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Abstract: Understanding and detecting human emotions is crucial for enhancing mental health,
cognitive performance and human–computer interactions. This field in affective computing is
relatively unexplored, and gaining knowledge about which external factors impact emotions could
enhance communication between users and machines. Furthermore, it could also help us to manage
affective disorders or understand affective physiological responses to human spatial and digital
environments. The main objective of the current study was to investigate the influence of external
stimulation, specifically the influence of different light conditions, on brain activity while observing
affect-eliciting pictures and their classification. In this context, a multichannel electroencephalography
(EEG) was recorded in 30 participants as they observed images from the Nencki Affective Picture
System (NAPS) database in an art-gallery-style Virtual Reality (VR) environment. The elicited
affect states were classified into three affect classes within the two-dimensional valence–arousal
plane. Valence (positive/negative) and arousal (high/low) values were reported by participants on
continuous scales. The experiment was conducted in two experimental conditions: a warm light
condition and a cold light condition. Thus, three classification tasks arose with regard to the recorded
brain data: classification of an affect state within a warm-light condition, classification of an affect
state within a cold light condition, and warm light vs. cold light classification during observation
of affect-eliciting images. For all classification tasks, Linear Discriminant Analysis, a Spatial Filter
Model, a Convolutional Neural Network, the EEGNet, and the SincNet were compared. The EEGNet
architecture performed best in all tasks. It could significantly classify three affect states with 43.12%
accuracy under the influence of warm light. Under the influence of cold light, no model could
achieve significant results. The classification between visual stimulus with warm light vs. cold
light could be classified significantly with 76.65% accuracy from the EEGNet, well above any other
machine learning or deep learning model. No significant differences could be detected between affect
recognition in different light conditions, but the results point towards the advantage of gradient-based
learning methods for data-driven experimental designs for the problem of affect decoding from EEG,
providing modern tools for affective computing in digital spaces. Moreover, the ability to discern
externally driven affective states through deep learning not only advances our understanding of
the human mind but also opens avenues for developing innovative therapeutic interventions and
improving human–computer interaction.
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1. Introduction

Many human needs, behaviors, and human performance are related to emotions, as
humans are affective beings [1]. Thus, the need for applications that are able to detect
human affect states has been growing in recent years so as not only to enhance communica-
tion between the user and the machine, but also to treat disorders and achieve marketing
goals or sports goals that require specific mental states [1–4]. This can be achieved through
a system that performs an action using brain signals as an input while the user does not
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have voluntary control over it, also called passive brain–computer interface (BCI), using
electroencephalography (EEG) [5].

Emotions can be viewed from a categorical or a dimensional perspective. The categor-
ical perspective on emotions was summarized by Ekman, who listed six basic emotions,
happiness, sadness, anger, fear, surprise, and disgust, as categories [6]. On the other hand,
one of the commonly used dimensional models is Russel’s circumplex model, which uses
two dimensions, valence and arousal, to capture emotional states [7,8]. Valence measures
negative/positive feelings on a continuous scale and arousal is captured from low to high
on a continuous scale [7]. Thus, it is possible to span a two-dimensional plane that includes
all of the categorical emotions and is quantifiable. This is called affect, which is less subjec-
tive and less dependent on the perception of the single words that are intended to describe
an emotion [9].

Previous attempts to classify affect from EEG data have involved the application of
deep learning models using videos as visual stimuli. For instance, Ramzan et al. [10]
classified high arousal versus low arousal and high valence versus low valence with a
Fused CNN-LSTM with the mentioned stimuli. While video stimuli offer a more immersive
experience than images, it is crucial to note that the rated affect for these videos may not
be valid for every moment, but rather reflects the overall impression. This introduces a
potential bias when evaluating affect using shorter trials, a common scenario in many
studies [9,10].

Affect-eliciting pictures like those in the International Affective Picture System (IAPS)
have already been used to classify affect in terms of valence and arousal with machine
learning approaches. In these studies, binary classification was performed on one of the two
parameters rather than classification on a two-dimensional valence–arousal plane [11,12].

There are a limited number of studies using Virtual Reality (VR) showing affect-
eliciting stimuli, although it promises a more immersive and almost realistic experience.
One of them classified EEG trials into low or high negativity and low or high positivity
using video stimuli. The opposing label names and the fact that the stimuli are videos raise
questions about the study design, emphasizing the need for more meaningful labeling [9].

Marin-Morales et al. and Horvat et al. combined the idea of showing images and
being in a VR environment by guiding the participant through a virtual 3D art museum.
The advantage of this approach is that image databases like NAPS or IAPS are available
and just have to be embedded in a VR space. But like all studies that performed affect clas-
sification using the circumplex model, the named study also induced geometric splitting
of the valence or arousal scale. This might not be reasonable regarding the distribution of
ratings from the participant. A more meaningful labeling approach has to be developed.
The named study reached 75% accuracy in classifying high or low arousal and 71% accu-
racy in classifying positive or negative valence, using EEG data and heart-rate variability
data. Also, they used a Support Vector Machine for classification, although the literature
approaches with Neural Networks performed better than simpler machine learning ap-
proaches when comparing similar affect classification tasks with each other [13,14]. Still,
simpler machine learning approaches have to be used and tested, because they are less
complex and in general take less time to train while resulting in high accuracy [15,16].
Other studies used different VR scenes to elicit emotions and classified them according to
a binary system regarding valence and/or arousal, respectively [16–22]. Marin-Morales
et al. [23] split the valence arousal plane into four quadrants and achieved successful
classification using four classes. These approaches, again, use geometrical splitting of the
valence–arousal plane.

The influence of colors on the human EEG signals can be studied using several different
visual stimuli. Hosseini et al. [24] presented colored screens, colored words on a white
background, and black words on a colored background to participants and analyzed the
EEG signals with regard to several band powers. The study could not find any significant
differences in specific brain waves between the presented colors.
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Hassib et al. [25], on the other hand, were able to discriminate between blue and
orange ambient light influence while participants played a drive simulator game and
rated their valence and arousal. Based on the EEG data measured, feature extraction
was performed and a random forest classifier was utilized to classify positive or negative
valence and high or low arousal, and thus blue or orange light condition [24]. Also,
experiments in VR were performed, where participants sat in a virtual room with colored
walls [22,25]. Differences in brain waves in response to changing wall colors were analyzed
and an increase in brain activity linked to emotional processing for blue wall colors was
detected [26]. No classification algorithm was applied to see how well color conditions
could be distinguished. Schilling et al. investigated the influence of colored lenses on late
positive potentials (LPP) in EEG signals while watching images from the IAPS database.
According to the study, red-tinted lenses enhanced the LPP during emotionally arousing
and neutral picture presentation compared with uncolored lenses, while green-tinted lenses
increased LPP as well, but mainly in positive valence picture condition [27].

From the literature, we see that colored lenses influence LPP in participants observing
specific emotionally triggering material and colored walls also influence EEG signals [26,27].
To the best of our knowledge, no previous study has investigated the influence of light
conditions on brain activity while observing affect-eliciting pictures. Based on that knowledge,
the following main research question arises: Is it possible to distinguish brain signals from
participants experiencing different light conditions while observing emotional content? To
address this, we will further formulate the following hypotheses:

(1) Can we train a network to predict an affect state? To answer this question, two
tasks arise: an affect-classification task under the influence of warm light and an
affect-classification task under the influence of cold light.

(2) Can we train a network to predict light conditions given an affect state? To answer
this question, the following task arises: classification of a warm light vs. a cold light
condition.

(3) How well can we classify affect states in one condition vs. another? To answer this
question, a statistical analysis of the results of the previous tasks has to be performed.

Section 2 describes the VR environment and the study itself and develops the classifi-
cation methods and their architecture. This is followed by Section 3, where the results of all
classification tasks are listed. Section 4 discusses the results and answers the research ques-
tions. Section 5 presents the most important results and describes how affect recognition
can be further investigated.

2. Methods
2.1. Participants

A total of 30 healthy participants (15 men, 15 women) took part in the study, with
a mean age of 28.80 ± 9.09. All participants were informed in writing about the aim of
the study and the measurement technique, and they signed informed consent prior to the
experiment. The study was approved by the local ethics committee (Medical University of
Graz) and was in accordance with the ethical standards of the Declaration of Helsinki.

2.2. Experimental Paradigm

Prior to the start of the experiment, participants completed a measurement record
detailing demographic features. Subsequently, they were briefed on the experimental task.
Initially, participants were instructed to assess images displayed on a standard screen
using the Self-Assessment Manikin (SAM) scales for valence and arousal [28]. Following
this, participants were seated in a comfortable chair, equipped with EEG, and, lastly, wore
VR glasses (HTC Vive) as illustrated in Figure 1. The experiment unfolded within a VR
environment resembling an art gallery, where images were positioned on a wall in front of
the viewer. Each image was displayed for a duration of 10 s with a 3 s interval in between.
During the pause, the VR camera simulated a gradual transition, as if participants were
moving to the next image in the gallery. A total of 100 images from the NAPS database were
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presented in a pre-randomized order, which was consistent for every participant. Following
the observation of all images in one light condition, participants had the option to take an
individual break without the VR glasses before proceeding to the second light-condition.
The order of the light conditions was randomly determined for each participant.
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2.3. Affect Elicitation and Labeling

One hundred images from the NAPS database with a rather strong affect score (very
high or very low on the valence and arousal scale) were used for affect elicitation. For
this purpose, the image ratings with the largest Euclidean distance to the origin of the
valence/arousal scale were selected, with the origin of the scale lying at a scoring value of
5. Also, the images were evenly distributed throughout all quarters of the valence arousal
scale. Finally, 25 images were selected from each quadrant.

To obtain individual affect ratings, the participants scored all images on continuous
valence and arousal scales prior to the VR experiment. The mean participant scores were
clustered with the density-based spatial clustering of applications with noise (DBScan)
algorithm and the cluster means were calculated; see Figure 2. This clustering resulted
in 3 affect classes that will be used subsequently. To individualize the labels for each
participant’s score, the distance from every single participant score to all cluster means was
calculated and the image rating was assigned to the class label with the smallest distance.
Following that, we obtained 3 affect classes used as affect-classification labels for each light
condition, respectively.
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The warm vs. cold task yielded two labels, namely warm light and cold light, that
were used in the following sections. All images were embedded into a VR environment
that was created with UNITY XR (version 2020.3.27f1). The VR environment was created
once with warm illumination (Figure 3A) and once with cold illumination, as shown in
Figure 3B. Figure 4 shows the procedure of an individual experimental trial.
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2.4. EEG Setup and Data Preprocessing

The EEG was recorded with 34 active electrodes, which were mounted according to
the 10–20 international system and connected to a wearable amplifier (LiveAmp: Brain
Products GmbH, Gilching, Germany) with a sampling rate of 500 Hz. The ground electrode
was placed at the Fpz electrode position and the reference electrode at position FCz. The
impedances were kept below 25 kOhm.

First, ICA visual inspection of the signals was performed. The signals were then
filtered with a FIR bandpass filter using a Hamming window and cutoff frequencies of
0.2 Hz and 30 Hz. The experimental data were segmented into overlapping windows,
each 1 s long and overlapping by 0.5 s. This yielded 19 trials per image per participant
with the dimension channels by time before trial rejection (Figure 4). Trial rejection was
performed based on the amplitude of the signal, so that approximately eight percent of
each participant’s trials were rejected.

2.5. Classification Methods

Several approaches were tested, from linear machine learning algorithms to deep
neural networks. When performing the affect classification tasks, the EEG trials from each
image of each participant, as well as the participant number, were input into the network.
The latter was provided to allow the network to learn about inter-subject variability [29]
in human brains, which has been demonstrated by Horvat et al. [30], among others. The
output would be one of the 3 affect classes introduced in Section 2.3.

When performing the warm vs. cold light-classification task, the EEG trials from each
image of each participant, the participant number, and the affect label corresponding to the
trial were used as model input. The affect label was also provided so as to allow the model
to compare the conditions given the affect, and thus it would be able to extract the features
relevant for the light condition and not the affect. The output would be one of the 2 light
conditions (warm or cold light).

The model hyperparameters were chosen after performing a random grid search on the
affect classification task with the warm light condition using cross-validation with 4 splits
and 500 epochs each, while splitting was based on individual trials. The metric chosen
for the hyperparameter search was the area under the ROC curve (AUROC). The AUROC
might be too general in many cases, as it evaluates all decision thresholds, including
unrealistic thresholds—which should not be disregarded, especially in clinical–medical
problems [31]. On the other hand, the accuracy, sensitivity, specificity, positive predictive
value, and the F1 score are too specific—they are measured against a single threshold,
which is also only optimal for some cases but not for others. Carrington et al. [31] described
a deep ROC analysis that was intended to balance the aforementioned problems. In our
case, we used the AUROC value because it was shown to be a better measure for model
evaluation than accuracy, because it can be compared within tasks by considering class
imbalances and number of classes [32]. The model features that yielded the highest mean
AUROC value were used to train the models for each single task.

Each model performed cross-validation with 4 splits to optimize the computational
architecture. The splitting of the data was based on individual trials. In each iteration, three
of the four splits were used as training data and one split was used as testing data. This
procedure yields four accuracies per model per task, which provides accuracy distributions,
respectively. The evaluation method employed to compare the following models involves
computing the average accuracy values they generate. Subsequently, we gauged the
significance of these results by comparing them to a model trained with random labels.
This comparative analysis serves a dual purpose—it not only facilitates the assessment of
model performance but also effectively addresses the challenge posed by data imbalance.

(1) Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) is a linear classification approach using linear
decision boundaries [33]. Due to its computational simplicity, it is widely used in BCI
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implementations. With adequate shrinkage, a large number of variables can be modeled.
Moderate accuracies can be achieved in some BCI problems simply by bypassing EEG signal
values as variables for parameter fitting in LDA. For this experiment, feature engineering
and selection was preferred over direct voltage modeling. To select proper EEG features
for this classification method, the following feature engineering pipeline was performed
for each task; 1664 features per trial were extracted with the “MNE-features” library. To
find the most discriminant features, all features were sorted according to their capability
of capturing decision-making knowledge with a decision tree algorithm [34]. Then, the
number of most-used discriminant features had to be evaluated. Therefore, it was iterated
several times over the number of best features used. The validation accuracy using the
LDA model and a validation size of 25 percent of the whole data was observed for every
number of best features and for every iteration. The number of features that yielded the
best LDA result most often corresponds to the optimal number of features used. For the
affect classification task with the warm light condition, 4 of the best features were used,
and for the affect classification task with cold light condition, 5 of the best features were
used. For the warm vs. cold classification task, 17 of the best features were used.

The LDA model does not take the participation number as input, because it cannot
adapt to the participants data as a DNN could.

(2) Spatial Filter Model

The Spatial Filter Model extracts spatial filters for discriminating between classes
with a convolutional layer that operates through channels. Spatial filtering with 30 filters
(found through hyperparameter search) was performed with a two-dimensional convolu-
tional layer and a kernel size of 34 × 1. This ensured convolution through the channels,
i.e., through space. Finally, a linear classification layer was added to classify the spatial fil-
ters with a logarithmic softmax activation function. A negative log-likelihood loss function
was used to train the model.

(3) CNN Model

Besides two-dimensional convolutional layers, CNNs incorporate non-linearity layers,
dropout layers, two-dimensional pooling layers, and fully connected layers [35]. These
layers were stacked twice in the stated order until the trial became flattened and a fully
connected layer with a non-linear activation function followed that formed the output of
the network. The hyperparameter search yielded the best results at 100 filters, 100 nodes,
and a dropout rate of 0.0. For the non-linearity layers within the network, ReLu activation
functions were used and a softmax activation function was used for the output layer. For
training, a negative log-likelihood loss function was used.

(4) EEGNet Model

The EEGNet is a compact convolutional neural network designed for a variety of EEG-
based BCI paradigms. It combines depthwise, separable convolutions and thus extracts
common EEG features. It possesses the ability to condense a selection of established EEG
feature extraction techniques, including the optimal spatial filter bank. One notable benefit
of this architecture is its adaptability to a limited dataset during the training process,
enabling the generation of distinguishable decoder features [36,37]. A hyperparameter
random grid search yielded the best results at a dropout rate of 0.5, 4 spatial filters (34 × 1),
8 temporal filters (1 × 250), and 16 pointwise filters (1 × 16).

(5) SincNet Model

The SincNet, designed by Ranvelli et al. [38], is a CNN that tries to incorporate
more meaningful features by using prior knowledge about the data and thus constraining
the shape of the filters. The filters consist of Sinc functions that implement bandpass
filters. Only the low and the high cut-off frequency have to be learned by the network.
Thus, the learned parameters of the Sinc layer might have a physical meaning [38]. The
SincNet code was only accessible for one-dimensional audio data, and the code had to be
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reasonably adjusted to fit two-dimensional EEG data. Also, the range of frequency to be
evaluated by the first Sinc layer was changed to 4–125 Hz. The kernel size was chosen to
be 125 Hz to catch frequencies of 4 Hz and higher. This model provides an explainability
layer that indicates frequency bands. This has been proposed as a method of explaining
learned parameters in contexts commonly used in quantitative analysis of EEG, such as
frequency bands.

3. Results

Each of the three complementary research questions was approached with different
machine learning training procedures or statistical analysis of previous results. Each classi-
fication task can be seen as solving complementary problems for the various experimental
conditions. The first two tasks are based on using the data of the respective experimental
categories, warm or cold, and predicting affect from EEG. The first two tasks were executed
to answer the first research question. The third task classifies between experimental con-
ditions, providing a measure of the amount of information about the visual stimulus that
can be predicted from EEG, and at the same time providing a baseline for a comparison
of models that predict affect from the same data. This task was performed to answer the
second research question. Lastly, the model classification accuracies and any changes in it
between experimental conditions were compared to answer the third research question.
Together, these three experiments can form a data-driven baseline for a functional analysis
of the experimental conditions.

3.1. Affect Classification

Figure 5 illustrates the accuracy results for the affect classification task with warm
light influence and Figure 6 presents the accuracy results for the affect classification task
with cold light influence. The distributions were obtained by training the model four times
each. The purple distribution represents training the model with the EEG trials as input
and the class labels as output. The green distribution represents the model trained with
the same input but shuffled output, and is thus called the “Permutation Test Model”. The
darker purple and green lines indicate the means of the distributions, respectively. The
red line indicates the chance level, without considering class imbalance. This means that
each outcome has the same probability, which corresponds to, e.g., 50% per class if two
classes are given. The blue line indicates the naive model level, which is the chance level
considering the class imbalance. This means that each output comes with a probability
according to its occurrence. If, e.g., two output classes exist, where 70% of the samples
belong to one class, the naive model level will be 70% for that class. Table 1 shows the
corresponding mean accuracies and whether their distributions reached a significant level.
Significance was tested with the paired samples t-test between results distribution and
permutation test distribution. The significance level was chosen at p = 0.05. The CNN
and the EEGNet performed significantly above the permutation test model within the
warm light condition, although only the EEGNet performed on average above the naive
model (see Figure 6). The LDA and the SincNet model performed on the mean worse than
the corresponding permutation test model. The CNN and the SincNet show very broad
distributions compared with the rest of the models. All the models and their permutation
test models, apart from the SincNet and the CNN permutation test model, performed above
the theoretical chance level.

Within the cold-light condition, no model performed significantly better than the
permutation test model, although the LDA model, EEGNet, and SincNet performed on
the mean above the permutation test model (see Figure 6). LDA model results and Spatial
Filter model results performed on the mean above the naive model, while only the CNN
model performed on the mean below the chance level. The Spatial Filter Model, CNN,
and the SincNet permutation test distributions are very broad compared with the rest of
the results.
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In both Figures 5 and 6, it can be seen that the permutation test for the simpler
models (LDA model and Spatial Filter Model) resulted in higher mean accuracies than
the permutation test for the models with a higher number of learned parameters (CNN,
EEGNet, SincNet).
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Table 1. Mean accuracy values for all tasks and all models. Bold values correspond to the distributions
that perform significantly better than their permutation test model.

Emo-Warm Emo-Cold Warm vs. Cold

LDA 0.4213 0.4136 0.5732

Spatial Filters 0.4143 0.3705 0.5008

CNN 0.3698 0.2958 0.5567

EEGNet 0.4312 0.4163 0.7666

SincNet 0.2804 0.3714 0.5014

3.2. Warm vs. Cold Light Classification

Figure 7 shows accuracy results for the light-classification task. The LDA model,
Spatial Filter Model, and EEGNet performed significantly, and all other models performed
on the mean, above the permutation test model (see Table 1). The EEGNet shows the best
results for this task with a classification accuracy of 76.66% and all models performed on
the mean above the naive model. Parts of the permutation test distributions lie at the level
of the naive model and the chance level, respectively, for all models. The Spatial Filter
model, the CNN, and the EEGNet show the broadest distributions compared with the
results of the other models.
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3.3. Warm Affect Classification vs. Cold Affect Classification

Figure 8 illustrates accuracy distributions for warm-light affect classification versus
cold-light affect classification. No model showed significant differences in affect classifica-
tion tasks, while classification in warm light resulted in higher mean accuracy levels than
classification in cold light in four out of five models. The distribution that yields a higher
mean accuracy is narrower than the respective distribution for the opposite task for all
models. Only accuracy distributions of the LDA model and the EEGNet performed on the
mean above the naive model level for both affect-classification tasks.
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4. Discussion

This work investigated, by means of EEG, different affective states under two experi-
mental conditions: a warm light condition and a cold light condition. Three classification
tasks arose with regard to the recorded brain data: classification of an affect state within
warm light condition, classification of an affect state within cold light condition and warm
vs. cold light classification during the observation of affect-eliciting images. In summary,
we modeled three complementary classification problems; each of them established a base-
line for the next one. In the following section, the results are discussed in relation to the
three main research questions.

4.1. Training a Model to Predict Affect States

The LDA model, the Spatial Filter Model, and the EEGNet were able to classify affect
states under the influence of warm light on the mean above the naive model, and the CNN
(36.98%) and EEGNet (43.12%) were able to classify significantly above the corresponding
mean of the permutation test model. As a result, it is possible to train a network to predict
an affect state. In the literature, similar affect-classification tasks without light conditions
were solved with variants of the EEGNet. They achieved an accuracy of 89.91% for a
two-class valence classification and 88.31% for a two-class arousal classification [39]. Qiao
et al. [40] reported 99.45% accuracy for a binary valence classification and 99.51% for a
binary arousal classification. The named studies performed binary classification on either
valence or arousal and are thus not comparable with our study because our study uses
three classification labels on the valence–arousal plane. For a four-class affect classification
problem, another study reported an accuracy of over 99% for EEGNet [41]. The latter study
used video and sound stimulus, which may vary in affect perception over time, and is thus
not comparable with our study, which ensures a constant emotion-triggering stimulus.

The LDA and EEGNet demonstrated the capability to classify affective states under the
influence of cold light, surpassing both the naive model and the mean of the permutation
test model, albeit not in a statistically significant manner. Among the models, EEGNet
exhibited the highest performance with a mean accuracy of 41.63%. Consequently, we were
unable to establish that training a network to predict affective states under the influence of
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cold light is feasible. It is important to note, however, that this lack of demonstration does
not imply impossibility, as alternative approaches may yield different results. One reason
for this could be the lack of concentration induced by the cold light, even though the order
of light conditions was randomly assigned. Knez [42] found that short-term memory and
problem solving, which is connected to the capacity of concentration, performed better in
warm than in cold light.

The permutation test results for the CNN, EEGNet, and SincNet were poorer than
the LDA and Spatial Filter Model permutation test results. Notably, the former models
were trained using batches, unlike the latter models. Batch training, which involves not
seeing all the data and the distribution of class labels simultaneously, might lead the CNN,
EEGNet, and SincNet to overlook class imbalances and instead focus on genuine features
within the data. Despite the CNN’s underperformance relative to the LDA model in the
affect classification task under warm-light conditions, it is possible that the CNN learned
from the data, whereas the LDA primarily learned from the class imbalance.

In summary, our classification accuracies for affect under cold light conditions were
surprisingly low, in contrast to the warmer light conditions. However, the overall findings
and the novelty of the paradigm suggest the need for further investigation into this topic,
considering the following limitations: Firstly, our study results cannot be directly compared
with other studies that primarily use videos as affect-eliciting material, and they may not
classify into three affect classes as we did. Secondly, many studies incorporate additional
biophysiological signals, such as galvanic skin response (GSR) or heart rate (HR), which
can facilitate classification. The intriguing result that subjects perceived affect with lower
intensity under cold compared to warm light warrants further exploration, as it could
potentially open up a new research field with numerous applications. For instance, one
application could involve using cold light in criminal cases to mitigate the impact of images
on police officers.

4.2. Training a Model to Predict Light Conditions Based on Affect States

All models demonstrated the ability to classify warm or cold light conditions, yielding
average results surpassing both the naive model and the corresponding mean of the
permutation test model. Notably, the results of LDA, CNN, and EEGNet significantly
outperformed those of the permutation test model. This supports the notion that it is
feasible to train a network to predict light conditions based on an affective state. It is worth
mentioning that previous studies did not provide classification accuracies or other metrics
for result comparison. For instance, Hosseini et al. found no significant difference between
colors in EEG signals [24].

These results could be explained by the impact of varying light on eliciting different
affective responses or could be due to distinct color processing mechanisms in the brain. The
proficiency of the LDA model in this task may be attributed to more distinctly differentiated
features compared to the affect classification task. Additionally, non-linear calculations
might have been necessary in the latter task to effectively classify the data. The successful
classification of light conditions likely stems from the inherent color processing of the
light itself.

4.3. Comparing Affective Classification: Evaluating Model Performance across
Different Conditions

No significant differences were observed in the classification results under different
light conditions. Therefore, we lack evidence to support the notion that affect states are
more effectively classifiable in one condition over another, leading us to consider the
study’s limitations. These findings do not rule out the possibility that the distinctions
in classification between light conditions may stem from the mere activation of visual
processing areas in the brain. Due to the novelty of our experiment, comparable results
were not found in the existing literature. Despite the observed significant differences in
each light condition, no distinctions between them were identified. To gain a clearer under-



Mach. Learn. Knowl. Extr. 2024, 6 212

standing of color’s influences on classification results, future research should incorporate a
control condition with a neutral light color. Furthermore, the employed machine learning
methods could benefit from enhancements by integrating additional prior knowledge
into the models. One potential avenue involves the integration of augmented EEG data,
incorporating class-preserving transformations [43]. This approach requires prior domain
knowledge to define the transformations to which the network should be invariant. This
aligns with the principle of incorporating prior domain knowledge to guide the learning
process and improve the overall performance of machine learning models. Additionally,
this method addresses the challenge posed by imbalanced data. Balancing classes can be
achieved through generating new data, reducing the size of the over-represented class
(under-sampling), or applying various statistical methods to compare results without being
influenced by this bias.

Another approach that improves classification performance by tackling the class
imbalance learning problem might be the use of extreme learning machine (ELM) based
on the Bayesian approach, namely a parallel one-class ELM (P-ELM), as proposed by
Li et al. [44].

5. Conclusions

This study explores the impact of light on the affective state of individuals viewing
emotion-inducing images under two different lighting conditions. The resulting affective
states were categorized into three classes within the valence–arousal plane. Consequently,
affect classification under two experimental conditions was assessed using four distinct
models, including various deep learning models and commonly used linear models in
affective brain–computer interface (BCI) research.

For the task of affective recognition, both linear models and the best-performing deep
learning models exhibited performance above chance, which was comparable to the naive
model. The EEGNet architecture demonstrated superior performance across all tasks. While
no significant differences were found between affect recognition in different light conditions,
the substantial variation in accuracies achieved by the EEGNet architecture when classifying
between experimental conditions underscores the potential of appropriately implemented
deep learning models. This points towards the possible refinement of training procedures
for deep learning in EEG-based affective recognition.

In the future, the visualization and explanation of learned parameters may offer
valuable insights into the neural correlates of experimental conditions. Additionally, the
use of Virtual Reality (VR) as a transformative tool in cognitive neuroscience provides an
immersive and controlled environment for studying human experiences and affect.

We propose these tools and methods as a possible approach to studying neurophysiol-
ogy by asking data-driven research questions with deep learning architectures. Being able
to classify EEG signals based on properties of the light observed by participants indicates
that deep learning architectures can automatically learn features from EEG data. Com-
pared with the accuracy of common modern linear models given selected features, deep
learning architectures offer the opportunity for data-driven experiments with the barrier of
visualization and interpretation.
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