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Abstract: An approach is demonstrated for the generation of swellable core–shell particles in the
sub-millimeter range using a one-step microfluidic method. Particles are made of an agarose gel core
and a shell consisting of hydrogel based on crosslinked poly-(N-isopropylacrylamide) (PNIPAM).
Solidification of the core was achieved by cooling below the sol–gel temperature, while the shell was
cured by photoinitiated co-polymerization. The shell of the particles is reversibly thermoresponsive;
it contracts upon heating, releasing water, and becomes hydrophobic. The transition temperature
as well as the stability of the particles are mainly affected by the shell monomer composition, while
they are less affected by the type of the core material. Such composite particles remain swellable
after drying.
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1. Introduction

Core–shell microparticles are of interest for analytical as well as therapeutic or ther-
anostic applications, for example, drug targeting [1–4]. The design of the shell material
allows for specific interaction of the particle with its targets [5] as well as for control of
the release of drugs or other agents stored in the core [6–8]. In general, the kinetics of
uptake and release of substances by the whole particle are mainly determined by the shell.
For triggered dispersion and transport properties, it is required to change permeability
and/or solvation behavior. The core–shell particles of suitable shell material would open
the possibility to selectively switch the properties of the shell while keeping those of the
core constant. Switching by temperature changes could be a very convenient strategy, if
thermoresponsive materials are utilized. Hydrogels of crosslinked PNIPAM are suitable
materials for such a temperature-controlled switching [9]. Above the critical temperature,
the material shrinks and its hydrophilic character gets gradually lost, thereby shifting into
a more hydrophobic state [10,11]. This paper shows a sol–gel transition at moderately
enhanced temperature.

Thermoresponsive particles based on PNIPAM are usually produced by thermal free-
radical polymerization of the related monomers. Typically, the formation of particles occurs
from an emulsion [12], by precipitation polymerization from a solvent [13], or by growth
on preformed nanoparticle seeds [14,15]. The seed-based method can also be used for
generating core–multishell particles, which mostly have an inorganic core in the nanometer
range [15]. The resulting particles by either of these methods generally have diameters
well below 1 µm or slightly above. On the other hand, particles with sizes between a
few micrometers and one millimeter can be generated with high homogeneity by using
microfluidic techniques [16], which are applicable for producing core–shell particles too.
Polymer and gel particles that are swellable in aqueous environments are well-suited for the
storage and release of drugs and other chemicals. Microfluidic methods are advantageous
because they allow for the efficient use of the chemicals employed, are easy to conduct, and
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usually have a short time of fabrication. To the best of our knowledge, the microfluidic
generation of particles composed of two or more different hydrogel materials has hardly
been addressed up to now [17]. Here, we report on the investigation of the generation of
composed hydrogel microparticles and on how an existing microfluidic method [18] has
been advanced to produce such particles consisting of a thermoresponsive PNIPAM shell
around the core of a second hydrogel material in one step.

2. Materials and Methods
2.1. Materials

All commercially available chemicals were reagent grade and were used without fur-
ther purification. Monomers—N-isopropylacrylamide (NIPAM, Sigma-Aldrich, St. Louis,
MO, USA), acrylamide (AA, Merck, Darmstadt, Germany), N,N′-methylenebisacrylamide
(MBBA, Merck, Darmstadt, Germany), 1,4-butanediol diacrylate (BDDA, Merck, Darm-
stadt, Germany), tripropylene glycol diacrylate (TPGDA, abcr, Karlsruhe, Germany), and
ethylene glycol dimethacrylate (EGDM, Merck, Darmstadt, Germany). Solvents—tert-
amyl alcohol (Merck, Darmstadt, Germany), tert-butanol (Merck, Darmstadt, Germany),
n-butanol (TCI, Eschborn, Germany), n-hexanol (Merck, Darmstadt, Germany), cyclohex-
anol, and cyclohexanone. Silicone oil 500 cSt (Carl Roth, Karlsruhe, Germany), gelatin
G9391 (Sigma-Aldrich, St. Louis, MO, USA), agarose Sigma-Aldrich, St. Louis, MO, USA),
and trehalose (Fisher Scientific, Schwerte, Germany) were used. Photoinitiators—irgacure
819 (Merck, Darmstadt, Germany). Lithium 2,4,6-trimethylbenzoyl-phenylphosphinate
(Li-TPO)—was synthesized as described in [19]. In-house bi-distilled water was used, with
a conductivity of 1–2 µS/cm and a pH of 5.5–6.5.

2.2. Photopolymerization

A 120 W mercury short-arc lamp HXP 120 V (Leistungselektronik Jena, Jena, Germany)
was used as the light source. The light was fed by a 5 mm diameter glass fiber cable, and
light intensity was adjusted to 2/3 of the maximum value. Irradiation was carried out
perpendicular to the flow direction of the particles in the microfluidic experiments. For
bulk polymerization, as was necessary for testing the solvents and for producing adequate
amounts of polymer, all required components (monomers, solvents, and photoinitiators)
were mixed in a 10 mL beaker to make about 2 mL of mixture, which was then irradiated
for 10–20 s.

2.3. Particle Separation Post Treatment

After irradiation, the cured particles were collected. The carrier (silicone oil) was
removed by suction over a frit, and the particles were washed with tert-butanol and finally
filled in a vial with bi-distilled water. During storage in water, residual organic solvents
(tert-amyl alcohol and tert-butanol) from the particle shell are exchanged with water. Core
particles with trehalose was a main constituent, storage was performed with an adequate
trehalose solution rather than with mere water.

2.4. Measuring Swellability

An aliquot of the polymer gel was weighed and then immersed in bi-distilled water.
After a period of 2–3 h, the water was replaced by fresh water and stored for about 24 h.
The sample was then taken from the water, dried with filter paper, and weighed again.
Thereafter, the sample was examined for thermosensitivity by adding it back into the water
and heating. Thermosensitivity was observed when it became opaque and shrunk when
heated.

2.5. Measuring Thermosensitivity via Microscopy

In order to follow-up the thermal behavior of the composite particles quantitatively, a
Keyence VHX-5000 microscope (Keyence Deutschland GmbH, Neu-Isenburg, Germany)
with a VH-Z00R objective was employed. On the microscope stage, a 40 × 35 mm heating
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element (DBK David + Baader GmbH, Kandel, Germany) was mounted, and its temperature
was adjusted by a thermo-controller UR3274 (Wachendorff GmbH, Geisenheim, Germany).
On the heating element, a glass slide with indentation was placed, where 100 µL of diluted
particle suspension was pipetted in. The temperature was increased in intervals of 2 ◦C,
and a photograph was taken at each step. The particle size was measured by using the
standard graphic software ImageJ, version 1.53m and later. To investigate the construction
of the particles in more detail, a Zeiss Axioplan 2 microscope (Zeiss, Göttingen, Germany)
was used, which allows for transmitted light and bright and dark field observations. By
using polarization filters, the agarose core could be clearly defined from the rest of the
particle. Photographs were taken using a Sony SLT-A37 digital camera (Sony, Minato,
Tokyo, Japan).

3. Results and Discussion
3.1. Microfluidic Arrangement

Co-flow devices are widely used in the preparation of particles in higher micrometer
ranges and have been well described [16]. The specific apparatus employed in this study is
depicted schematically in Figure 1.
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Figure 1. Sketch of the microfluidic device.

The co-flow arrangement was placed inside a heating chamber. The silicone oil carrier
fluid flowed through a glass tube of 1.5 mm inner width where, in the center, the outer
capillary was placed, which piped the monomer solution for building the particle shell. It
consisted of a metal having an inner diameter of 600 µm. Again, in its center, a fused silica
capillary of 250 µm width was placed to inject the agarose solution into the particle core.
The chamber temperature was set to 60 ◦C, which is well above the sol–gel temperature
of the agarose, ensuring that the agarose sol is of low viscosity during droplet generation.
Since the pumping equipment was placed outside the heating chamber, fluorinated carbon
oil was used as a mediator between the pump and the warm agarose sol. Silicone oil 500 cSt
was chosen as the carrier liquid based on earlier studies [18]. It is well suited for water-
based droplets due to immiscibility with water and its similar density, which prevents the
droplets from going up or down after leaving the capillary. A moderate viscosity works
best with the dimensions of the device parts used.

Flow rates were chosen in a way that the monomer solution leaving the outer capillary
comes along with the inner agarose droplet, building a layer around it, before the whole
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droplet tears off of the capillary due to the pull effect of the carrier fluid. Figure 2 shows an
image of the geometry of the capillaries and the droplets formed.
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Droplets were connected from the heating chamber to an aluminum block kept at a
temperature of 5 ◦C. Thus, the particle core turned solid (sol–gel transition), while the shell
still remained liquid. In the subsequent irradiation unit, the particle shell was cured by
polymerization and it solidified eventually, which is below the transition temperature of
the thermoresponsive polymer. The microgel composite particles formed left the apparatus
and were collected.

3.2. Core and Shell Materials

Both the core and shell of the particles should be hydrophilic and swellable. Thus, the
materials have to be chosen carefully in order to ensure that they do not mix and dissolve
during particle synthesis.

It is important that the material used for the core turns into the gel state at rather low
temperatures and then builds up high strength. All tested agarose types have melting
temperatures above 90 ◦C. Finally, agarose 0169 (1–2% in water) was favored and used for
most of the studies. On cooling, the sol keeps the low viscosity down to around 45 ◦C. This
wide temperature hysteresis until re-solidification ensures reliable and safe processing and
handling. At room temperature, the gel has sufficient strength. In addition, agarose A4018
was also used.

Also, a suitable polymer system for the particle shell had to be selected and optimized.
For thermosensitivity, N-isopropylacrylamide (NIPAM) was chosen as a base monomer and
combined with a crosslinker. It is well known that a non-crosslinked polymer (PNIPAM)
above its LCST (lowest critical solution temperature) of ca. 33 ◦C precipitates from an
aqueous solution [20]. Crosslinked PNIPAM, on the other hand, is not soluble in water but
absorbs a significant amount of water, thereby forming a clear gel, which behaves similarly.
When it is heated above the VPTT (volume phase transition temperature), it collapses and
becomes hydrophobic.

Water in its pure form cannot be used as a solvent for the monomers because it
instantly merges with the agarose core. In fact, the solvent has to have a limited solubility
in water so that it can be washed out of the particles later on in the process and replaced
by water. This is necessary since the thermoresponsive effect takes place only in water.
Furthermore, it must not interfere with the polymerization (e.g., chain transfer reactions)
process and must form a stable gel with the polymer. To meet these requirements, a series
of relevant fluids were examined in bulk polymerization tests (Table 1), where tert-amyl
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alcohol turned out to be best-suited. However, pure tert-amyl alcohol was not suitable for
microfluidic droplet generation due to low interface tension between the monomer solution
and silicone oil carrier. Instead of definite droplets only a thin thread was formed. This
behavior was overcome by adding a share of water to the monomer mixture. A mixture
of 80% tert-amyl alcohol and 20% water (v:v) showed optimum results. As a result, the
photoinitiator could be changed to a water soluble one (Li-TPO).

Table 1. Performance of solvents in polymerization experiments: monomer 0.99 M N-isopropylacrylamide,
crosslinker 0.036 M N,N′-methylenebisacrylamide, and photoinitiator 0.013 M irgacure 819.

Solvent Solubility in Water
(g/L) 1 Result of Polymerization

n-butanol 77 sticky gel
tert-amyl alcohol 118 firm gel

n-hexanol 5.9 soft gel
cyclohexanol 40 viscous solution

cyclohexanone 103 liquid unchanged
1 Data from ref. [21].

Monomer composition governs the swelling behavior of the polymer network and its
mechanical and thermoresponsive properties. In analogy to the solvent tests, the impact
of crosslinker type and concentration on polymer properties were studied in bulk poly-
merization experiments. In Table 2, these data are summarized, showing good results in
experiments 2, 4, 6, and 8, which produced only a slight extra swelling (1.3–1.8), when the
organic solvent was replaced by water. This keeps the hydrogel mechanically stable. As
expected, the gels formed are firmer when crosslinker concentrations are higher. Butane-
dioldiacrylate (BDDA), compared to MBBA, has a stronger effect in this respect. At the
same time, it lowers the transition temperature. For subsequent studies, we concentrated
on compositions related to number 8.

Table 2. Polymer properties in dependence of monomer composition: solvent tert-amyl alco-
hol/water 4:1 (v:v), monomer N-isopropylacrylamide (NIPAM), crosslinker methylenebisacrylamide
(MBBA), tripropylene glycol diacrylate (TPGDA), 1,4-butanediol diacrylate (BDDA), ethylene glycol
dimethacrylate (EGDM), and photoinitiator 0.015 M Li-TPO.

Monomer Composition Polymer Properties

ID NIPAM
(mol/L)

Cross-
Linker mol/L Molar

Ratio
Mass Increase
after Swelling

Water/Polymer Ratio in
Swollen State

Thermo-Responsive
y/n (VPTT)

1 1.96 MBBA 0.050 0.025 3.36 11.9 y (33 ◦C)
2 1.71 MBBA 0.076 0.045 1.79 12.2 y (34 ◦C)
3 1.72 MBBA 0.038 0.022 6.17 42.7 y (33 ◦C)
4 1.96 MBBA 0.149 0.076 1.72 5.6 y
5 1.73 TPGDA 0.040 0.023 3.17 22.4 y
6 1.74 TPGDA 0.059 0.034 1.57 10.6 y
7 1.73 EGDM 0.061 0.035 8.91 64.6 y
8 1.73 BDDA 0.061 0.035 1.29 8.5 y (<26 ◦C)
9 1.72 BDDA 0.046 0.027 0.95 6.0 y

3.3. Generation and Properties of Particles

By using the microfluidic arrangement and the core and shell materials as described
above, flow rates were optimized for particle production. The core phase favors particle
generation. It easily forms compact droplets due to its higher surface tension, with the shell
phase enclosing them when it emanates from the outer capillary simultaneously. In this
way, optimized flow rates of 200/20/5 µL/min (carrier/shell/core) were obtained, and
composite particles of various shell compositions were produced. These particles show
thermoresponsive behaviors. When heated, the particle shell shrinks, releasing water to
the environment, as shown in Figure 3.
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(a) at 26 ◦C and (b) 38 ◦C, respectively. NIPAM 0.93 M, MBBA 0.076 M, and dark agarose cores;
arrows indicate the voids between the core and shell.

With this basic NIPAM-MBBA system, however, the mechanical strength of the shell
and adhesion to the core are rather poor. During production (immersion and swelling in
water), a water-filled void develops between the core and shell that may subsequently
even cause the core to fall out of the shell. An improvement was achieved with the partial
replacement of NIPAM by acrylamide. Acrylamide is known to produce firm gels, which
are widely used in bio sciences, e.g., for the preparation of electrophoresis gel plates. On the
other hand, the crosslinked pure AA gels are not thermoresponsive. Thus, in our system,
acrylamide improves gel strength but changes thermal transition as well. Replacing 1/3
weight of NIPAM by AA (i.e., 0.62 M NIPAM and 0.49 M AA) causes complete loss of
thermosensitivity. By replacing 1/6 (0.78 M/0.25 M) and 1/12 (0.85 M/0.12 M), VPTT is
increased to >56 ◦C and 38 ◦C, respectively. Using BDDA, instead of MBBA, as a crosslinker,
the mechanical strength is further improved, while VPTT reduces to 33 ◦C, as shown in
Figure 4. Nonetheless, despite all these measures, the voids still occurred.
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In Figure 5, the relative changes in size with temperature for composite particles of
varying shell composition are plotted. While MBBA crosslinked NIPAM, independently
of monomer concentration, it shows a quite sharp size change at ca. 33 ◦C. This effect is
mitigated upon the partial replacement of NIPAM by AA (Figure 5a,b).
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Figure 5. Relative change in particle diameter with temperature depending on shell and core
composition. (a) Shell system NIPAM/MBBA—variation in NIPAM/MBBA molar ratio, (b) shell
system NIPAM/AA/MBBA—variation in NIPAM/AA molar ratio at constant [MBBA], (c) shell
system NIPAM/AA/BDDA—variation in NIPAM/AA molar ratio at constant [BDDA], and (d) shell
system NIPAM/AA/BDDA—variation in core composition. Standard core (a–d) 1% agarose 0169
and modified core (d) 2% agarose 4018 + 5% gelatin G9391 + 3% trehalose.

When BDDA is used as a crosslinker, the addition of AA has the same effect but is
less pronounced (Figure 5c). In Figure 5d, the effect of using a modified agarose core (2%
agarose 4018 + 5% gelatin G9391 + 3% trehalose) are shown in comparison to the standard
(1% agarose 0169). A higher percentage of solids in the core was chosen to enhance the
stability after drying and re-swelling. Compared to the standard core, there is no significant
impact in terms of thermal behavior. Figure 6 shows a composite particle with an even
higher modified core in the dried and re-swollen states.

The re-swollen particles remained in good shape. They looked very much the same
like prior to desiccation. The void space between the core and shell is clearly visible when
viewed under polarized light.
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Figure 6. Microscopic images of a composite particle (a) in the dried state (3 d drying above silica-
gel; dark field image) and (b) 80 min after subsequent immersion in water (transmitted light with
polarization filter; arrow indicates the void between the core and shell). Core—2% agarose 4018 + 1%
gelatin G9391 + 27% trehalose; shell—NIPAM 0.85 M + AA 0.12 M + BDDA 0.062 M.

4. Conclusions

Utilizing carefully selected materials makes it possible to produce composite particles
in one step, which consist of hydrogels both in the core and the shell. Shells constructed
using thermoresponsive materials allow for switching the particles’ hydrophilic and hy-
drophobic properties on the outside by heating. Such particles have the potential for the
controlled uptake of water-soluble materials, such as biomolecules, to their shell from
the environment and subsequent release to the core for further treatments like analytical
reactions. Moreover, the switching from hydrophilic to hydrophobic stage may facilitate
phase transition of the particles from an aqueous to an organic environment. The presented
method in principle is not restricted to agarose/NIPAM, i.e., thermoresponsive materi-
als. Other material combinations can also be potentially used. The key ideas for particle
construction can be summarized as follows:

• Liquid solutions for core and shell materials must have poor or no miscibility with
each other and with the carrier fluid;

• The carrier should be chosen for best particle geometry; i.e., viscosity, density, and
interfacial tension have to be selected or adjusted;

• Core and shell materials must allow for fast solidification (during temperature change,
irradiation, etc.);

• Solvents should be easily removable, if required (by diffusion, evaporation, etc.).
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