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Abstract: This paper reports on the biosynthesis, characterization, as well as the bactericide and
cytotoxic properties of silver nanoparticles supported on bovine bone powder (Ag-NPs/BBP). The
silver nanoparticles were obtained through the bioreduction of AgNO3, using an infusion of Het-
erotheca inuloides leaves and flowers as a reducing agent and bovine bone powder as a support. The
ratio of Ag-NPs/bovine bone powder was set as 1:10. The characterization was performed with
SEM–EDS, XRD, UV–Vis, and TEM, which showed the formation of nanoparticles with an average
size of 22.6 ± 10.8 nm and a quasi-spherical Ag-NPs morphology supported on the BBP surface.
The nanocomposite exhibited a band gap of 2.19 eV. The minimal inhibitory concentration and the
minimal bactericidal concentration against S. aureus, E. coli, and S. epidermidis were determined for
each strain. In addition, the cytotoxic evaluation of the Ag-NPs/BBP on J774.2 mouse macrophage
cells was performed. The Ag-NPs/BBP exhibited a bactericide effect on the strains studied, and
the cytotoxicity had a dose-dependent behavior on the cells studied. Therefore, it was found that
the ecofriendly synthesized Ag-NPs supported on bovine bone powder resulted in an effective
bactericidal system against the strains studied, without significant cytotoxicity.

Keywords: Ag nanoparticles; Heterotheca inuloides; hydroxyapatite; bionanocomposite; bactericide
effect; minimum inhibitory concentration

1. Introduction

Over the last few decades, nanostructured systems have received a great amount of
attention from several research groups [1].

For example, silver nanoparticles (Ag-NPs) have been used for the prevention and
treatment of many oral diseases; due to that, Ag-NPs have been incorporated into different
dental biomaterials as restorations, coatings, cavity linings, adhesives, varnishes, tooth-
pastes, mouthwashes, among others, some of which are commercially available [2]. One of
the most important properties of Ag-NPs are their bactericidal activity. At present, bionan-
otechnology may contribute to the design of new antimicrobial materials [3]. Ag-NPs are a
good alternative to antimicrobial drugs or disinfection compounds. Furthermore, Ag-NPs
synthesized by plant extracts could exhibit better properties in comparison with Ag-NPs
synthetized by a conventional chemical reduction, because the active components of plants
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may contribute to the antimicrobial effect of the NPs. For instance, Ag-NPs synthesized
using an Orchidantha chinensis extract showed inhibitory effects on S. aureus, P. aeruginosa,
and E. coli [4]; whereas, Ag-NPs synthetized with Setaria verticillata have been tested for the
treatment of breast cancer [5], and Ag-NPs synthetized using a Cynara cardunculus extract
exhibited bactericide properties against E. coli and S. aureus [6]. Ag-NPs synthetized using
an Acorus calamus extract showed great bactericide activity against Bacillus subtilis, Bacillus
cereus, and S. aureus [7]. Likewise, Ag-NPs obtained using a banana peel extract showed
bactericide properties against B. subtilis, E. coli, and S. aureus [8].

In addition to this, it is important that metallic nanoparticles are supported on a
material that possesses great electromagnetic affinity and prevents the loss of the NPs
during the chemical reaction and allows them to be recovered at the end of use. It has
been reported that Ni/Pd NPs have been supported on multi-walled carbon nanotubes [9],
palladium on graphene [10] and graphene oxide [11], gold on TiO2 and Al2O3 [12], and on
silica [13], among others. Several authors have chosen to use a natural support, due to this
these materials are ecofriendly, cheaper, and renewable, like cellulose [14], core shell [15],
Agave lechuguilla and silk [16], and cotton fibers [17], among others. For this research,
bovine bone powder (BBP) was used, which is constituted mainly by hydroxyapatite
Ca5(PO4)3(OH) and collagen [18], a microporous material with a high electronic density
provided by OH− and PO4

3− functional groups [19]; these groups have the function of
attracting and anchoring metallic silver ions to the surface of the support. Chicken bone has
been used to support silver nanoparticles, using dimethylformamide (DMF) and poly(vinyl
acetate) (PVA) as reducing and stabilizing agents, and an aqueous extract of Indian curry
leaf (Murraya koenigii) with bactericidal properties was used [20,21].

In order to avoid toxic chemical waste during the fabrication of nanoparticles, the
green synthesis of Ag-NPs has been carried out by different research groups, mainly using
microorganisms or plant extracts. Polyphenols are the main constituents of different types
of tea infusions and are responsible for their antimicrobial and antioxidant properties [22].
For green synthesis, polyphenols act to reduce the precursor salt. This synthesis route has
been employed by many authors using tannins [23], Ocimum sanctum [24], Dracocephalum
moldavica [25], Citrus sinensis [26], Achillea biebersteinii [27], Origanum vulgare [28], and
Commelina nudiflora [1], among others. Heterotheca inuloides is a plant that shows great
antimicrobial, anti-inflammatory, regenerative, and antioxidant properties. These proper-
ties are attributable to the large amount of polyphenolic compounds [29–31]. Due to that,
Heterotheca inuloides has been used in traditional medicine and the pharmaceutical indus-
try [29–32]. Aqueous extracts of Heterotheca inuloides have demonstrated high efficiency in
the synthesis of noble metal nanoparticles, as Ag [16,33] and Pt [34] NPs. However, not only
is the formation of nanoparticles expected, but also an improvement in the antimicrobial
capacity attributable to the properties of the extract and the synergistic effects with the
silver nanoparticles. This study aimed to report on the ecofriendly synthesis of Ag-NPs,
using Heterotheca inuloides as a bioreducer, supported on bovine bone powder, in order to
obtain a nanocomposite with increased antimicrobial activity against S. aureus, E. coli, and
S. epidermidis, and a low level of cytotoxicity in contact with mouse macrophage cells.

2. Materials and Methods
2.1. Synthesis

In order to use a sustainable support, the femur bone of a bovine was chosen. The first
step to prepare the support was to clean it, then it was cut into small pieces, powdered and,
finally, sieved with a 150 mesh.

In order to obtain an environmentally friendly system, without toxic chemical waste,
with a biodegradable, disposable, easily treated support, using the optimal amount of silver
and an application focused on reducing diseases, Ag-NPs were synthesized on BBP using
an infusion of Heterotheca inuloides as a reducing agent. It has been reported that the reduc-
tive properties of Heterotheca inuloides are mainly attributed to the reductive potential of the
polyphenol (kaempferol, quercetin, and luteolin, among others), phenol (guaiacol, catechin,
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and ellagic acid, among others), and sesquiterpene compounds (7-hydroxycadalene, cada-
lene, cadalen-15-oic acid, and dicadalenol, among others) present in the leaves and flowers
of the plant [16,29,34,35].

The method that we used for the synthesis of the Ag-NPs was based on green chemistry
principles and biotechnology. AgNO3 was used as a precursor salt, and an infusion of
Heterotheca inuloides leaves and flowers was used as a reducing agent. Two solutions were
prepared: first, 100 mL of 0.001 M AgNO3 (Meyer, Mexico City, Mexico) in deionized
water. For the second solution, 1.5 g of Heterotheca inuloides leaves and flowers was put into
250 mL of boiling water for 1 h; the pH was not adjusted at any time. To synthesize the
Ag/BBP bionanocomposite with a 1:10 ratio, 1 g of bovine bone powder was immersed
in 92 mL of AgNO3 solution for 30 s and then filtered; afterwards, the reduction of the
Ag+1 ions was carried out by adding 184 mL of the second solution. The mixture was kept
under stirring for 1 h and then filtered. Finally, the powder was dried overnight at room
temperature and atmospheric pressure. The experiments were performed as described in a
previous work carried out by our research team [36].

2.2. Characterization

The crystal structure analysis for the composite was carried out using the powder
X-ray diffraction (XRD) technique, performed in a Bruker D8 Advance diffractometer with
Bragg–Brentano geometry, using Cu Kα radiation, and a LynxEye detector. Optical char-
acterization was achieved using the UV–Vis spectroscopy technique, in an Ocean Optics
DT-1000 CE UV/vis spectrophotometer. For morphology analysis, the scanning electron
microscopy (SEM) technique was performed. The samples were analyzed in JEOL JSM-
6510LV equipment, coupled with an energy dispersive X-ray spectroscopy (EDS) detector
from Oxford for the elemental analysis. In order to analyze the size and shape of the
Ag-NPs, electronic transmission microscopy observations (TEM) were also performed; in
this case, the samples were suspended in 2-propanol and then ultrasonically dispersed for
5 h at room temperature. A drop of this suspension was then placed on a Cu grid coated
with a holey carbon film. The studies were carried out using a JEOL JEM-2100 microscope,
operated at 200 kV with an LaB6 filament. An Agilent Cary 630 FTIR instrument, with an
ATR sampling module, with the serial number MY2149CUo5, was used for the Fourier
transform infrared spectroscopy. The characterization was performed as described in a
previous work carried out by our research team [36].

2.3. Biological Properties

Antibacterial evaluation. The bacterial strains used in this study were obtained from
the stock culture collection of the Universidad Autónoma Benito Juárez de Oaxaca. The
experiments were performed as described in a previous work carried out by our research
team [37]. The antimicrobial activity of the Ag-NPs/BBP was tested against Staphylococcus
aureus (S. aureus), Escherichia coli (E. coli), and Staphylococcus epidermidis (S. epidermidis). The
broth method was followed in order to determine the minimal inhibitory concentration
(MIC) and the minimal bactericidal concentration (MBC). Specifically, 100 µL of the Mueller–
Hinton broth medium (Sigma-Aldrich, St. Louis, MO, USA) was placed in each well
and 100 µL of Ag-NPs/BBP (at a concentration of 200 µg/mg) was placed in the first
row of the wells. Serial dilutions were performed to generate the dose–response curve.
Control of bacterial growth (only bacteria) and sterility control (broth and NPs) were
used. Then, 5 µL of the respective bacterial suspension was added to each well to perform
the inoculation aseptically (the final concentration was approximately 5 × 105 CFU/mL).
The tests were performed in triplicate for each strain. The inoculated microplates were
incubated at 37 ◦C for 24 h at 200 RPM. The presence or absence of turbidity in each well
was observed. The viable bacteria were determined using a microplate reader (Multiskan
GO spectrophotometer, Thermo Scientific, St. Luis, MO, USA) at 595 nm. Samples (5 µL)
of the wells that showed no turbidity were subcultured. Cytotoxicity assessment. J774.2
mouse macrophage cells were inoculated (1 × 105 cells/mL) into each well in the 96-well
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microplate and incubated for 48 h to achieve complete cell adherence and proliferation. The
experiments were performed as described in a previous work carried out by our research
team [38]. The Ag-NPs/BBP, diluted in saline solution until they reached a concentration of
100 µg/mL, were put in contact with the cell culture and were incubated for a further 24 h at
37 ◦C, 5% CO2, and 95% humidity. After that, 0.2 mg/mL of MTT (Sigma-Aldrich, St. Luis,
MO, USA) dissolved in DMEM was added into the wells and the cells were incubated for
6 h. Formazan was dissolved with dimethyl sulfoxide (DMSO, Sigma-Aldrich, St. Louis,
MO, USA) [38]. The cell viability determination was performed at 570 nm of optical
absorbance with a microplate reader (Multiskan GO spectrophotometer, Thermo Scientific,
St. Luis, MO, USA). The cytotoxic classification was determined from the dose–response
curve of each sample in triplicate for the three independent experiments, according to
ISO 10990-5 [39].

3. Results
3.1. X-ray Diffraction (XRD)

The structural analysis of the system was carried out using the XRD technique. Figure 1
compares the pattern of the pure bovine bone powder (magenta) and the bovine bone
powder with Ag-NPs (blue). In the case of the pure bovine bone powder, the pattern
shows signals at the 2θ values of 32◦, 32.3◦, 46.99◦, and 49.66◦ that could be correlated with
the planes of hexagonal hydroxyapatite (211), (300), (222), and (213), respectively (ICDD
card: 00-086-0740). Likewise, the bovine bone powder with Ag-NPs shows a slight signal
at the 2θ value of 38.1◦ that could be correlated with the plane (111) of FCC Ag (ICDD
card: 00-004-0783).
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Figure 1. XRD patterns of pure bovine bone powder, BBP (magenta), and Ag-NPs supported on
BBP (blue).

3.2. UV–Vis Spectroscopy

In order to characterize the optical response of the nanocomposite of BBP-Ag-NPs, the
UV–vis spectroscopy technique was used; it is important to note that, silver nanoparticles
can be also detected by other means than this technique. In the inset of Figure 2, the
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absorption band of the Ag-NPs supported on BBP (red) is higher than the pure BBP (blue)
band, this difference can be attributed to the presence of silver nanoparticles on the sample.
It has been reported that the localized surface plasmon reference (SPR) of the Ag-NPs
is between 400 and 450 nm, depending on the method used for the synthesis, which is
generated by the plasmonic resonance of light on the surface of the Ag-NPs [40–42]. In
Figure 2, the pure BBP shows no SPR in this region; however, for the Ag-NPs sample
supported on BBP, an absorption peak can be observed at 435 nm; having the nanoparticles
supported on BBP and not being an aqueous solution causes the absorbance peak to be less
defined. Furthermore, to determinate the band gap of the Ag-NPs, the TAUC model [43,44]
was used (Figure 2). The band gap value of the Ag-NPs supported on BBP was 2.19 eV
(567 nm) and the pure BBP was 2.42 eV (513 nm), this difference means less energy is
required to pass an electron from the valance band to the conduction band in the Ag-NPs
nanocomposite. Decreasing the band gap of the nanocomposite leads to an improvement
in its photocatalytic [40,45] and photoelectrochemical properties [46].
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Figure 2. TAUC plot of Ag-NPs supported on BBP sample for band gap value determination; the
inset shows the UV–vis spectra of Ag-NPs supported on BBP sample, as well as the bare BBP sample.

3.3. Scanning Electron Microscopy (SEM)

Figure 3 shows the SEM images of the Ag-NPs supported on BBP; it can be noted that
an irregular morphology exists due the hydroxyapatite being a porous (220–900 µm) and
polycrystalline material; after pulverization treatment, its particles obtained a heteroge-
neous size and distribution; as is expected, in the SEM image it was not possible to observe
the silver nanoparticles.
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Furthermore, Figure 4 shows the results of the EDS elemental analysis of the composi-
tion of the nanocomposite; in the first place, the support is mainly composed of hydroxyap-
atite (Ca5(PO4)3(OH)2), and elements such as oxygen, carbon, phosphorus, and calcium
were detected; it has been reported that bovine bone powder contains small amounts of
Mg+ [47,48]; also, silver was identified. Moreover, elemental mapping (Figure 5) shows the
distribution of the elements in the nanocomposite; silver, specifically, has a homogeneous
distribution over the support.
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supported on BBP before mapping; mapping of (C) carbon, (O) oxygen, (P) phosphorus (Ca) calcium,
and (Ag) silver.

3.4. Transmission Electron Microscopy (TEM)

Figure 6a,b shows the transmission electron microscopy images of the Ag-NPs sup-
ported on BBP; as can be seen, the round darker zones can be attributed to silver particles,
whereas the brighter zones can be related to the bovine bone support; the silver particles
show good polydispersity, with a size range between 5 and 57 nm and a quasi-spherical
shape. It is worth mentioning that Ag-NPs seem to be supported on the bovine bone matrix
even after being sonicated for a period of 5 h. The average size of the Ag-NPs was 22.6 nm,
according to the measurement of approximately 675 particles (Figure 7). Figure 6d shows
the selected-area electron diffraction (SAED) of Ag-NPs supported on BBP; the interplanar
distance between the atoms was measured; the SAED patterns were indexed corresponding
to the (111) Ag lattice planes, according to the FCC structure (ICDD pattern: 00-004-0783)
and (002), (211), (222), and (213) hydroxyapatite lattice planes, according to a hexagonal
structure (ICDD pattern: 00-086-0740). The results obtained through the TEM technique
confirm that the Ag-NPs synthesized using Heterotheca inuloides were obtained, have a good
polydispersity, an average size of 22.6 nm, and have a good link with the bovine bone due
to the electrostatic forces.

J. Compos. Sci. 2024, 8, x FOR PEER REVIEW 8 of 16 
 

 

corresponding to the (111) Ag lattice planes, according to the FCC structure (ICDD pat-
tern: 00-004-0783) and (002), (211), (222), and (213) hydroxyapatite lattice planes, according 
to a hexagonal structure (ICDD pattern: 00-086-0740). The results obtained through the 
TEM technique confirm that the Ag-NPs synthesized using Heterotheca inuloides were ob-
tained, have a good polydispersity, an average size of 22.6 nm, and have a good link with 
the bovine bone due to the electrostatic forces. 

 
Figure 6. (a,b) TEM micrographs of Ag-NPs supported on BBP, (c) Ag nanoparticle on BBP, and (d) 
SAED pattern, respectively. 

 
Figure 7. Size distribution histogram of Ag-NPs supported on BBP, constructed from TEM observa-
tions. 

Figure 6. (a,b) TEM micrographs of Ag-NPs supported on BBP, (c) Ag nanoparticle on BBP, and
(d) SAED pattern, respectively.



J. Compos. Sci. 2024, 8, 142 8 of 15

J. Compos. Sci. 2024, 8, x FOR PEER REVIEW 8 of 16 
 

 

corresponding to the (111) Ag lattice planes, according to the FCC structure (ICDD pat-
tern: 00-004-0783) and (002), (211), (222), and (213) hydroxyapatite lattice planes, according 
to a hexagonal structure (ICDD pattern: 00-086-0740). The results obtained through the 
TEM technique confirm that the Ag-NPs synthesized using Heterotheca inuloides were ob-
tained, have a good polydispersity, an average size of 22.6 nm, and have a good link with 
the bovine bone due to the electrostatic forces. 

 
Figure 6. (a,b) TEM micrographs of Ag-NPs supported on BBP, (c) Ag nanoparticle on BBP, and (d) 
SAED pattern, respectively. 

 
Figure 7. Size distribution histogram of Ag-NPs supported on BBP, constructed from TEM observa-
tions. 

Figure 7. Size distribution histogram of Ag-NPs supported on BBP, constructed from TEM observations.

3.5. Fourier Transform Infrared Spectroscopy (FTIR)

The blue spectrum in Figure 8 corresponds to the Ag-NPs supported on BBP (red) and
the bare BBP (blue); the spectrum shows peaks with different intensities, representing differ-
ent chemical bonds of the molecules that compose the samples. The most significant peaks
of the bovine bone powder are found at 2970 cm−1 (CH2 asymmetric stretch), 1445 cm−1,
and 1414 cm−1 (CH2 wagging and bending vibrations and CO3

2−), 1016 cm−1 (PO4
3− asym-

metric stretch), 873 cm−1 (CO3
2− bending vibrations), 600 cm−1, and 560 cm−1 (PO4

3−

bending vibrations), these functional groups are characteristic of hydroxyapatite and colla-
gen, the main components of bovine bone powder [49,50]. Likewise, in Figure 8, the Ag
nanoparticles supported on BBP sample (red spectrum), minor peaks were found at the fol-
lowing wavelengths, 1375 cm−1 (C-O stretch), 1535 cm−1 (C=C-C stretch), and 2924 cm−1

(CH stretch, OH- stretch of aliphatic acids), which can be attributed to the functional groups
corresponding to polyphenols, phenols, and sesquiterpene compounds [51–53]. Moreover,
comparing the Ag-BBP (red) and bare BBP (blue) spectra, it is possible to observe a decrease
in the peaks at 600 cm−1 560 cm−1 and 1016 cm−1, corresponding to PO4

3− functional
groups of hydroxyapatite, and 1445 cm−1 and 1414 cm−1 corresponding to CO3

2− groups
of collagen. This modification can be associated with the interaction between Ag nanoparti-
cles and the bovine bone powder, the changes mainly occurred in the PO4

3− groups; this
interaction does not allow the bonded molecules to vibrate as easily, producing a decrease
in their peak.
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3.6. Antibacterial Evaluation

Table 1 and Figure 9 show the results of the antibacterial test. The minimal inhibitory
concentrations (MICs) of the Ag-NPs/BBP against the tested strains were determined by
the wells that showed no turbidity. The MICs for S. aureus, E. coli, and S. epidermidis were
6.25, 12.5, and 6.25%, respectively. The MBCs of the Ag-NPs/BBP for S. aureus, E. coli, and
S. epidermidis were 12.5, 50, and 25% respectively. The bare bovine bone powder has no
antibacterial effect.

Table 1. Results of microdilution broth test on Ag-NPs/BBP at different dilutions against the
tested strains.

Serial Dilution (µg/mL) S. aureus E. coli S. epidermidis

0 100.00 ± 2.2 100.00 ± 5.3 100.00 ± 4.9
0.390625 82.77 ± 5.1 83.58 ± 4.6 74.19 ± 2.5
0.78125 70.39 ± 3.2 84.08 ± 3.6 54.42 ± 4.6
1.5625 62.62 ± 4.3 85.07 ± 5.0 55.35 ± 5.1
3.125 63.35 ± 2.9 71.64 ± 4.2 55.12 ± 4.3
6.25 12.38 ± 3.1 23.88 ± 3.1 5.58 ± 1.7
12.5 0.01 ± 0.1 10.45 ± 1.8 6.51 ± 1.2
25 0.00 ± 0.0 5.42 ± 0.9 0.01 ± 0.0
50 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0
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S. epidermidis and S. aureus are gram-positive bacteria; although, the latter in a clinical
context has been shown to have drug resistance; on the other hand, S. epidermidis proliferates
and causes infections in hospitalized or immunosuppressed patients; in addition to having
a great capacity to form biofilms, which is its main mechanism of resistance. Apparently,
being gram positive, both strains showed similar susceptibility (MICs) to the different
concentrations of the Ag-NPs/BBP tested.
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3.7. Cytotoxic Evaluation

The results of the J774.2 mouse macrophage cell viability in direct contact with Ag-
NPs/BBP are shown in Table 2 and Figure 10. It had been hypothesized that the hydroxyl
groups (OH−) of the polyphenols and other biomolecules from the Heterotheca inuloides
infusion could lead to the stabilization and reduction of silver ions (Ag+) to Ag0, and
that some of these biomolecules may stay on the surface of the nanoparticles, contributing
to the enhanced biocompatibility of the same [54]. In chemical reduction synthesis, it is
possible that part of the silver nitrate ions that remain unreacted, as well as residues of
the reducing agent, such as sodium borohydride, contribute to greater cytotoxicity [55].
In addition, another factor that has been associated with cytotoxicity is particle size, since
nanoparticles smaller than 20 nm are more likely to be internalized in the cell. In the current
work, cytotoxicity was rated in accordance with ISO standard 10993-5 [41] as non-cytotoxic
(cell viability higher than 75%), slightly cytotoxic (cell viability ranging from 50% to 75%),
moderately cytotoxic (cell viability ranging from 25% to 50%), and severely cytotoxic (cell
viability lower than 25%) [38]. Then, 50 and 25% dilutions of Ag-NPs/BBP resulted in
being moderately cytotoxic, 12.5 and 6.25% were slightly cytotoxic, whereas 3.125, 1.5625,
and 0.78125% were non-cytotoxic.

Table 2. Cytotoxic evaluation results for Ag-NPs/BBP, at different dilutions, performed on J774.2
mouse macrophage cells.

Serial Dilution (µg/mL) Relative Cell Viability
(%Mean ± SD)

0 100.00 ± 2.0
0.78125 94.78 ± 1.7
1.5625 83.26 ± 2.5
3.125 78.37 ± 1.7
6.25 64.07 ± 4.2
12.5 53.70 ± 2.9
25 40.10 ± 0.7
50 29.10 ± 0.8
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4. Discussion

The results of the characterization confirm the presence of Ag nanoparticles supported
on bovine bone powder; the SEM and TEM techniques prove the presence of hydrox-
yapatite and collagen, and elements like C, O, P, and Ca were detected, likewise, small
amounts of Mg were detected; the presence of silver was analyzed by EDS, XRD, and TEM;
TEM microscopy showed the size of the silver nanoparticles (22.6 ± 10.8 nm) and good
polydispersity over the BBP. Crystalline analysis of the Ag-NPs showed correspondence
to (111) Ag lattice planes, according to the FCC structure (XRD and TEM). The Ag-NPs
supported on BBP showed a decrease in the band gap (2.19 eV) compared with pure BBP
(2.42 eV) (UV–Vis), which could improve the catalytic activity in the near to visible range
of the electromagnetic spectrum FTIR, showing that the Ag-NPs are bound to the PO4

3−

and CO3
2− functional groups of the BBP by considerably decreasing the intensity of their

peak, as the binding of the functional groups to the Ag-NPs does not allow the molecule
to vibrate freely, which decreases the energy transmittance. On the other hand, it was
possible to detect small transmittance peaks corresponding to the functional groups present
in phenols, polyphenols, and sesquiterpene compounds, these compounds are present in
the composition of Heterotheca inuloides, which indicates that the Ag/BBP composite is
impregnated with small amounts of organic compounds present in Heterotheca inuloides.

According to the above results, it can be proved that phenols, polyphenols, and
sesquiterpene compounds from the leaves and flowers of Heterotheca inuloides are able to
reduce Ag+1 to Ag0, forming nanometer-sized nanoparticles on the surface of bovine bone
powder; the PO4

3− and CO3
2− functional groups of BBP form a bond with Ag-NPs.

The effect of pH on silver nanoparticles has been studied, showing that in a short-term
study at a lower pH of the solution (4), the size of the nanoparticles increases; on the other
hand, as the pH of the solution increases, the size of the nanoparticles decreases; on the
other hand, in a long-term study, the size of the nanoparticles increased at different pH;
this study was carried out in an aqueous solution [56,57]; in the case of the Ag-NPs/BBP
system, further studies will be carried out to determine how pH affects the properties of
Ag-NPs when supported on BBP.

Although Ag-NPs have been extensively studied, they remain one of the most contro-
versial areas of research regarding their mechanism of action over different strains. Current
evidence indicates that the release of extracellular and intracellular ions is a mechanism that
acts simultaneously with the intracellular deposition of the nanoparticles [58]. Likewise,
the release of reactive oxygen species intra and extracellular by the silver nanoparticles
generates oxidative stress inside the bacterial cell [59].

The inhibitory action mechanism has been described according to the electronegative
attraction of the sulfate and phosphate (−) groups in the bacteria cell membrane to the
Ag (+) ions that could be released from Ag-NPs. This interaction could interfere with the
permeability and respiration of the bacteria, obstructing its capacity of replicate, ending in
the protein denaturation of the bacteria [54,60–63].

The S. epidermidis and S. aureus (gram-positive bacteria), and E. coli (gram-negative
bacteria), MIC was determined; gram-positive bacteria showed similar susceptibility to the
Ag-NPs, the concentration being lower than gram-negative bacteria, this is due to the type
of cell membranes of which they are composed.

Studies on cell lines, such as HepG2, and macrophages have shown that toxicity
depends on the size of the nanoparticle and is due to the production of oxidative stress
that leads to cell death due to apoptosis. J774 cells are more sensitive due to their intrin-
sic capacity in the ROS production mechanism compared to other cell lines. The MTT
results were used as an indication of ROS production because the mechanism of action
of silver nanoparticles is through the disruption of the cell membrane, the internment of
the nanoparticles into the cytoplasm, and their interaction with the cell nucleus causing
DNA destruction. In addition, the formation of free radicals, both ROS and RNS, causing
oxidative stress and damage to cellular macromolecules (carbohydrates, lipids, proteins,
and nucleic acids) also occurs [64].
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The minimum Inhibitory concentration (MIC) of Ag-NPs for E. coli, S. epidermidis, and
S. aureus bacteria shows a slight cytotoxicity.

5. Conclusions

The synthesis of silver nanoparticles using natural reducers and supports is a viable so-
lution to actual environmental and health problems. Bovine bone powder is an ecofriendly,
cheap, and renewable material. It is an inert material, acts as an excipient, with a high
electronic density provided by PO4

3− and CO3
2− functional groups; these groups are the

ones that anchor the metal ions to the support (FTIR). An infusion of Heterotheca inuloides
leaves and flowers can reduce Ag+1 to Ag0, due to the reductive potential of polyphenol,
phenol, and sesquiterpene compounds presents in the plant. Through characterization,
the obtaining of the nanocomposite was proved, an elemental composition study was
carried out by SEM, and elements like C, O, P, Ca (hydroxyapatite (Ca5(PO4)3(OH)2)), and
Ag were detected; the UV–Vis spectroscopy characterization showed the presence of the
silver plasmon and a decrease in the band gap from 2.42 eV (pure BBP) to 2.19 eV (Ag-
NPs/BBP); the decrease in the band gap of the Ag-NPs/BBP composite means that there
is an improvement in its photocatalytic properties. The TEM observations confirmed the
formation of Ag-NPs with an almost unimodal and slightly wide particle size distribution,
with an average size of 22.6 nm ± 10.8 nm and a quasi-spherical shape. The XRD analysis
showed the presence (111) Ag lattice planes, according to the FCC structure, and an average
crystal size of 20.62 nm. The MICs for S. aureus, E. coli, and S. epidermidis were 6.25, 12.5,
and 6.25%, respectively. Moreover, the concentrations ≤ 12.5% were slightly cytotoxic or
non-cytotoxic. Based on the results, this system has potential applications in the medicine
and food industries. This research found that the facile and ecofriendly synthesis of Ag-NPs
supported on bovine bone powder resulted in an effective bactericidal system against the
strains studied, without significant cytotoxicity.

Author Contributions: Conceptualization, A.R.V.-N., A.M.-R., L.A.-F. and S.A.G.-L.; methodology,
S.A.G.-L., A.R.V.-N., A.M.-R., M.S.P.-M., M.A.Z.-A. and L.A.-F.; validation, S.A.G.-L. formal analysis,
S.A.G.-L., A.R.V.-N., A.M.-R. and L.A.-F.; investigation, S.A.G.-L.; resources, S.A.G.-L.; data curation,
S.A.G.-L., A.M.-R., L.A.-F., M.A.Z.-A. and A.R.V.-N.; writing—original draft preparation, S.A.G.-L.,
A.M.-R., L.A.-F. and A.R.V.-N.; writing—review and editing, S.A.G.-L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The raw data required to reproduce these findings cannot be shared at this
time as the data also forms part of an ongoing study.

Acknowledgments: The authors would like to thank Alejandro Parada Flores and Isaura Itzel Acosta
Sánchez for their technical contributions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Bouafia, A.; Laouini, S.E.; Ahmed, A.S.; Soldatov, A.V.; Algarni, H.; Feng Chong, K.; Ali, G.A. The recent progress on silver

nanoparticles: Synthesis and electronic applications. Nanomaterials 2021, 11, 2318. [CrossRef]
2. Espinosa-Cristóbal, L.F.; Martínez-Castañón, G.A.; Martínez-Martínez, R.E.; Loyola-Rodriguez, J.P.; Patino-Marin, N.; Reyes-

Macias, J.F.; Ruiz, F. Antibacterial effect of silver nanoparticles against Streptococcus mutans. Mater. Lett. 2009, 63, 2603–2606.
[CrossRef]
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