected in
the image or not. For such scenarios, the Kalman filter uses the previous estimate to give
the best estimate of the position. So, when the position is estimated, the Kalman filter
predicts its state and then uses fresh measurements to correct its state and produce a filtered
position. The state of the filter is represented by x̂k|k, and the two steps for the filter, Predict
and Update, are as follows.

Predict: {
x̂k|k−1 = Fk x̂k−1|k−1 + Bkuk
P̂k|k−1 = Fk P̂k−1|k−1FT

k + Qk
(31)

Update: 

yk = Gkxk−1|k−1 + nk
Sk = GkPk|k−1 + Rk
Kk = Pk|k−1HT

k S−1
k

x̂k|k = x̂k|k−1 + Kkyk
Pk|k = (1− Kk Hk)Pk|k−1

(32)

where Fk, is the state estimation matrix, Bk is the control input applied to the control vector
uk, Hk is the observation matrix, nk is the observation noise, Sk is the innovation covariance
matrix, and Kk is the Kalman gain.

3.3. Target Tracking Using Adaptive Pure Pursuit Guidance

The Pure Pursuit approach establishes a continuous curved trajectory connecting the
current UAV position to a point predetermined at a specified distance ahead of the UGV
(see Figures 9 and 10) [33–37]. A reduced lookahead distance necessitates more precise
path tracking, improving the system’s ability to follow paths with higher curvature. A
smaller lookahead distance leads the vehicle to return to the path more aggressively when
separated. Conversely, a longer lookahead distance enables the vehicle to initiate turning
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before reaching a curve, preventing overshooting upon return and resulting in smoother
trajectories. In the event of actuator failure, reducing controllability and maneuverability,
the lookahead distance Is dynamically adjusted to avoid sharp turns that require high
turning moment force.
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Let us take lookahead point pn taken from in front of the estimated UGV location,
given by (xt, yt, zt), previous lookahead point pn−1, given as (xt−1, yt−1, zt−1), and current
UAV position p, given as (xu, yu, zu). From the current state of the UAV, the lookahead can
be calculated as (see Figure 11)

R =

√
(xt − xu)

2 + (yt − yu)
2 + (zt − zu)

2 (33)

Rxy =

√
(xt − xu)

2 + (yt − yu)
2 (34)

Rz = zt − zu (35)
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As covered in Section 2, actuator failures in UAVs constrain the UAV’s attitude control
authority. Consequently, to mitigate substantial attitude moments during sharp UGV turns
and address significant deviations between UAV and UGV positions, the lookahead dis-
tance must be fine-tuned. This adjustment facilitates smoother and slower turns, reducing
the demand for yawing moments. In the adaptive algorithm, the lookahead distance is no
longer a constant value; instead, it adapts based on the perpendicular distance between the
current UAV position and the path linking pn and pn−1. From point d, the projection of p,
and the line connecting pn−1 and pn, the error can be obtained as

Rerror =

√(
xu − xp

)2
+

(
yu − yp

)2 (36)

Therefore, Rerror adjusts the lookahead distance as

R′xy = Rxy + Rerror + RAMS (37)

where RAMS is a minimum lookahead distance that maintains the UAV within the range
of achievable force, given in Equation (23). This parameter limits and protects the UAV
from demanding more than the achievable force that the UAV can generate, as shown in
Figure 12.
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Let us take the modified lookahead point
∼
pn,

(∼
xt,
∼
y t,
∼
z t

)
. The angle λxy formed by

R′xy and the x axis and the angle λ formed between lines R and R′xy can be computed as

λxy = tan−1
(∼

y t − yu/
∼
xt − xu

)
(38)

λ = tan−1
(∼

z t − zu/R′xy

)
(39)

The require heading correction can be given as

.
Rxy = Vtcos

(
ξugv − λxy

)
−Vucos γcos

(
ξuav − λxy

)
(40)

R′xy
.
λxy = Vtsin

(
ξugv − λxy

)
−Vucos γsin

(
ξuav − λxy

)
(41)

Therefore, the guidance command will be
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axy = Vucos γ
.
λxy − Ka

(
ξuav − λxy

)
(42)

.
ξuav =

axy

(Vucos γ)
(43)

3.4. Adaptive Autonoumus Landing on a Moving Target

In this section, the objective is to land the vehicle smoothly on the target while persis-
tently tracking it, as depicted in Figure 13. To meet these two requirements, we propose
an adaptive descending velocity that depends on the tracking performance Rerror and the
smoothness of the landing process by introducing penalty factor α. In scenarios where Rerror
is lower (α ≈ 1), the UAV follows proportional tracking, whereas if the UAV deviates from
tracking, the descending rate will be penalized, and for a large deviation from tracking, the
landing will be halted and the UAV will maintain its altitude until the tracking performance
of the UAV is regained. The presented pseudocode clearly shows the proposed adaptive
system (see Algorithm 1).
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For the current altitude of the UAV given by zuav and the landing plane altitude given
as zl , the descending velocity can be given as

Vz = −kzα(zuav − z) (44)

Algorithm 1: Adaptive landing algorithm

Input: UGV position offset relative to UAV position
Output: Velocity and heading rate command

1 Initialize: Landing Mode
2 While True do
3 If UGV_detected then
4 Vx, Vy,

.
ψ←− controller_lateral (error(xo f f , yo f f , ψo f f ))

5 If zo f f < 0.5 m then
6 Vz ←− 3 m/s
7 else
8 Vz ←− controller_vertical (error(Zo f f ), α )←− α ←− (Rerror(error(x, y)))
9 end
10 end
11 else If UGV_not_detected then
12 Increase altitude: Vz ←− trust command
13 end
14 end
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During the landing process, to slow the descent when the UAV is not precisely tracking
the UGV (Equation (44)), we take into account the tracking penalty factor α = e−bRerror ,
where 0 < α < 1. As shown in Figure 14, when the UAV is precisely following the
UGV, Rerror → 0 , α→ 1 , and therefore, Vz will be proportional to control with gain kz,
whereas in the scenario where the tracking is not precise, Rerror → ∞ , α→ 0 , this slows
the descending velocity and gives time for the tracking algorithm to correct for deviation.
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4. Results and Discussion
4.1. Test Environment Setup Preparation

In this research, we executed comprehensive simulation tests and flight experiments
to assess a proposed architecture for tracking and emergency landing. The testing encom-
passed diverse scenarios mimicking real-life occurrences within a simulated environment
created using GAZEBO, a dynamic 3D model simulation tool. The integration of PX4 flight
controller software version stable 1.14 and ROS-based packages facilitated control over
both the UAV model, equipped with six rotors and an integrated gimbal camera, and a
six-wheeled ground robot. The ground robot featured a flat platform with a tag serving as
a mobile landing target system.

During the experiments, the GNC system employed waypoint navigation, utilizing
UGV position and speed data from the wheel speed odometer. For tracking and landing,
an ROS-based package with Python code was created, integrating an April tag detection
algorithm and a trained YOLOv5 model. This package subscribed to camera image data,
performed inference to determine the detected object’s position in image coordinates,
and transformed it to camera and local coordinates. After estimating the UGV’s pose, a
tracking module used the pure pursuit algorithm for accurate UGV tracking. Flags were
set to activate modes like “bring me home” for UGV, recovery mode, tracking mode, and
landing mode for UAV touchdown on the moving UGV. Additionally, a PX4 firmware
module was implemented to inject faults and reallocate control commands, with the source
code compiled.

A hardware setup, illustrated in Figure 15, was prepared to test the proposed system.
In addition to standard multirotor UAV components, such as motors, propellers, ESC,
GPS, Pixhawk 4 autopilot, and LiPo Battery, the setup included a vertically mounted
ZED stereo camera for visual perception. The NVIDIA JETSON NANO 4GB served as
the companion computer for image processing. The camera connected to the companion
computer via USB, and the ZED ROS wrapper package facilitated image capture and
calibration. Communication between the Pixhawk 4 and NVIDIA JETSON NANO 4GB was
established through MAVLINK-enabled serial ports, ensuring the exchange of telemetry
data and setpoint information for the controller at a rate exceeding 2 Hz.

The integration of the vision-based target pose estimation package, tracking, adaptive
landing package, and a custom fault detection and reallocation module in PX4 underwent
testing across various tracking and landing scenarios. The evaluation encompassed both
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healthy and degraded control conditions, with the summarized results presented in the
following sections.
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4.2. Tracking and Landing Simulation Result
4.2.1. Straight Line Profile Landing

In this particular evaluation, we are testing the proposed adaptive tracking and landing
strategy under a scenario where the target is moving in a straight line with a constant
speed, denoted as Vt. The experiment involves varying the speed of the target, specifically
at values of Vt = 0.5 m

s , Vt = 1.5 m
s and Vt = 3 m

s , as illustrated in Figures 16 and 17.
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Vt = 1.5 m
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s .

The key observation from the results is that the UAV adeptly follows the moving
target, ensuring precise tracking. This, in turn, leads to a seamless landing process where
the tracking error (Rerror ∼= 0) is approximately zero, indicating a highly accurate tracking
performance. Importantly, this shows that the proposed adaptive landing strategy imposes
no penalties on the descent speed.

4.2.2. Addressing Tracking Errors, Rerror, with Adaptive Landing

In this scenario, the assessment focused on evaluating the effectiveness of the proposed
adaptive landing, which introduces penalties on the descent speed when a tracking error
Rerror occurs during landing. As illustrated in Figure 18a, an external force was applied in
the middle of the landing, causing disturbance and displacement of the UAV from precise
tracking. The resulting path of the UAV, depicted in Figure 18b, reveals the perturbation
induced in the tracking.

Drones 2024, 8, x FOR PEER REVIEW 20 of 29 
 

tracking error 𝑅  occurs during landing. As illustrated in Figure 18a, an external force 
was applied in the middle of the landing, causing disturbance and displacement of the 
UAV from precise tracking. The resulting path of the UAV, depicted in Figure 18b, reveals 
the perturbation induced in the tracking. 

 

 

(a) (b) 

Figure 18. Effect of perturbation tracking on landing process. (a) Disturbance injection in simulation. 
(b) Resulting position estimate. 

Upon detecting a deviation from precise tracking, the proposed adaptive landing 
method responds by penalizing the descending speed. This deliberate slowdown in the 
landing progress allows time for the tracking precision to be restored, whereas the 
convectional method results in off-target landing. As illustrated in Figure 19, the 
highlighted area indicates that the altitude remains approximately at 8m until the 
disturbance is rejected, and precise tracking is re-established. Consequently, this 
enhancement contributes to the precision of landing on moving objects. 

 

Figure 18. Effect of perturbation tracking on landing process. (a) Disturbance injection in simulation.
(b) Resulting position estimate.



Drones 2024, 8, 182 19 of 27

Upon detecting a deviation from precise tracking, the proposed adaptive landing
method responds by penalizing the descending speed. This deliberate slowdown in the
landing progress allows time for the tracking precision to be restored, whereas the convec-
tional method results in off-target landing. As illustrated in Figure 19, the highlighted area
indicates that the altitude remains approximately at 8 m until the disturbance is rejected,
and precise tracking is re-established. Consequently, this enhancement contributes to the
precision of landing on moving objects.
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Figure 19. Effect of offsetting from tracking on landing process. The proposed adaptive landing
strategy slows down the descending speed when the UAV is offset from tracking UGV precisely.

4.2.3. Adaptive Tracking in Circular and Rectangular Profile

In this section, we assessed the tracking and landing capabilities of the proposed
method when the UAV faces a complete rotor failure, leading to a 30% loss in achievable
torque, as per Equation (22). The first test examined how varying lookahead distances help
smoothen the UAV’s tracking response during sharp turns by a UGV, compensating for the
UAV’s reduced control authority. The second test evaluated the system’s performance in
tracking and landing on a moving UGV traveling at a constant speed of 1.5 m/s along a
circular path.

As shown in Figure 20, the UGV followed a rectangular course with four sharp turns.
Initially, the UAV was instructed to take off, identify the tag, and estimate the UGV’s
position. A reference line was then drawn connecting the previous and current estimated
positions of the UGV. The tests analyzed the UAV’s tracking effectiveness and the effects
of various lookahead distances on its turning smoothness and agility when navigating
sharp turns of the UGV. Three different lookahead distances were evaluated, repeating
the simulation for each setting. The results indicated that a longer lookahead distance
(RAMS3 = 6 m) resulted in smoother but less accurate turns, which was deemed acceptable.
Conversely, a shorter lookahead distance (RAMS2 = 2 m) led to more precise but aggressive
turns, and distances below 1.78 m caused the UAV to fail in tracking the UGV during sharp
turns. These findings highlight that adjusting the minimum lookahead distance is crucial
for managing the UAV’s limited control capabilities, ensuring that operations stay within
feasible limits. The ideal lookahead distance should be determined based on the UAV’s
dynamics and the severity of control degradation due to the rotor failure.
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In the second test, the UAV was initially commanded to take off and search for the
tag, while the UGV followed a circular profile. Consequently, the UAV tracked the UGV
along the circular path, as illustrated in Figure 21. After a period of tracking, the UAV
transitioned to landing mode, descending while maintaining tracking within the circular
profile. Ultimately, the UGV transported the UAV back to its initial position. The results
affirm the robustness of the tracking and landing strategy across various profiles.
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4.2.4. Emergency Landing Scenario in the Event of Actuator Failure: “Bring Back
Home” Mission

This section illustrates a “bring back home” mission scenario involving a UAV using a
UGV as a landing platform to guide it back home. This scenario replicates real-life situations
where a UAV encounters actuator failure during a mission, lacks sufficient control authority
to return home, and cannot land at the event location due to the absence of a designated
landing site. Additionally, for the purpose of testing the proposed methodology while
maintaining consistency and minimizing complexity, we assume that the battery levels of
both vehicles are fully charged and sufficient to carry out the operation.

As depicted in Figure 22, a test plan with multiple phases—mission flight (A), midflight
fault injection (B), recovery (C), tracking (D), and emergency landing with degraded
control (E)—was devised and implemented using our proposed framework to address such
challenges. Initially, the UAV was assigned a survey mission at 10 m and during its mission
flight, a fault was injected to disable one of its actuators. This triggered the recovery phase,
allowing the UAV to regain control. Once control was reestablished, the UAV initiated
a search for a landing option by activating the camera and detection module. The event
location was communicated to the UGV, which then planned a path passing through the
UAV’s current approximate location.
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Figure 22. Result of emergency landing scenario due to actuator failure in the middle of mission flight.

As the UGV approached the event location, it became visible to the UAV’s vision
system, prompting the initiation of the UAV tracking module to receive the UGV’s estimated
pose. The tracking algorithm guided the UAV to follow the UGV, and upon precise tracking,
the UAV landed on the UGV, as illustrated in Figure 23, showcasing the sequential landing
process with precise tracking. Subsequently, the UGV carried the UAV back home. A
simulation video of the entire scenario is available in Supplementary Material S1.
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The fault injection and recovery process are illustrated in Figure 24, depicting the
normalized control commands (u) for each rotor. During the mission phase, all actuators
operated normally, and control signals were allocated accordingly. However, at the third
minute, a fault was injected into actuator −2, triggering the UAV’s entry into the recovery
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phase. In this phase, the contribution of the failed actuator was mitigated by reallocating
commands to other healthy actuators, stabilizing the Hexacopter configuration to hover
and regaining control shortly, as demonstrated in the recovery phase section.
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control command in each segment flight scenario. In the recovery phase, the controller reallocates the
control command to other healthy ones and stabilizes the system.

Simultaneously, the adaptive pure pursuit algorithm adjusted its lookahead distance to
prevent overshooting during tracking. Consequently, the results indicate the effectiveness of
implementing our framework for tracking and executing emergency landings in situations
where controllability is compromised due to actuator failure.

4.2.5. Experimental Results

This section outlines the efforts undertaken to validate the presented simulation results.
While the experimental work is still in progress, initial tests have exhibited promising
outcomes regarding the practical application of the proposed strategy. Due to constraints
in resources and the multidisciplinary nature of the proposed system, the scope of the
experimental tests was confined to real-time vision-based ground moving object pose
estimation. This involved both April tags and standard H-type helipads, utilizing the
YOLOv5 model for detection and tracking. Specifically, the focus was on tracking a
prepared tag intended to simulate a UGV.

A custom April tag, measuring 0.4 × 0.4 m and equipped with a rope at one edge,
was crafted to mimic UGV behavior. In the initial real flight experiment, an integrated
UAV hardware setup was deployed to fly at an altitude of 10m and hover. The objective of
this experiment was to estimate the pose of the tag relative to the UAV coordinate system.
While the UAV hovered, the tag was manipulated using the prepared rope, as illustrated in
Figure 25. The UGV module accurately reported the estimated pose.

Following successful verification, the UAV transitioned to offboard mode, initiating
the tracking module, which began publishing the position set point at a rate of 2 Hz.
Throughout this test, the UAV endeavored to track the moving tag on the ground, yielding
affirmative results. However, challenges arose due to the simulated tag’s inconsistent
and intermittent movement, induced by human manipulation on uneven surfaces. Conse-
quently, the testing process encountered difficulties.
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Figure 25. Experimental flight test.

As of the composition of this report, ongoing efforts persist in refining the test-
ing process. Furthermore, a real UGV is under development, capable of controlled
movement at desired speeds and directions, to facilitate more rigorous validation in
subsequent experiments.

The proposed system underwent testing using a crafted board as a moving target for
tracking and landing purposes. As illustrated in Figure 26, the tag moved at a roughly
constant speed of 1.5 m/s. The position estimation, carried out through an installed camera
and an April tag detection model, yielded unsmooth and intermittent results. However,
the integration of a Kalman filter algorithm, which treated the tag’s movement as a linear
system model, enabled the prediction of the target’s path. This predicted path was then
used to create a reference trajectory for the proposed adaptive pure pursuit algorithm.
Consequently, the Unmanned Aerial Vehicle (UAV) was able to anticipate the target’s
movement, allowing for smoother tracking and landing, as depicted in the figure.
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Figure 26. Experimental test result summary for UAV tracking and landing on moving object with
degraded control.

Likewise, another landing pad under consideration for utilization and evaluation is
the H-type helipad. As expounded upon in Section 3, the deep learning model that was
trained has been seamlessly integrated into our detection package. It has undergone real-
time testing to identify the helipads and estimate their poses. As illustrated in Figure 27,
the model exhibits a robust ability to detect the helipad with a high class probability,
underscoring its viability for effective pose estimation.
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Figure 27. Standard H-type helipad real-time detection and pose estimation using YOLOv5
trained model.

Furthermore, a controllability test was conducted on the Hexacopter UAV to assess
its response to control degradation caused by actuator failure. The experimental videos
capturing these tests are provided in Supplementary Material S1.

Despite the ongoing nature of the experiment and the ongoing resolution of described
limitations, this real flight experiment demonstrates the feasibility and adaptability of the
proposed system.
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5. Conclusions

In conclusion, this study advances the development of adaptive tracking and landing
algorithms for UAVs targeting moving objects, specifically focusing on emergency scenarios
involving propulsion system failures that impair maneuverability and control. The research
begins with an in-depth analysis of the dynamics and control strategies of UAVs and UGVs.
We critically evaluated the UAV’s performance during failures, selecting a fault-tolerant
Hexacopter-type Multirotor UAV as our experimental platform. This work incorporates
advanced pose estimation using UAV-mounted cameras and tag detection algorithms,
evaluating two state estimation methods for the UGV, using April tags and the YOLOv5
model for H-type landing pads.

A modified adaptive pure pursuit algorithm was developed to compensate for di-
minished control authority, allowing accurate tracking of the moving target’s position and
heading, with integration of a Kalman filter to maintain smooth tracking, even during
occlusions. Additionally, the study introduces an adaptive landing strategy that adjusts
dynamically to perturbations during landing by implementing vertical speed control de-
pendent on lateral offset. The proposed algorithms are integrated into an emergency
landing scenario named “Bring Back Home”, which includes necessary modules like ac-
tuator fault detection, isolation, and tolerance. These modules detect and assess control
authority degradation to trigger emergency landing protocols and adjust tracking parame-
ters accordingly. The effectiveness of these techniques was tested both individually and
within an integrated simulation environment. The first simulation tested the UAV’s ability
to track and land on a moving target at constant speeds of 0.5 m/s, 1.5 m/s, and 3 m/s with
30% reduced control authority due to a rotor loss. The second test evaluated the proposed
technique’s performance in landing on a moving target amid external perturbations. Fur-
ther tests assessed the tracking capability against a target executing sharp turns, comparing
the adaptive landing algorithm to conventional methods.

Overall, these tests validated the proposed methods’ effectiveness in maintaining safe
and controlled tracking and landing on moving targets under degraded control conditions.
Additionally, hardware tests confirmed the system’s performance in real-world tracking
and landing scenarios on moving targets. This comprehensive validation under-scores the
robustness of the proposed solutions in enhancing UAV operational reliability in dynamic
and challenging environments. Simulation videos illustrating the conducted tests and the
ongoing experimental flight test process are provided in Supplementary Material S1. As
future work, efforts are underway to establish a complete experimental setup for testing
UAV–UGV collaboration in emergency landing scenarios, including the implementation
of a communication system between the UAV and UGV and other complex scenarios that
include the battery level.
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