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Abstract: Water is essential for maintaining plant health and optimal growth in agriculture. While
some crops depend on irrigation, others can rely on rainfed water, depending on regional climatic
conditions. This is exemplified by grapevines, which have specific water level requirements, and
irrigation systems are needed. However, these systems can be susceptible to damage or leaks, which
are not always easy to detect, requiring meticulous and time-consuming inspection. This study
presents a methodology for identifying potential damage or leaks in vineyard irrigation systems
using RGB and thermal infrared (TIR) imagery acquired by unmanned aerial vehicles (UAVs). The
RGB imagery was used to distinguish between grapevine and non-grapevine pixels, enabling the
division of TIR data into three raster products: temperature from grapevines, from non-grapevine
areas, and from the entire evaluated vineyard plot. By analyzing the mean temperature values
from equally spaced row sections, different threshold values were calculated to estimate and map
potential leaks. These thresholds included the lower quintile value, the mean temperature minus the
standard deviation (Tmean − σ), and the mean temperature minus two times the standard deviation
(Tmean − 2σ). The lower quintile threshold showed the best performance in identifying known leak
areas and highlighting the closest rows that need inspection in the field. This approach presents
a promising solution for inspecting vineyard irrigation systems. By using UAVs, larger areas can
be covered on-demand, improving the efficiency and scope of the inspection process. This not
only reduces water wastage in viticulture and eases grapevine water stress but also optimizes
viticulture practices.

Keywords: thermal infrared imagery; water management; precision viticulture; water leak detection;
unmanned aerial vehicles; geographical information systems

1. Introduction

Viticulture and winemaking play big roles in the economies of several regions across
the world, particularly in Mediterranean countries such as France, Italy, Spain, and Portugal.
These countries collectively contribute significantly to the global wine production, and
the cultural and economic significance of producing high-quality wine is crucial for local
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communities [1]. However, contemporary viticulture faces several challenges essentially
resulting from global warming. This phenomenon is responsible for an increase in growing-
season temperatures in Europe [2]. The global trend indicates an average temperature rise
of 0.42 ◦C per decade and 2.04 ◦C overall between 2000 and 2049 [3]. These changes are
associated with more frequent and prolonged heatwaves, potentially leading to a reduction
in yields of up to 35% in specific viticultural regions [4]. In viticulture, the impact of
air temperature on the growth and productivity of grapevines is widely reported [5,6].
Furthermore, it has been established that air temperature significantly affects grapevine
physiology and the composition of the fruit [7]. Additionally, a decrease in precipitation
events can lead to soil water scarcity. This scarcity can result in severe water and nutrient
deficits throughout the grapevines’ growth cycle, which can adversely affect both the yield
of the vineyard and the characteristics of the fruit [8–11].

To address the challenges posed by water stress and to minimize its impacts on
vineyard productivity, there has been an increase in the adoption of irrigation in viticulture
over the past few decades [12]. Micro-irrigation techniques are commonly employed
in vineyards due to its cost-effectiveness in both installation and maintenance, when
compared to sprinkler systems [13]. Above-ground drip irrigation emitters are the most
common due to their ease of installation and management. However, above-ground
emitters are more susceptible to damage, often caused by factors such as sunlight exposure,
wildlife interference or machinery inadvertently puncturing the tubing, leading to water
leakage [14].

Given the scarcity of this vital natural resource and its critical role in ensuring a
healthy and productive grapevine, it is imperative to develop efficient methods for detect-
ing leak areas to enhance irrigation effectiveness and reduce water loss. Improving the
efficiency of early leak detection can lead to economic benefits for farmers by reducing
water consumption costs but also prevents the growth of weeds in areas inadvertently
irrigated. Conventional leak detection techniques involve manual inspections of visible
above-ground pipes and areas exhibiting signs of flooding caused by underground pipe
ruptures [15]. However, these methods require additional labor and lack the capability for
real or near real-time monitoring. Another used alternative is temporarily interrupting the
water supply system and use acoustic devices to check if sound can traverse to the end
of the pipe without interference, signaling an absence of leaks [16]. Yet, similar to visual
inspections, this approach demands additional human resources and disrupts regular sys-
tem operations, resulting in water supply interruptions that may interfere with irrigation
efficiency. Consequently, given its laborious and time-consuming nature, this method is
typically executed periodically rather than in real time.

The use of remote sensing technology, particularly unmanned aerial vehicles (UAVs),
has emerged as a valuable and recognized tool, offering comprehensive support to farmers
in various precision agriculture tasks. These versatile applications include monitoring crop
growth, assessing plant health, identifying diseases and pests, estimating crop yields, weed
mapping, irrigation management, and crop spraying [17]. In the specific context of viticul-
ture, winegrowers prioritize activities such as vineyard monitoring and management [18],
water stress estimation [19–22], monitoring effects of minerals application [23], fertilization
and irrigation management [24], canopy management [25], monitoring fruit growth and
characteristics [26], harvest timing [27], and seasonal trimming [28].

In the field of irrigation management, the existing literature mainly focuses on the
efficient use of water resources by assessing crop water stress and estimating plant water
stress. However, it is equally important to investigate the extent of water lost from leaks
in irrigation systems. In this regard, only a limited number of studies have explored the
potential of UAV-derived data to assist farmers in detecting irrigation malfunctions. In this
set of studies, methods for detecting water leaks in agriculture can be categorized into
automatic and semi-automatic algorithms, visual inspections or a combination of both.
Visual inspections targeted water leak detection in irrigation canals using multispectral
and thermal infrared (TIR) sensors mounted on UAV platforms [29,30]. These inspections
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identified open canals and selected subsurface irrigation leaks, relying on vegetation
indices, spectral band rations (NIR/Green and NIR/Blue), for detection of standing water.
Moreover, the reliability of the normalized difference vegetation index (NDVI) [31] was
found to be inconsistent. While successful in identifying large-scale canal leaks, these
studies did not include an analysis of irrigation systems at the plantation scale. Similarly,
the potential of remote sensing was evaluated for detecting irrigation areas [32]. An airborne
thermal camera was employed to analyze crop temperature and differentiate irrigated
and non-irrigated areas. It successfully identified sprinkler irrigation stages in a clover
parcel and their impact on adjacent corn plots. Additionally, it detected temperature
changes in parcels transitioning from wheat harvest to corn sowing, revealing leakage from
neighboring paddy parcels to a corn field.

Through the use of semi-automatic approaches, the validation of a water leak detec-
tion technique was assessed employing the empirical Triangle/Trapezoid method with
multispectral and TIR data obtained from manned aircraft and UAV platforms [33–35].
These studies evaluated the efficacy of vegetation indices such as NDVI and optimized soil
adjusted vegetation index (OSAVI) [36] combined with the TIR-based water index (WI),
with OSAVI presenting better resistance to soil reflectance variations. Nonetheless, despite
their effectiveness in detecting larger leaks caused by hydrants, these methods primarily
focused on substantial puddles and lacked a complete automation. On the other hand,
an automated algorithm was developed to monitor irrigation system malfunctions in olive
orchards using airborne TIR data [37]. This method included image segmentation through
the merging of Continuous Max-Flow-Min-Cut with the Otsu method [38] and subpixel
edge detection to address mixed pixels. It involved tree irrigation classification using
bagging with random forest algorithms, achieving high success rates for leak detection
(89.5%) and identifying clogging malfunctions (87.5%). Similarly, UAV-based TIR remote
sensing was applied to detect irrigation system malfunctions in olive orchards and table
grape vineyards [39]. The developed algorithm relied on temperature assessment and
the differentiation of soil and canopy pixels, detecting irrigation anomalies based on a
normal distribution. While cooler pixels indicated leaks, warmer pixels suggested clogging.
The algorithm detected both leaks and clogs in crops with deficit irrigation, such as olive
trees. However, in table grapes, which received high daily water amounts, only long-term
clogging was easily detectable, while leaks remained undetected.

This study aims to address the limitations identified in previous studies, which in-
clude inconsistencies in plantation-scale leak detection, limitations in vegetation indices
accuracy, lack of automation, challenges in detecting leaks across varying crop conditions,
and difficulties in short-term leak detection in crops with high water consumption. The re-
search presented in this article focuses on estimating malfunctions in vineyard irrigation
systems, with an emphasis on leak detection. To achieve this, the high spatial resolution
of UAV-based imagery, grapevine segmentation from RGB imagery is applied into TIR
imagery for this purpose to distinguish temperature from grapevines and non-grapevine
areas. Furthermore, different threshold values, including those derived from existing
literature, are applied to analyze mean temperature values of row sections. This approach
enables a comparative and critical assessment of areas, distances and number of rows
potentially affected by leaks. This method contributes to a more sustainable grapevine
growing practices through a more efficient use of water.

2. Materials and Methods
2.1. Study Area

In this study, data from vineyard plots in two distinct vineyards were used (Figure 1).
Both vineyards are located within the Douro Demarcated Region in Portugal and have
surface drip line irrigation systems installed along its rows, with known leak areas. Vine-
yard A is located in Vila Real (41◦17′43.5′′ N, 7◦42′48.6′′ W) and is part of a collection of
red grapevine varieties, maintained for preservation and enotourism purposes (Figure 1a).
This vineyard plot has a total of 19 rows, each approximately 30 m in length, resulting in a
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total area of 875 m2. The plants are spaced 0.8 m apart, with a row spacing of 1.5 m. In turn,
Vineyard B (Figure 1b), is located in the municipality of São João da Pesqueira near the
Douro River (41◦10′59.4′′ N, 7◦30′52.9′′ W) and employs a vertically trained system. This
vineyard consists of 114 rows, with lengths ranging from 2.2 m to 147 m (averaging 99 m).
Grapevines are spaced one meter apart, covering an area of 2.4 hectares (23,958 m2) with
rows spaced at 2 m.
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Figure 1. Overview of the vineyard plots analyzed along with land surface temperature data of
Vineyard A (a) and Vineyard B (b).

2.2. UAV Data Acquisition

The remote sensing data used in this study were acquired using a Mavic 3T multi-rotor
UAV (DJI, Shenzhen, China). This UAV is equipped to capture RGB images through its
1/2-inch CMOS sensor, with a 12-megapixel resolution. Additionally, it captures TIR im-
agery at a resolution of 640 × 512 pixels, through a thermal imager, a uncooled vanadium
oxide (VOx) microbolometer, sensitive in the 8–14 µm wavelength range, providing an ac-
curacy of ±2 ◦C. Both sensors are integrated into a 3-axis gimbal for stabilization. The UAV
is further enhanced with an real time kinematic (RTK) module, ensuring centimeter-level
positioning and precise georeferencing of the acquired imagery.

The flights were carried out under clear sky conditions, with the mission in Vineyard
A conducted on 24 August 2023, at 15:20, and the mission in Vineyard B on 24 August 2023,
at 13:00. For real-time positioning using RTK, the UAV maintained a connection to the
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Portuguese Network of GNSS Permanent Stations (ReNEP). The use of ReNEP enabled the
achievement of centimeter-level accuracy in UAV-based measurements through real-time
correction data, making this precision adequate for detecting and mapping potential leaks
in vineyard irrigation systems. The missions were planned to capture imagery with 90%
longitudinal overlap and 70% lateral overlap. In Vineyard A, the flight height was set
at 40 m above the terrain level, with a maximum speed of 3.8 m s−1, covering an area of
2300 m2 and achieving an expected spatial resolution of 0.053 m. Meanwhile, in vineyard B,
the flight height was set at 60 m with a maximum speed of 4 m s−1, covering approximately
27,600 m2 and achieving an expected spatial resolution of 0.079 m. Adjustments in flight
height, and consequently, spatial resolution, were made to ensure the coverage of the
entire vineyard plots within a single flight, avoiding significant temperature variations.
During the flights, the air temperatures recorded were 27 ◦C for Vineyard A and 40 ◦C for
Vineyard B.

2.3. Data Analysis

This section details the methodology used for detecting leaks in the vineyard irrigation
system (Figure 2), covering a sequence of steps from UAV data acquisition to photogram-
metric processing of the obtained imagery, grapevine segmentation, and subsequent data
treatment. The process involves the extraction and analysis of various approaches for
identifying potential leaking areas, which will be assessed in this study.

UAV data acquisition Pre-processing of UAV data Grapevine segmentation Data treatment Detection of leaks

TIR images

RGB images

Orthomosaic

DSM

DTM

LST

Grapevine

mask

Grapevine

Others

Gn

CSM

Vine temperature

Non-vine temperature

Vine rows

Row sections

Data analysis

Visualization

and reporting

Estimation of

leak areas

Figure 2. Overview of the data processing pipeline employed for the detection of leaks in vineyard
irrigation systems. TIR: thermal infrare; DSM: digital surface model; DTM: digital terrain model; LST:
land surface temperature; Gn: normalized green value; CSM: crop surface model.

2.3.1. Pre-Processing of UAV Data

The UAV imagery (captured as described in Section 2.2) underwent photogrammetric
processing in Pix4Dmapper (Pix4D, Lausanne, Switzerland) to generate orthorectified
raster products. A dense point cloud with a high point density is created, and various raster
products are computed using noise filtering and interpolation through the inverse distance
weighting method. These products include RGB orthophoto mosaics, a digital terrain
model (DTM) representing a 2.5D terrain, a Digital Surface Model (DSM) including terrain,



Drones 2024, 8, 187 6 of 20

vegetation, structures, and land surface temperature (LST) from TIR imagery. The DSM
and DTM rasters are used to compute the canopy surface model (CSM):

CSM = DSM − DTM, (1)

providing height information for features above the terrain level. In addition to the
generated orthorectified raster products, the normalized green value (Gn) or green per-
centage (G%) [40] is calculated using the digital numbers derived from the red, green,
and blue bands of the orthophoto mosaic. The computation is performed using the
following equation:

Gn =
green

(red + green + blue)
, (2)

The new raster obtained from this operation enhances the representation of green
vegetation within the imagery, allowing a detailed analysis of the vegetation distribution
across the surveyed vineyards.

2.3.2. Grapevine Segmentation and Row Parameters Extraction

By using some of the orthorectified raster products, the subsequent step regards the
discrimination between grapevine and non-grapevine areas. To achieve this, the method
described in Pádua et al. [41] is used. The approach relies on the computation of a grapevine
vegetation mask by employing an automatic threshold derived from the analysis of Gn and
applying a height threshold to the CSM. In the scope of this study, the outcome is a binary
mask, highlighting pixels that correspond to grapevines.

The high resolution of UAV data and precision of available georeferencing devices
improve the potential of the outcomes for precision viticulture tasks. One of these tasks
is the identification and data extraction for each grapevine plant [42]. For this purpose,
the coordinates of the row endpoints are used to draw each row central line. These lines,
along with the knowledge of the row and plant spacing, enable the establishment of
polygonal sections. This is achieved by buffering the lines representing the rows according
to its spacing and subsequently dividing the buffered lines into smaller polygons.

2.3.3. Detection of Potential Leaks and Mapping

Through the application of the grapevine mask obtained from the UAV RGB data
to the LST raster from the processing of TIR imagery, it enabled the separation into two
products: one representing the grapevine temperature and another for non-grapevine areas.
The grapevine polygon sections are then used to obtain the mean value from the three
raster products (entire area, grapevine pixels, and non-grapevine pixels).

Different methods were used to estimate a temperature value threshold (L), which
can represent the potential existence of leaks within the vineyard irrigation system. All
methods rely on the mean temperature values of the polygon row sections. Three methods
are evaluated in this study. The first method is based on the approach proposed by
Dag et al. [39]. This method considers potential leak areas as those with values colder than
the average grapevine temperature value minus its standard deviation (3). The second
evaluated method considers leak areas as those in which the L value is lower than the mean
temperature minus two times its standard deviation (4).

L = Tmean − σ, (3)

L = Tmean − 2 · σ, (4)

where Tmean is the mean temperature of a given polygon and σ is the standard deviation
of the grapevine temperatures. These methods can help in the identification of areas
potentially containing leaks, allowing for an assessment of the irrigation system’s integrity.
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The third method calculates the L value based on the lower quintile. This is determined
by 20% of the temperature range (Tmax − Tmin) added to the minimum temperature value,
where Tmin and Tmax are the minimum and maximum temperatures, respectively:

L = (Tmax − Tmin) · 0.2 + Tmin, (5)

Based on the obtained results, the main outcomes are generated: a map highlighting
areas with potential leaks and the corresponding geographical coordinates for these poten-
tial leak areas. Additionally, the number of rows recommended for in-field inspection is
provided along with the distance to be evaluated derived from the length of each polygon
section with potential leaks.

2.4. Proposed Method Validation and Comparative Analysis

The validation of the proposed methodology relies on the visual inspection of the LST
maps from both vineyards. This inspection aims to evaluate the method’s effectiveness
in detecting and mapping areas with potential leaks within the vineyard irrigation sys-
tem. The spatial mapping evaluation of the leaks detected in each approach ensures an
accurate identification of leaking areas within the vineyard irrigation system, contributing
to the optimization of viticulture practices. Discrepancies or alignments between visual
observations and predictions are analyzed, considering overall accuracy, false positives,
and false negatives. This comprehensive assessment provides insights into the strengths
and potential limitations of the method.

Subsequently, the quantitative outputs generated by different approaches are ana-
lyzed. These outputs are derived from the different sources of LST retrieval, including the
entire vineyard, grapevines and non-grapevine areas and the approaches of data analy-
sis Equations (3)–(5), presented in Section 2.3.3. The results are compared with the map
delineating potential leaking areas. Additionally, both segmented (including grapevine
and non-grapevine temperatures) and non-segmented LST rasters are interpolated to gen-
erate a three-class temperature distribution map. This approach is commonly used in
multispectral vegetation indices [43,44]. In the case of this study, these maps were used
to evaluate the spatial distribution of surface temperature. This approach serves as an
additional evaluation of spatial temperature distribution, its relationship with identified
leaks, and enables the analysis of grapevines and non-grapevines’ contributions to the
overall vineyard temperature distribution.

3. Results
3.1. Data Analysis

To characterize and analyze the thermal behavior in the studied vineyards, a six-meter
profile was traced in both vineyards (Figure 3). In Vineyard A, it crosses through four
rows including a leaking area in the third row (from the left to the right of the transect),
while in Vineyard B it spans three rows. The Vineyard A profile (Figure 3a) shows a mean
temperature of 42 ◦C with the values ranging between 26.7 ◦C and 58.4 ◦C with both
minimum and maximum values being observed in non-grapevine areas. Considering only
the grapevines, a mean temperature of 35.9 ◦C is verified, while non-grapevine areas show
a mean temperature of 44.1 ◦C with the shadowed areas averaging 39.9 ◦C. The lowest
values registered in each grapevine row were 35.7 ◦C, 36.4 ◦C, 26.7 ◦C, 34.7 ◦C with only
26.7 ◦C being observed in an non-grapevine area. Concerning the water leak identified
in Vineyard A, its impact is noticeable in both grapevine and non-grapevine categories,
with a mean temperature of 30.1 ◦C and a mean value of 29.4 ◦C and 30.4 ◦C for grapevine
row and non-grapevine parts, respectively. In the case of the profile from Vineyard B
(Figure 3b) it has a mean value of 51.8 ◦C, ranging between 44 ◦C to 62.8 ◦C, with both
of these values being located in non-grapevine areas. The mean value of the grapevines
was 49.1 ◦C while the non-grapevine areas showed a mean temperature of 52.8 ◦C. When
analyzing the profile, the lower values registered in each grapevine row area the values
44.7 ◦C, 44 ◦C, and 45 ◦C, with all of these values being registered in areas of grapevine
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shadows. In turn, each of the three grapevine rows showed a minimum temperature value
of 50.6 ◦C, 44.9 ◦C, and 45.3 ◦C. The differences between these temperatures and the lowest
temperatures in the inter-row areas were 5.9 ◦C, 0.9 ◦C, and 0.2 ◦C, respectively.
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Figure 3. Land surface temperature (LST) behavior in a cross-row profiles in Vineyard A (a) and
Vineyard B (b). Height values from the crop surface model (CSM) are also provided. Gray areas
correspond grapevine shadows.

The thermal patterns observed in both vineyards (Figure 4) exhibit distinct behaviors.
In Vineyard A, (Figure 1a) the pixel temperature ranges from 26.1 ◦C to 67.1 ◦C, with a
mean of 47.9 ◦C and a standard deviation of 8.2 ◦C. When masking the temperature data,
grapevine vegetation shows a mean temperature of 37.1 ◦C (±3.5 ◦C, range of 31.5 ◦C),
while non-grapevine pixels exhibit a mean temperature of 49.9 ◦C (±7.2 ◦C, range of
41 ◦C). In Vineyard B (Figure 1b), the temperature ranges from 35.5 ◦C to 72.2 ◦C, with an
average temperature of 52.4 ◦C. The grapevine vegetation has a mean temperature of
48.9 ◦C ± 3.3 ◦C, range of 32.5 ◦C), while other areas show an average temperature of
53.3 ◦C ± 6.3 ◦C, range of 36.7 ◦C).
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After the application of the grapevine vegetation mask to the LST mosaics, the extrac-
tion of the mean temperature values was carried in each row section considering pixels
from the entire row section, from grapevines, and from non-grapevine areas. Figure 5
presents the temperature histogram of the studied vineyards in each evaluated approach.
Despite the absolute temperature variations, a consistent pattern was verified in both vine-
yards. Specifically, when focusing only on non-grapevine areas, the highest temperatures
are observed, primarily because of the presence of bare soil pixels, whereas grapevine
regions show the lowest temperatures. In the case of Vineyard A (Figure 5a), the entire
vineyard area displays a mean temperature of 47.8 ◦C, with a maximum of 59.3 ◦C and a
minimum of 33.1 ◦C. However, when considering non-grapevine pixels, a slight increase
in the mean temperature to 49.5 °C is observed, though the maximum and minimum
temperatures remain consistent with those of the entire vineyard area (59.3 ◦C and 34 ◦C,
respectively). In contrast, analyzing only the grapevine temperature reveals a decrease in
the mean temperature to 38.4 ◦C, indicating a reduction compared to the mean temperature
across the entire vineyard area. The same trend is verified for the maximum and minimum
temperature values, being 48.1 ◦C and 29.8 ◦C, respectively.

In Vineyard B (Figure 3b), a general trend of higher temperatures was observed
across the three categories. The mean temperatures for the entire vineyard area, grapevines,
and non-grapevines were 52.1 ◦C, 49.5 ◦C, and 52.8 ◦C, respectively. The lowest temperature,
38.3 ◦C, is observed in grapevine-only sections, while the maximum temperature is 59.5 ◦C.
Among the three data sets, the non-grapevine vegetation registered the highest mean
temperature (62.4 ◦C). Additionally, this dataset showed the highest minimum temperature
(39.4 ◦C). Yet, considering all vineyard information, temperature values ranged from 38.9 ◦C
to 62.2 ◦ C.
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Figure 5. Row section histograms for Vineyard A (a) and Vineyard B (b) when considering the entire
vineyard area, grapevine temperature only, and non-grapevine areas.

Figure 6 shows the temperature distribution in the vineyards, including grapevine and
non-grapevine areas. Major class areas match across all methods, although discrepancies
appear when comparing the grapevine data map with others. This is more noticeable in
the center of Vineyard A (Figure 6a) and is similar in Vineyard B (Figure 6b). The map from
the entire vineyard area and the non-grapevine areas map show more similar patterns.
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Figure 6. Temperature distribution classes in Vineyard A (a) and Vineyard B (b) categorized by the
entire vineyard area, grapevine temperature exclusively, and non-grapevine areas.

3.2. Mapping Leak Areas

The temperature thresholds of each approach tested for leak detection in vineyards’
irrigation systems are outlined in Table 1. In both vineyards, lower temperature values
are found when considering only pixels belonging to grapevines, followed by entire row
section, and non-grapevine areas presenting the higher values.

Table 1. Temperature thresholds considered for leak detection in the evaluated approaches.

Vineyard Considered Area
Temp (◦C)

Lower Quintile Tmean − σ Tmean − 2σ

A
Entire area 38.36 43.83 39.88
Grapevines 33.45 35.47 32.55

Non-grapevines 39.02 46.22 42.94

B
Entire area 43.54 49.42 46.73
Grapevines 42.53 46.77 44.03

Non-grapevines 43.98 50.29 47.79

In Vineyard A, the differences between non-grapevine and grapevine threshold
values vary between 5.57 ◦C, 10.75 ◦C, and 10.39 ◦C for the lower quintile, Tmean − σ,
and Tmean − 2σ, respectively. Within the same pixels considered in Vineyard A, the ap-
proach that focuses on the lower quintile presents the lower temperature values when
considering all pixels from the entire row sections and when using non-grapevine areas
within the row sections. Contrarily, when considering the temperature from grapevine
pixels, the Tmean − 2σ approach presented the lowest values (32.55 ◦C). The Tmean − σ ap-
proach presented the higher temperature threshold values, with differences of 5.48 ◦C for
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the approach with lower values when using the mean temperature values of the entire row
section, 2.92 ◦C when using grapevine pixels and 7.20 ◦C when considering temperature
from non-grapevine areas. Regarding Vineyard B, the temperature data from each ap-
proach considered presents threshold values spanning from 42.53 ◦C to 50.29 ◦C (Table 1).
The differences between grapevine and non-grapevine threshold values are 1.46 ◦C (lower
quintile), 3.52 ◦C (Tmean −σ), and 3.76 ◦C (Tmean − 2σ). Across all areas considered, the lower
quintile consistently presents the lowest threshold values. On the other hand, the highest
threshold values are presented in the Tmean − σ approach, with the non-grapevine areas
showing the highest value within this approach, differing by a difference of 6.31 ◦C from
the lowest quintile approach.

The location of each leaking areas for Vineyard A is presented in Figure 7. When
considering the Tmean − σ (Figure 7b), an increased number of potential leakage areas
are identified, regardless the part of the vineyard considered. The Tmean − 2σ approach
(Figure 7c) reveals more areas for evaluation across five rows when considering the entire
vineyard and non-grapevine areas, and across four rows when only considering temper-
ature data from grapevine vegetation. On the other hand, the lower quintile approach
(Figure 7a) presents five rows requiring inspection when analyzing grapevine vegetation
only, three rows when considering data from the entire vineyard, and two rows when using
temperature data from non-grapevine areas.
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Figure 7. Areas of potential leaks in Vineyard A when using (a) the lower quintile value, (b) Tmean − σ,
and (c) Tmean − 2σ.
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Figure 8 illustrates the maps of areas potentially containing leakages in Vineyard B.
The lower quintile approach (Figure 8a) identifies fewer sections with potential leaks across
the three sets of temperature data analyzed. By applying the threshold values in this
approach, three distinct clusters emerge in the vineyard: one in the north and two in
the southwest part of the vineyard when considering temperature data from the entire
vineyard sections; two clusters in the southwestern part when using temperature data from
grapevine vegetation; and two clusters (north and west) when using temperature data
from non-grapevine areas. The Tmean − σ approach (Figure 8b) reveals clusters of potential
leakages spanning the central and western parts of the vineyard, with these clusters
consistent among the three sets of temperatures. As for the Tmean − 2σ approach (Figure 8c),
it identifies more clusters of potential leakages in the north, northwest, and southwest
parts of the vineyard, when applying the threshold value for the entire vineyard and for
non-grapevine areas. The latter presents more potential leak areas in other parts of the
vineyard. When using temperature data from grapevines, large clusters form in the western
part of the vineyard, with smaller sections being detected in other areas.
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Figure 8. Areas of potential leaks in Vineyard B when using (a) the lower quintile value, (b) Tmean − σ,
and (c) Tmean − 2σ.

The distance and number of rows to be evaluated, considering each approach and
type of temperature data used in both vineyards, are presented in Table 2. Across both
vineyards, the Tmean − σ approach presents a larger number of rows and a greater distance
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to be covered in the field. This is evident when considering non-grapevine vegetation
in Vineyard A (103 m, representing 18.1% of the vineyard rows) and the entire area in
Vineyard B (1862 m, representing 16.6% of the vineyard rows).

Regarding the use of temperature from non-grapevine areas, the lower quintile ap-
proach results in the smallest area requiring evaluation. This approach concentrates leak
areas into three meters across two rows (10.5%) in Vineyard A and 26 m across four dif-
ferent rows (3.5%) in Vineyard B. When using temperature data from both grapevine and
non-grapevine areas, 4 meters across 3 rows (15.8% of the rows) in Vineyard A and 30 m
across 6 rows (5.3%) in Vineyard B are designated for potential leak inspection.

When using temperature data from grapevine vegetation, a greater distance is re-
quired for evaluation (16 m in Vineyard A and 52 m in Vineyard B). In the Tmean − 2σ
approach, a slightly greater distance for potential leak inspection is observed compared
to the lower quintile approach in Vineyard A, considering temperature data from non-
grapevine and both grapevine and non-grapevine areas. However, when considering
temperature data from grapevines, a smaller distance is obtained (five meters across three
rows). In Vineyard B, these values are higher across all categories.

Table 2. Vineyard rows distance (in meters) to be inspected using the evaluated methods, along with
the corresponding number of rows and their respective percentages.

Vineyard Considered
Area

Lower Quintile Tmean − σ Tmean − 2σ

Distance No. of Rows Distance No. of Rows Distance No. of Rows

A
Entire area 4 (0.7%) 3 (15.8%) 94 (16.5%) 14 (77.3%) 9 (1.6%) 5 (26.3%)
Grapevines 16 (2.8%) 5 (26.3%) 83 (14.6%) 13 (68.4%) 5 (0.9%) 3 (15.8%)

Non-grapevines 3 (0.5%) 2 (10.5%) 103 (18.1%) 14 (77.3%) 7 (1.2%) 5 (26.3%)

B
Entire area 30 (0.3%) 6 (5.3%) 1862 (16.6%) 101 (88.6%) 228 (2.0%) 29 (25.4%)
Grapevines 52 (0.5%) 8 (7.0%) 1830 (16.3%) 99 (86.8%) 245 (2.2%) 21 (18.4%)

Non-grapevines 26 (0.2%) 4 (3.5%) 1784 (15.9%) 102 (89.5%) 229 (2.0%) 35 (30.7%)

4. Discussion
4.1. Data and Methodology

Numerous approaches documented in the literature aim to segment or mask crop-
related pixels from non-crop ones for TIR imagery. Qin et al. [45] employed a similar ap-
proach to the one used in this study to remove soil, using the excess green index (ExG) [46]
on wheat. Liu et al. [47] used multispectral imagery to compute NDVI generating a mask
for application to the LST map, also on wheat. Segmentation methods directly applied
to TIR imagery usually rely on threshold values [48–51] and/or image processing tech-
niques [52]. Han et al. [50] directly applied thresholds to individual TIR imagery of fruit
trees, while Zhang et al. [49] applied temperature thresholds in blueberry crops. Similarly,
Ludovisi et al. [48] applied multiple threshold values to segment the TIR imagery of poplar
trees to remove pixels corresponding to soil and weed while retaining fixed temperature
ranges for estimating average canopy temperature.

The methodology applied in this study for masking LST information (Figure 2) through
the RGB orthophoto mosaic (Gn) and CSM is revealed to be effective in distinguishing
between grapevine and non-grapevine vegetation. It relies only on RGB orthophoto
mosaics and crop height information to differentiate between grapevine and non-grapevine
pixels when masking LST raster products of the same area. This approach is adaptable in
scenarios where RGB or CSM data are unavailable. If RGB is not available, CSMs derived
from TIR can be used, if they have sufficient resolution [53]. In turn, if CSMs are unavailable,
combinations of spectral bands from RGB imagery can be used to identify areas with green
leaf vegetation. As the study goal is to analyze potential leak areas within the irrigation
system, directly applying segmentation approaches to TIR data may misclassify non-crop
pixels as crops, especially shadows and soil with high moisture levels, due to similar or
lower temperatures. This may require more complex approaches for accurate segmentation.
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Moreover, as the UAV used in this study is capable of acquiring both RGB and TIR imagery
simultaneously, there are no logistical constraints concerning flight operations. This type
of sensor combination is becoming more common with solutions available off-the-shelf at
lower costs, this facilitates and economizes the acquisition of UAVs or sensors equipped
with both RGB and TIR sensors. Additionally, the methodology used in this study can be
easily implemented into a geographical information system.

Different temperature variations across sections of the vineyard rows (Figure 3) are
notorious. Indeed, in Vineyard B, a temperature decrease is verified in shadowed areas,
while in Vineyard A, temperature drops occur at transitions between grapevines and soil.
This can be associated with the time when the flights were conducted and the orientation
of the rows. While temperature variations can be influenced by factors other than water
leaks, such as shadows, the presence of water leak areas disrupts this typical pattern.
This disruption manifests as lower temperatures compared to shadow areas, grapevines,
and other surrounding parts, as illustrated in Figure 3. Other studies discarded shadow
pixels [54,55], but in this study, omitting shadow pixels could potentially reduce the
accuracy of detecting leaks within the vineyard. In fact, depending on the angle of the sun
and the orientation of the terrain, shadows may cover a significant portion of the inter-row
sections. TIR data acquisition should occur under optimal atmospheric conditions [56],
with the sun positioned at a high angle to minimize deep shadows [57] and intra-plant
temperature differences. Sunlight influence is noticeable on Figure 3. Moreover, plants at
the edges of rows may have higher temperatures [42].

After applying the mask distinguishing grapevine and non-grapevine areas to the LST
raster products (Figure 4), two distinct rasters are created: one containing temperature data
from non-grapevine areas and the other including temperatures from grapevine vegetation
(Figure 2). Analysing these different raster products revealed a consistent temperature
range for non-grapevine compared to the raster representing the entire vineyard in each
of the vineyards (41 ◦C and 36.7 ◦C for Vineyards A and B, respectively). This uniformity
in both minimum and maximum temperature values across both vineyards suggests that,
with the scope of this study, cooler temperatures indicative of potential leaking areas could
potentially be observed by focusing solely on non-grapevine areas. On the other hand, bare
soil areas present the highest temperature values. Similar trends and thermal variations are
also reported by Lu et al. [55].

The analysis of the histograms of row sections (Figure 5) shows a significant impact of
temperature values in non-grapevine areas, where the nonexistence of plants prevents water
absorption, leading to water accumulation in the soil [58]. In Vineyard A, the analysis of
non-grapevine pixels shows a slight rise in the mean temperature to 49.5 ◦C, representing a
3.5% increase compared to the mean temperature of the entire vineyard area. Temperatures
from grapevines showed a mean temperature decrease to 38.4 ◦C, revealing a 20% decrease
compared to the mean temperature of the entire vineyard area. The temperature range
in Vineyard B is slightly narrower, indicating less variability compared to Vineyard A.
Moreover, in Vineyard B, the mean temperatures for the entire vineyard area, grapevines
and non-grapevines are higher compared to Vineyard A. In the method proposed by
Li et al. [52], the temperature histograms of raw TIR imagery show two pronounced peaks,
one representing canopy and another representing soil. After filtering, only one peak is
observed, similar to Figure 5 on grapevine vegetation.

The temperature distribution classes (Figure 6) shows that the distribution of non-
grapevine areas are more similar to the entire vineyard area, highlighting their significant
contribution to the generated map, with minimal variations within the clusters of each
class. The temperature distribution classes specific to grapevine vegetation (Figure 6) can
be used for the application of crop water stress index (CWSI) [59] distribution at high
resolution [57], this type of maps shows spatial correlations with vegetative vigor and
vineyard heterogeneity [43,60].
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4.2. Estimated Leak Areas

The proposed method uses statistical measures to evaluate the sensitivity of leak
detection, offering a more precise evaluation of potential issues in the irrigation system
within the vineyard. This approach contrasts with using fixed temperature values, which
may vary across vineyards and survey periods.

The temperature thresholds (Table 1) for the different values used to estimate areas
containing potential leaks shows lower temperature values when using the lower quintile
value for non-grapevine temperature and entire vineyard areas. Similarly, in Vineyard B,
lower temperature values are observed. In Vineyard A, using only grapevine temperature,
the Tmean − 2σ has a lower temperature value. On the other hand, higher temperature
threshold values are verified in the Tmean − σ, regardless of the vineyard area where the
temperature was measured. This difference highlights the temperature variations between
different areas within the same vineyard.

When analyzing the results of potential leaking areas for both Vineyard A (Figure 7)
and Vineyard B (Figure 8), different trends emerge. In Vineyard A, using the lower quintile
value (Figure 7a), the areas with leaks when using both the mean temperature of the
entire vineyard and non-grapevine areas in the row sections are effectively addressed.
However, it tends to overestimate the known leak areas when using temperature data
from grapevine vegetation. Similarly, in Vineyard B, this approach (Figure 8a) highlights
the identified leak areas, but fails to detect the smaller area in the north of the vineyard
when considering only grapevine vegetation. Additionally, it shows some exaggeration
in the limits of the identified leaking area, particularly verified when considering the
entire vineyard area. On the other hand, using the Tmean − σ approach (Figures 7b and 8b)
showed a pronounced exaggeration of potential leaking areas in both vineyards, following
the observed temperature differences in the vineyards (Figure 1). This becomes more
evident when compared with the maps of temperature low temperature class (Figure 6).
In contrast, the map of potential leak areas in the Tmean − 2σ approach showed a good
performance in Vineyard A (Figure 7c), particularly when considering the threshold value
applied to non-grapevine temperature. However, in Vineyard B (Figure 8c), this consistency
was not verified, as the known leak areas are detected but there is an overestimation when
considering the temperature from non-grapevine areas.

The row distances required for inspection in the vineyard across different approaches
(lower quintile, Tmean − σ, and Tmean − 2σ), offer insights into spatial considerations for
evaluating inspection methodologies. Using the lower quantile approach resulted in the
shortest distance to be evaluated and the fewest number of rows in both vineyards (Table 1).
This observation implies that the temperature variations in non-grapevine regions might
serve as a reliable indicator for detecting areas with potential irrigation system leaks.
As for the temperature data used (grapevines, non-grapevine areas, or both), the grapevine
vegetation temperature showed more areas to be evaluated. This could mean that these
values are indicating areas where plants are well watered rather than areas with leaks. This
inference is supported by the fact that, when compared with the other two approaches,
fewer rows are identified, and only a short distance needs to be evaluated. For instance,
a leak area in the northern part of Vineyard B (Figure 8) was detected when using the entire
temperature of the row section and when using only non-grapevine vegetation temperature,
as this leak formed a small water puddle in the soil.

From the analysis of the obtained results, the use of the lower quintile value within
the non-grapevine areas in the row sections can be deemed as more efficient in detecting
the leak areas. This approach demonstrates consistency across both vineyards, requiring
a lower distance (<1%) to be evaluated across fewer rows (approximately 10% in Vine-
yard A and less than 5% in Vineyard B). It showed efficiency since leak areas in both
vineyards stand out as outliers from the overall temperature distribution within the vine-
yard (Figure 5). Temperature in areas with water leaks is significantly lower than that
in shadowed areas, grapevines, and other parts of the vineyard (Figure 3), making them
easily identifiable. This temperature contrast improves the ability to accurately detect these
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areas. On the other hand, the Tmean − σ approach, based on the work of Dag et al. [39],
did not provide the optimal results, showing a clear overestimation potential leak areas
across more rows and a greater distance. However, the use of the Tmean − 2σ approach
shows consistency, regardless of the area from which the data is obtained. This approach
requires inspecting 1% to approximately 2% of rows needing to be evaluated across 15%
to 30% of the total number of rows. This approach can be used when a more detailed
inspection of the irrigation system is intended to be performed. Conversely, the maps
and analysis resulting from the use of the lower quintile approach can effectively identify
areas where immediate intervention is needed. Both the lower quintile approach and the
approach using Tmean − 2σ proven to be efficient methods for inspecting leaks in vineyard
irrigation systems. These methods provide specific areas for evaluation, thereby reducing
the time required for fieldwork. Ultimately, these approaches allow the restoration of
the irrigation system to its normal operational state. Despite these findings, it is crucial
to conduct additional research and maintain consistent observations to improve the re-
liability of the proposed methods. This includes evaluating additional vineyards across
various temperature conditions and phenological stages to further refine the methodology.
In addition to leak detection, the method can also be tested for detecting clogs in vineyard
irrigation system.

Furthermore, the use of TIR imagery in vineyards can be extended, by integrating
it with other types of UAV-based imagery. Combining TIR and multispectral data is
useful for estimating soil water content [61–63] and implementing site-specific irrigation
management strategies [64]. Additionally, exploring the use of thermal point clouds
could be advantageous, as they can help refine temperature values compared to raster
products [65]. However, it is worth noting that such point clouds, may lack resolution
and accurate geometry representation when compared to RGB point clouds [66]. With the
possibility to extend the LST data to compute plant related indices such as CWSI which can
enable the assessment of plant water status and irrigation demand [57] as well as stomatal
conductance [67,68]. Another application applicability of TIR imagery is monitoring dry
stone terraced vineyards [69], it can be used to analyze differences in rows near dry stone
walls and the ones from the walls at the same terrace.

5. Conclusions

This study explores the application of orthorectified raster products derived from the
photogrammetric processing of UAV-based RGB and TIR imagery to map potential leaks in
vineyard irrigation systems. It considers examining various sections of vineyard plots and
implementing different GIS techniques. The RGB data are used to classify grapevine and
non-grapevine pixels, enabling the segmentation of LST maps into three distinct categories:
grapevines, non-grapevine areas, and the entire vineyard. Mean temperature values from
these categories are then extracted across several sections of the vineyard rows.

Three different approaches were employed to determine threshold values for mapping
potential leaks along the rows. These approaches were based on the mean, standard devia-
tion, and quintiles of the temperature information extracted from vineyard row sections.
The application of the methodology followed in this study can contribute to sustainable
practices for improved water and nutrient management in viticulture by helping to enhance
the efficiency of water and mineral resources. Results from each approach highlight the
significance of non-grapevine areas, characterized by temperatures below the lower quintile
value, as indicators for leak identification. However, the use of only grapevine temperature
was inadequate for detecting identified leak areas. In contrast, the use of the Tmean − 2σ
can be effective for more extensive inspections. This information is particularly valuable
for winegrowers, offering a time-efficient approach for field inspections and targeted main-
tenance efforts. Future research should include the analysis of 3D point clouds through
projection methods of thermal data into the RGB information. This would enable the
creation of 3D segmentation methods to separate the different vineyard elements, allowing
for an analysis of soil information bellow grapevine plants, reducing the temperature
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influence from grapevines. Nevertheless, the methodology presented in this study could be
applied in other crops using drip irrigation systems, with crop-specific modifications. This
potential extension would enable an evaluation of its suitability and consistency across
various crops.
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