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Abstract: Background. The importance of explainable artificial intelligence and machine learning
(XAI/XML) is increasingly being recognized, aiming to understand how information contributes to
decisions, the method’s bias, or sensitivity to data pathologies. Efforts are often directed to post hoc
explanations of black box models. These approaches add additional sources for errors without resolv-
ing their shortcomings. Less effort is directed into the design of intrinsically interpretable approaches.
Methods. We introduce an intrinsically interpretable methodology motivated by ensemble learning:
the League of Experts (LoE) model. We establish the theoretical framework first and then deduce a
modular meta algorithm. In our description, we focus primarily on classification problems. However,
LoE applies equally to regression problems. Specific to classification problems, we employ classical
decision trees as classifier ensembles as a particular instance. This choice facilitates the derivation
of human-understandable decision rules for the underlying classification problem, which results
in a derived rule learning system denoted as RuleLoE. Results. In addition to 12 KEEL classification
datasets, we employ two standard datasets from particularly relevant domains—medicine and
finance—to illustrate the LoE algorithm. The performance of LoE with respect to its accuracy and rule
coverage is comparable to common state-of-the-art classification methods. Moreover, LoE delivers a
clearly understandable set of decision rules with adjustable complexity, describing the classification
problem. Conclusions. LoE is a reliable method for classification and regression problems with an
accuracy that seems to be appropriate for situations in which underlying causalities are in the center
of interest rather than just accurate predictions or classifications.

Keywords: ensemble learning; multiagent systems; explainability; glass box models

1. Introduction and Motivation

Machine learning (ML) is an integral part of many products and activities in our
everyday life, including developments in autonomous driving [1], health care [2], and law
enforcement [3]. Regulations regarding automated algorithmic decision making—“the
right for explanation[s]” [4]—and other judicial reasons [5] emphasize the need for general
accountability [6] of ML-based systems, particularly of black box models. Black box models
are optimized for performance by adding complexity to an extent that renders them infea-
sible to interpret. Current attempts try to overcome the drawbacks of lacking explainability
by adding external components distilling human-understandable information within ad-
ditional layers of complexity (post hoc methods). These additional layers, however, can
only be an approximation of the actual decision-making process at the risk of not being
faithful [7]. Explainable artificial intelligence as well as machine learning (XAI/XML)
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is increasingly being recognized [8–11]. While different application areas highlight the
emerging trends in XAI and XML [12–14], performance explainability trade-offs are also
within the focus of current research [15,16].

1.1. Contribution of This Work

In this contribution, the League of Experts (LoE), a novel and transparent machine
learning model and meta algorithm based on the idea of ensemble learning [17] (p. 605),
is introduced. LoE is a variant of dynamic classifier selection (DCS) methods [18] (see
Section 2.7). However, in comparison, LoE trains its ensemble as part of the involved
selection and assignment method, unlike other DCS methods that often overproduce a
rather large set of classifiers using static methods such as bagging or boosting [19]. So far,
this is, to our knowledge, unexplored in the context of DCS [18]. LoE is a construction
framework, allowing for modifications with the goal of leveraging explainability. It enables
the design of user interfaces to directly interfere with the model and its components.
However, this work will not dive into concrete user interactions, but will instead mention
possible interactions where appropriate, for which LoE allows users to manually adjust
the selection process and the ensemble members. LoE allows users to interactively explore
trade-offs between model performance and complexity. In this contribution, we exemplify
and evaluate LoE using two datasets. We particularly focus on controlling the amount of
complexity involved in explaining the learned model instances (experiments in Section 4.1).
Furthermore, we also introduce a specific solution to instantiate LoE, which enables the
transformation of LoE into an almost equivalent rule set learner (section 3.5). In order
to reduce the complexity while jointly improving the approximation to LoE, we further
explore ways to adapt the training procedure.

1.2. Section Overview

The following sections introduce our methodology in Section 2 and LoE’s implemen-
tation in Section 3. The main idea of LoE is motivated in Section 3, followed by a concise
definition and description of its basic training and inference procedures. Section 3.2 shows
how to explain a trained LoE model using decision rules. The proposed methods also allow
the reduction in the length of these decision rules, which enables the reduction in their
complexity, which in turn facilitates interpretations made by human users (Section 3.3.1).
Subsequently, we present a method to extract an analogous rule learner from the derived
explanations in Section 3.5, called RuleLoE. Finally, Section 4 provides an evaluation regard-
ing feature space reduction and rule set generation given the example of two prominent
datasets from medicine and finance.

2. Materials and Methods

In the following, we introduce the League of Experts (LoE) algorithm with its motivation
in terms of explainability and accuracy. For this purpose, we provide some background
information and taxonomy of currently and previously developed and investigated ap-
proaches within XAI and XML. For this purpose, Sections 2.1–2.7 provide insights into the
use of black and glass box models (Sections 2.1 and 2.2), the principles on rule learning
and explanations (Sections 2.3 and 2.4), decision trees and their use with surrogate models
(Sections 2.5 and 2.6), and the fundamentals of ensemble learning and dynamic selection
(Section 2.7).

2.1. Black Box Models

Computational advances facilitate more powerful but also more complex models such
as black box models [20–23]. Feed forward artificial neural networks (ANNs) [24], e.g., for
image classification, possess about 5 to 155× 106 trainable parameters while performing
up to 8× 1010 computational operations for a single prediction [25]. Since an ANN consists
of a graph of operations, it is in theory possible to follow along the performed calculations
in a stepwise fashion. However, in practice, such enormous complexity is not cognitively
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comprehensible by a human. Even other popular methods involving much fewer parame-
ters, e.g., support vector machines (SVMs) [26] or ensemble methods such as boosting (i.e.,
AdaBoost [27]) and random forests [28], cannot be easily interpreted. These approaches
are inappropriate for applications requiring a good understanding of the decision-making
process. For ensemble learning, this holds true even if the ensemble’s members themselves
are easy to interpret, e.g., with decision trees [29]. However, the decision boundary of
the whole ensemble remains highly complex as the final prediction consists of a fusion of
all members.

2.2. Glass Box Models

In contrast, glass box models [22,30,31], also known as white box models, are charac-
terized by transparent states, allowing for deriving explanations regarding their decision
boundaries. Such models include decision trees [17] (p. 305), (logistic) regression [17]
(p. 119), and neighborhood models describing decisions by the similarity of related data
points, e.g., k-nearest neighbors (k-NN) [32]. However, adding too much complexity
jeopardizes practical interpretability, e.g., too many levels in decision trees or too many
dependencies in Bayesian networks [33]. Importantly, this is due to the cognitive limits of
the users and not the decision-making process itself.

2.3. Rule Learning

A particular example of glass box models is decision rules that conveniently present
knowledge to users as logical patterns. They are realized either unordered (i.e., indepen-
dent) as rule sets or ordered as rule lists. The latter are more complicated to interpret [34]
as each rule’s applicability depends on the negations of its predecessors (i.e., the previous
rules have to not apply). Decision trees have representations as rule sets, where each path
in the tree becomes a single rule. For example, the rules shown in Figure 1 are as follows:
if (sex is female ∧ age > 40 ∧ weight > 80) ∨ (sex is female ∧ age ≤ 40), predict
low-risk group; otherwise, predict high-risk group. Unlike decision trees, most rule
learners do not produce rule sets with full coverage and no sample space overlap—several
or no rules are applicable to data points (or queries). The former is resolved by determining
a resolution order, the latter by adding an additional fallback rule. Both cases must be
addressed when transforming LoE into a rule learner (see Section 3.5).

female

sex

size < 160cm weight < 100kg

othermale

low risk group

no

age > 40

yes

weight > 80kg

high risk group low risk group

yes no

query xq
A

B

C

Figure 1. (Partial) decision tree example with (A–C) being the root, inner nodes, and leaves, respec-
tively. An example query with corresponding trace is highlighted in orange.
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Rule learning systems, including CN2 [35], RIPPER [36], Bayesian rule sets [37],
Boolean decision rules via column generation (BRCG) [38], and interpretable decision
sets [34], derive rules from directly optimizing a target function, e.g., by using integer
programming to optimize specific criteria such as classification performance, coverage,
or simplicity. The optimal solution is often intractable due to the exponential amount of
possible clauses, resulting in the NP-complete set cover problem.

2.4. Explanations

In the context of XAI, “explanation” refers to human-understandable information in
a local or global sense, justifying (i) the process generating a query-dependent output of
the method (e.g., the classification result) or (ii) the state of the model as a whole. Local
explanations can be misleading about a model’s global state, whereas query-dependent
properties might not apply in the global context, i.e., for arbitrary queries.

Post hoc explainers are popular methods. They add methods and visual components
aiming to explain the decision process of an already-trained model. Post hoc methods
can be (i) model agnostic (not tied to a specific model class), e.g., LIME [39], Anchors [40],
Shapley values [41], or visualizations such as partial dependence plots (PDPs) or individ-
ual conditional expectation plots (ICE) [42] (Chapters 5.1 and 5.2), or (ii) model specific,
e.g., decision-tree-based SHAP variants (TreeSHAP) [43] or explainers specific to neural
networks [44].

However, the drawbacks of post hoc methods are that (i) external components add
complexity to ML pipelines, and (ii) users must have confidence in the underlying ML
model and the explanation method. Both can be wrong, inaccurate, or only applicable in
certain unobserved circumstances. Importantly, users cannot notice the latter. Glass box
models, which are algorithmically transparent, do not require post hoc approaches, as do
more generally global simulatable models that are characterized as being simple enough to
be comprehensible in reasonable time [45].

Simulatable models include small decision trees, small rule sets [46], (generalized)
linear models with a small amount of model parameters (after applying shrinkage meth-
ods, e.g., Lasso), or instance-based learners with explainable features (e.g., k-NN [32]).
Additionally, the features describing entities, such as data points, must be reasonably
comprehensible. Models satisfying those requirements are strongly limited, typically weak
in performance, and limited in generalization properties [47]. Notably, the definition of
simulatable is somewhat fuzzy as it depends on individual users’ abilities.

2.5. Decision Trees

Decision trees [48] directly display their reasoning processes due to their graphical
structure (Figure 1). They typically focus only on a subset of relevant attributes or fea-
tures [49], rendering them cognitively less demanding. The graphical structure of a decision
tree allows the user to investigate details of a given reasoning process, which also enables
the investigation of alternative paths, i.e., by assuming that an attribute has a different
value to observe how this would influence the decision-making process. That allows for
judging for fairness and relevance of the decisions made.

2.6. Surrogate Models

Surrogate (or proxy) models [50] attempt to explain the decisions-making process of
a complex black box model fc(·) by imitating the black box model’s output profile on a
dataset L by utilizing a simpler glass box model fg(·) [42] (Chapter 5.6) (e.g., by using
a decision tree to approximate an ANN). The approximation fc ∼ fg can hold globally
(global surrogate), i.e., on L, or locally (local surrogate), i.e., in a subset of L. For instance,
the LIME method [40] is a local surrogate.

Generally, it is unclear whether the surrogate fg captures the same causalities as the
explained model of fc. Several alternative surrogates might perform equally well, which
can be explained by the Rashomon effect [51], describing circumstances under which
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multiple alternative explanations yield the same result. The latter is less problematic when
replacing the complex model by a sufficiently accurate global surrogate. However, for local
surrogates, the problems amplify, particularly if users are inclined to induce global decision
making from local explanations. Although the mentioned problems do not vanish, they
can be controlled by directing the training procedure (see Section 3.3).

2.7. Ensemble Learning and Dynamic Selection

Ensemble learning methods [52,53] train multiple models as an ensemble for clas-
sification or regression tasks used in specific combinations, also called aggregation or
fusion. With our approach, LoE also follows this idiom. More specifically, it is a dynamic
selection (DS) method [18], which, in contrast with static methods (e.g., AdaBoost [27] and
random forests [28]), does not use the whole ensemble to form a decision. It uses a separate
selection method to select ensemble subsets for individual queries. The rationale of DS
is to dynamically find a subset of the models that are likely to be knowledgeable about a
given query presented to the system, for which a filter method that decides which members
of the ensemble may be knowledgeable in predicting a query is employed. This filter is
often denoted as a selection or assignment function. DS methods fall into the class of either
dynamic classifier selection (DCS) or dynamic ensemble selection (DES) methods. While
DCS methods will choose exactly one model from the pool when presented a query, DES
methods may choose multiple models. LoE is categorized as a DCS method, as it selects
exactly one model given a query to retain explainability.

3. The League of Experts Classifier

For the realization of the League of Experts as a classifier, we adapt a particular case of
ensemble learning, in which each ensemble member is associated with a specific part of
the feature space. More specifically, we introduce an algorithm that adaptively learns a
partition of the feature space in order to assign one specialized ensemble member—the
expert—to each subset of the partition. Since the partition divides the feature space into
disjoint sets, each expert is trained on a different subset of the training data. This diversifies
the learning process, which implies that each expert performs particularly well only on
its assigned subset but not necessarily on the whole feature space. Since each expert is
not required to model the whole feature space, the complexity of experts can be limited
without sacrificing the overall performance.

Motivated by the way in which inferences are made, the resulting ensemble of experts
is named accordingly. Once an LoE classifier is trained, inference follows a two-step
approach: (i) a query xq is assigned to the correct expert g, and (ii) the query output g(xq) is
processed by the assigned expert (see also Figure 2). This process mimics human teamwork,
having a number of experts that are specialized in specific domains, in which a coordinator
assigns tasks to the most appropriate expert. Allegorically, imagine a query being a patient
visiting a primary physician (coordinator) that performs an initial examination. In this case,
the coordinator is referring the patient to the specialist.

The following sections introduce our definitions and model formulations (Section 3.1),
our approach to deriving explanations (Section 3.2), the reduction in the complexity of
explanations (Section 3.3), the analysis of LoE’s runtime complexity (Section 3.4), and LoE’s
rule set learner, also called RuleLoE (Section 3.5).
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query xq assign xq to 
Step 1: Record-to-
Model Assignment

A(xq)

selected model g2

(Glass Box)
Models

g1

g2

g3

g4

Step 2: Process using the
selected model

g2

weight > 72kg

high risk group low risk group

yes no
Predict:
low risk
group

y=fLoE(xq)

Process xq
using selected 

model (g2)

Example record

age 28

sex female

weight           68kg

height           170cm

Figure 2. LoE’s two-step decision process: (i) expert assignment to query (here, g2, a one-level
decision tree) and (ii) query prediction by the assigned expert (here, prediction low-risk group).
Here, experts are illustrated as gear wheels.

3.1. Basic Definitions and Model Formulation

Consider a typical supervised learning problem based on a labeled dataset L ⊆ X × C.
Here, each labeled data point (x, y) ∈ L is generated by a probability distribution while
consisting of m real-valued inputs of a domain X ⊆ Rm and a categorical (or, in the case of
regression problems, metrical) label within a set C (for metric outputs C ⊆ Rl). Notably,
categorical inputs are also permitted, for which they are assumed to be one-hot encoded.
For a point (x, y) ∈ L, we seek to maximize the probability of the output Y conditioned on
the input X based on the model P(Y = y|X = x) = gs(x, y), where gs : X × C → [0, 1] is a
(soft) classifier, belonging to a family Gs.

The corresponding derived hard classifier is defined as follows:

g(x) := arg max
y∈C

P(Y = y|X = x),

where g : X → C. The resulting family of hard classifiers derived from Gs is denoted by G.
For regression rather than classification problems, the conditional expectation of the output
Y given the input X is modeled rather than the conditional probability. More precisely,
the underlying regression model is E(Y|X = x) = g(x).

The following function:

A : X → {1, . . . , n}

is called an assignment function of degree n (|A| = n). Each assignment function A defines a

partition X =
n⋃

k=1
X (A)

k and X (A)
k ∩ X (A)

l = ∅ for k ̸= l of the feature space X of rank n by

the following:

X (A)
k := A−1(k).
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If one classifier (gk) is assigned to each part (X (A)
k ) of the partition, we obtain an

n-tuple G∗ in Gn (derived from G∗s ∈ Gn
s ). A pair (G∗, A) is called an LoE of degree n

inherited from A. The set X (A)
k is called the territory of the expert gk.

An LoE defines a single new classifier by the map:

x 7→ gA(x)(x),

which generally is not an element of G. The set of all admissible assignment functions A
(or equivalently the set of all corresponding partitions Apart) and classifiers G defines the
set of all possible LoE classifiers, denoted by G. At this point, it is also noted that an LoE is
conceptually similar to DCS algorithms (Section 2.7) with the assignment taking the role of
the selection function. In the following, because an assignment function is equivalent to
the partition it defines, we identify an assignment function by its equivalent partition.

The quality of an LoE classifier is measured by a performance function p : C × C → R.
A typical choice is the Kronecker delta:

p(ŷ, y) :=

{
1 if ŷ = y,
0 if ŷ ̸= y.

(1)

For a metrical output (regression task), the performance function typically follows
from a distance measure between ŷ and y, e.g., the negative mean-squared distance.

An optimal LoE classifier maximizes the average performance over the whole input
and output domain X × C; i.e., it is defined by the following:

fLoE(x) := arg max
f∈G

∫
X×C

p
(

f (x), y
)
dF(x, y), (2)

where F(x, y) is the joint probability distribution of inputs X and outputs Y.
The maximization in (2) is performed in two steps: (i) for each assignment function

A ∈ A (or its equivalent partition), an optimal ensemble of experts G∗A =
(

g(A)
k

)|A|
k=1

is

found, and (ii) these optimal LoEs (G∗A, A) are maximized over all assignment functions
A ∈ A (or equivalently all partitions). This yields an optimal LoE classifier (G∗A′ , A′), i.e.,

fLoE(x) :=g(A′)
A′(x)(x), (3)

where

A′ = arg max
A∈A

∫
X×C

p
(

g(A)
A(x)(x), y

)
dF(x, y), (4)

and

G∗A =
(

g(A)
k

)|A|
k=1

= arg max
G∗∈G |A|

∫
X×C

p
(

gA(x)(x), y
)
dF(x, y). (5)

Notably, an optimal LoE classifier is not necessarily unique. Furthermore, it is infeasi-
ble to find one, as the distribution F(x, y) is unknown and the number of possible partitions
is exhaustive. In practice, a pseudo-optimal LoE is empirically determined by replacing
F(x, y) by the empirical distribution function F̂(x, y) obtained from the labeled dataset L.
This yields the following:

fLoE(x) := g(A′)
A′(x)(x), (6a)
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where

A′(x) = arg max
A∈A

1
|L| ∑

(x,y)∈L
p
(

g(A)
A(x)(x), y

)
, (6b)

and for each A ∈ A

G∗A = arg max
G∗∈G |A|

1
|L| ∑

(x,y)∈L
p
(

gA(x)(x), y
)
. (6c)

However, this optimization is also infeasible. In general, an uncountable amount of
tuples G∗ ∈ G |A| (6c) and assignment functions A ∈ A (6b) exist. However, this can be
heuristically approximated for a specific class of assignment functions. We provide an
algorithm yielding an LoE (Ĝ(A∗), A∗), performing almost as good as an optimal LoE.

3.1.1. Class of Assignment Functions

The set of assignment functions A of degree n is restricted to the class of functions
defined by n pairwise different anchor points θ1, . . . , θn ∈ Rm by the following:

A : X → {1, . . . , n}; A(x) := min
(

arg min
k∈{1,...,n}

d(x, θk)
)

,

where d(·, ·) is a given metric on X . Without considering the minimum, A would not be
well defined in the cases d(x, θk) = d(x, θl) for k ̸= l. Therefore, we assume the following:

An :=
{

A
∣∣ A(x) := min

(
arg min
k∈{1,...,n}

d(x, θk)
)

for pairwise different θk ∈ Rm, k = 1, . . . , n
}

.
(7)

Here, An depends on the choice of the metric d. It is advisable to use a metric
that accounts for the variation of the input features. We employ the weighted L1 metric
d(x, y) = ∑m

i=1 |xi − yi|/σi, with σi being the empirical standard deviation of the i-th input.
In practice, ςi is replaced by its estimate from the labeled dataset L. An alternative would
be to employ a Mahalanobis distance.

As there is a one-to-one correspondence between the assignment function A and an
n-tuple of anchor points (θ1, . . . , θn) for each A ∈ An, they are in turn identified. For an LoE
classifier, anchor points correspond to the center points of the experts’ territories, for which
they are referred to as such.

3.1.2. Algorithm Training

An assignment function A partitions not only the feature space X but also the labeled
dataset L. Namely,

L(A)
k :=

{
(x, y) ∈ L | x ∈ X (A)

k
}

. (8)

We approximate the optimization (6) for the class of assignment functions An with
the following heuristic algorithm illustrated in Figure 3. The algorithm starts with n
initial anchor points θ1, . . . , θn, and a corresponding assignment function A. Next, (6b) is
approximated for the assignment function A by training one classifier gk ∈ G for part L(A)

k
of the partition of the labeled dataset L. This yields an ensemble Ĝ∗A and, hence, an LoE
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(Ĝ∗A, A) being “quasi-optimal for A”. Next, the anchor points θk are updated. We shift the
center points of the experts’ territories, whereby θk is replaced by the following:

θ′k = θk +
η

|L| ∑
(x,y)∈L

(x− θk)p(gk(x), y), (9)

where η is the update’s step size. Here, each expert’s performance is evaluated over the
whole training data L. The centers θk are shifted into the direction of points, for which
the expert gk performs well as measured by the performance function p(gk(·), ·). The new
center points define an assignment function A′ and a new partition of the feature space,
for which a new LoE is trained. This step is repeated with potentially decreasing step sizes.
Finally, the LoE classifier with the overall best performance is chosen, which is referred
to as a “quasi-optimal LoE”. This procedure is described as a pseudocode in Algorithm 1.
The updating step depends on the choice of the performance function. For simplicity,
the Kronecker delta (1) is used for the examples presented here.

Good prediction

Bad prediction

1 2 3

Figure 3. Training process of LoE with two experts separated into three steps: (1) data-to-model
assignment (A), (2) evaluation phase, and (3) optimization phase (movement). Experts are illustrated
as gear wheels. The training data are shown using purple and yellow circles, whereas each color
depicts a distinct class of the learning problem. In (2), a model’s expected prediction performance
on different partitions of the feature space are colored in green and red, relating to good and a bad
performance, respectively.

Algorithm 1: Basic League of Experts Training Procedure
Input:
G: set/class of (explainable) models, e.g., decision trees;
L: Labeled dataset with (x, y) ∈ L, x ∈ X , y ∈ C;
n: degree of LoE classifier;
η: step size;
T: number of iterations;
d: metric/distance, e.g., d(x, x′) = ∥x− x′∥2;
p: performance function, e.g., p(y, y′) = δ(y, y′).

Result:
(Ĝ(A∗), A∗): trained quasi-optimal LoE classifier, i.e.,

expert ensemble G∗ = {g∗1 , . . . , g∗n}, territories’
center points θ∗1 , . . . , θ∗n, defining A∗

Initialize:
S← ∅ # stores pairs of experts and center points
S′ ← S, i← 0, p′ ← −∞
# initialize experts at random position in X
S =

⋃n
i=1{(gi, θi)}
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Algorithm 1: Cont.

while t < T do
# train experts on their territories:
foreach (gi, θi) ∈ S do
Lg ← {(x, y)|d(θi, x) ≤ d(θj, x), j = 1, . . . , n}
Fit model gi on dataset Lg

end
foreach (gi, θi) ∈ S do

# move territories’ center points
θ′i ← 0|m1 # stores the movement vector
foreach (x, y) ∈ L do

# move towards x weighted by performance
θ′i ← θ′i + p

(
gi(x), y

)
∗ (x− θi)

end
θi ← θi + η/|L| ∗ θ′i

end
P′ ← 0 # calculate current performance
foreach (x, y) ∈ L do

# inference using the current experts and positions
y′ ← fLoE(x)
P′ ← P′ + p(y, y′)

end
# keep track of best performing LoE
if P′ > P then

P← P′

S← ⋃n
i=1{(gi, θ′i)}

end
t← t + 1

end
Return: S

3.1.3. LoE Inference

Let (Ĝ(A∗), A∗) be a quasi-optimal LoE with A∗ being characterized by the anchor
points θ∗1 , . . . , θ∗n. The tuple (Ĝ(A∗), A∗) is a substitute for fLoE in (3). For a query xq,
the distances d(xq, θ∗k ) are calculated for k = 1, . . . , n. Then, xq is assigned to the associated
closest expert, say g∗i in (7), to predict the outcome ŷ = g∗i (xq) (Figure 2).

3.2. Deriving Explanations

In the previous sections, we described a functional and modular machine learning
algorithm. Instantiated using glass box models as experts, the model itself can already be
employed to train a set of diverse (i.e., due to being trained on disjoint data) and interplay-
ing classification problems (i.e., solving a common task). While the resulting experts can
unveil information about the learning problem on their own by directly representing a part
of the underlying decision process, the assignment function is still not yet directly visible.
The following sections will therefore extend on this missing part by further utilizing the
properties of the model in order to derive explanations.

In our context, explainability involves two aspects: (i) understanding the assignment
process, i.e., why a query is assigned to a specific expert, and (ii) understanding the experts
themselves, i.e., why an expert predicts a specific outcome inside its territory. The latter
implies either that the experts themselves are glass box models—as assumed here—or that
post hoc methods are applied otherwise (see also Section 2.1). To explain the assignment
process, the decision boundaries of the assignment function A must be understood, which
might be nontrivial. Their explanation should be accurate, comprehensible, and compre-
hensive, where requirements are naturally leading to a trade-off as “One Explanation Does
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Not Fit All [Alike]” [54]. While there is a multitude of options to explain an assignment
function A (or the implied partitions), we will focus on revealing a functional relation-
ship and their interactions between relevant attributes. To achieve this, we transform the
assignment process into an equivalent classification problem that is solved by employ-
ing a glass box model that acts as a surrogate for A. Although employing surrogates to
model a process imposes risks, as mentioned in Section 2.6, LoE exhibits properties that
allow the mitigation of the mentioned risks. Particularly, a part of the model’s decision
process remains intact as the experts themselves will not be approximated by the surrogate.
By steering the concrete complexity of the surrogate models and by employing different
modeling strategies (Section 3.5.1) and feature space reduction techniques induced by a
slightly modified training routine (Section 3.3.1), the faithfulness of the surrogate can be
further optimized. Although any model can be employed for this purpose, this work will
focus on using decision trees as they allow for a direct transformation of the learned LoE
model into the rule set learner, called RuleLoE.

3.2.1. Making the Assignment Function Explainable

To make the assignment function explainable, a glass box model is trained as a sur-
rogate model for the assignment function A. Let S denote the family of such surrogates,
which require a training dataset. The inputs of the assignment function are elements of
the feature space X , while the labels are elements of the set {1, . . . , |A(X )|}. For a subset
Xs ⊆ X of the feature space, the graph of the assignment function A restricted to Xs is
as follows:

L̃A,Xs =
{
(x, A(x))

∣∣x ∈ Xs
}

. (10)

Surrogates are assignment functions, but in general, their corresponding partitions are
not members of A. Such a set L̃A,Xs can be used as labeled data to train a surrogate h ∈ S .
The set L̃A,Xs is called assignment dataset. In the following, A will be the assignment
function of a given LoE (G∗, A). We model A as a decision tree trained on L̃A,Xs (i.e., A
is learning how to map a data point to a specific expert). The whole decision process for
classifying a data point xq is expressed as a concatenation of the decision paths of the two
models A and gk with k = A(xq), whereas the final prediction is ŷ = gA(xq)(xq). This
process is illustrated in Figure 4.

LoE with two experts
Assignment function modeled using a single decision tree

yes

yes

a1

v3v1

g1

no

a3<5

v2

a2<10

g1

no

g1 g2

g2

g1 g2

Surrogate

yes

a2<3

Prediction A Prediction B

no

a4<100

Prediction C

yes

Prediction B

no

query xq

Figure 4. Exemplified LoE instance containing two experts (g1 and g2) with A being replaced by
a single decision tree (surrogate). The orange line denotes a decision path of a query xq (where
xq = (a1, a2, a3) satisfies a1 = v2 ∧ a3 < 5 ∧ a2 < 3) through both the surrogate and one expert.
At this point, it is also noted that only the expert g1 is relevant for the query xq.
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3.2.2. The Surrogate’s Faithfulness

The surrogate’s performance in mimicking the original assignment function A (i.e.,
the assignment accuracy) must be evaluated over a sample Xs̃ ⊆ X . The level of agreement
between the surrogate h and A is measured by pass(h, A;Xs̃) (pass : S ×A× (P(X ) \∅)→
R≥0, where P denotes the power set), with high values indicating good agreement. If sur-
rogates have unsatisfactory agreement, the class S might not capture the same mechanisms
as the elements inA, or it does cover the correct mechanisms but is too constrained. In these
cases, the class S can be extended (i.e., relaxing regularizations, e.g., allowing larger deci-
sion trees). Alternatively, the amount of input features considered by the surrogate can be
reduced, e.g., by reducing their feature space. Appropriate projections can be identified
during LoE’s training procedure (Section 3.3.1).

As the ultimate goal is to obtain comprehensible explanations of the whole decision
process, the surrogate’s comprehensibility has to be ensured. Hence, surrogates must be
understandable. As the employed decision trees can be of arbitrary complexity, we have to
introduce a measure thereof. To do so, we first introduce a basic notation.

3.2.3. Decision-Tree-Related Notation

For a decision tree t, its root node, the set of leaves, and the set of ancestors from node
v to the root are denoted by head(t), leafs(t), and trace(t, v), respectively. The decision tree
assigns each data point a leaf. The path of this leaf is the nodes from the root to its starting
point. For a subset Xs ⊆ X of the data, evaluated over the tree t, let |v|(Xs ,t) be the number
of data points in Xs that follow paths passing through node v. As the root is contained in
every path, and exactly one path is leading to each leaf, |head(t)|(Xs ,t) = |Xs| (i.e., all data
points start at the root node).

3.2.4. Complexity of a Decision Tree

Although decision trees can always be visualized as a graphical representation or
linearized as rules, this can be impractical due to their size, i.e., depth, width, or structure,
which are measuring the tree’s complexity. This argument ignores the distribution of
queries. Namely, if the majority of queries utilize only a simple subtree, a complex tree
remains practical for most instances. The distribution of queries is taken into account
when measuring the decision tree’s complexity by the average trace length to the leafs of a
representative sample X1 ⊆ X , i.e.,

EX1

(
trace(t, .)

)
=

1∣∣X1
∣∣ ∑

v∈leafs(t)
|v|(X1,t)

∣∣trace(t, v)
∣∣. (11)

If the choice of X1 does not follow naturally, it can be constructed for a uniform sample
distribution over the leaves, i.e.,

E
(
trace(t, .)

)
=

1
|leafs(t)| ∑

v∈leafs(t)

∣∣trace(t, v)
∣∣. (12)

3.3. Reducing the Complexity of Explanations

Comprehensiveness depends on the cognitive load confronting users. We introduce
a concept to reduce cognitive load by effectively restricting the LoE model to a lower-
dimensional feature space. The process impacts the training process of LoE while pre-
serving its predictive power. This also affects the assignment process and inherits to
surrogates. Although surrogates approximate complex nonlinear decision boundaries,
most practically relevant datasets are aligned along a lower-dimensional manifold [55]
being well approximated by projections. A high-dimensional feature space, i.e., a large
number of attributes, typically compromises the generalization properties of ML models
due to overfitting. For LoE’s training procedure, the number of classifiers |S| increases
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exponentially such that several surrogates not faithfully explaining A will still have good
performance, which justify the assignment but do not reflect true causality (see Section 2.6).
This is known as Rashomon set [54].

3.3.1. Feature Space Reduction

We mitigate high-dimensional drawbacks by projecting the feature space onto a lower-
dimensional subspace. Let π : Rm → Rr, defined by π(x) = (xi1 , . . . , xir ), be the projection
of x = (x1, . . . , xm) onto the r components i1, . . . , ir (1 ≤ i1 < i2 . . . < ir ≤ m). The metric d
is replaced by the (pseudo) metric dπ(x, y) := d(π(x), π(y)), which is the restriction of d to
the projection space defined by π. Thus, (7) is replaced by the following:

An :=
{

A
∣∣ A(x) := min

{
arg min
k∈{1,...,n}

dπ

(
x, π(θk)

)}
for pairwise different θk ∈ Rm, k = 1, . . . n

}
.

(13)

The updating step of the center points of the experts’ territories is restricted to the
lower-dimensional projection space, while leaving the remaining components unchanged;
i.e., (9) becomes the following:

π(θ′k) = π(θk) +
η

|L| ∑
(x,y)∈L

(
π(x)− π(θk)

)
p
(

gk(x), y
)
, (14)

where the performance is still evaluated over the original unprojected sample L. How-
ever, surrogates are trained on the projected feature space. This reduces complexity and
the Rashomon effect (Section 2.6), thereby increasing the faithfulness of the surrogate’s
explanations. Moreover, users’ understandability could be increased as they are confronted
with interpreting fewer attributes.

If decision trees are built with fewer attributes, they are more likely to appear multiple
times along a decision path. They can be merged into a single rule, facilitating explainability.
For instance, if age < 40 and age < 30 occur along a path, the two rules can be reduced to
(age < 30). Similarly, (age < 40 and age > 30) reduce to (age in range 30 to 40).

3.3.2. Projections Obtained from Leveraging LoE’s Properties

A projection π is based on a selection of attributes. Ideally, “important” attributes are
retained. For instance, attributes that seem to be strongly correlated, have low predictive
power, or seem noisy can be removed. Advanced approaches make use of permutation
feature importances [42] (Chapter 5.5), SHAP feature importances [42] (Chapter 5.10)
based on Shapley values [41], or individual experts’ assessments of the importances of
the attributes.

Concerning LoE (and other DCS methods), attributes contributing most to the assign-
ment process also determine their importance. Each expert in LoE is able to individually
calculate the importances of the attributes, which can be combined into an importance
score. Approximately, the importance scores can be determined based on a surrogate h
rather than on the original assignment function A (see also Section 3.2.1). A requirement
is that the choice of the surrogate is capable of reporting feature importance. One possi-
bility is to choose a second surrogate family S̃ for this purpose, which is not necessarily
explainable but able to report feature importances. A possible choice is extra trees (ex-
tremely randomized trees) [56], which are ensembles of decision trees using a randomized
collection of attributes and cut points. They do not optimize a split criterion and, hence,
can be generated fast while yielding good approximations of the feature importance given
a sufficiently large ensemble. Moreover, they are not biased by an optimization procedure
(e.g., by optimizing for the Gini index) during the construction step.
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The feature importance within LoE is partly determined during its iterative procedure.
The importance scores are obtained in every step. These can be combined to rolling means
or other time-dependent quantities indicative of attributes’ importances.

3.3.3. Concrete Calculation of Feature Importances

We present a concrete implementation for calculating feature importances by utilizing
decision trees as a primary example. Although decision trees are a natural choice for this
purpose, it is worth noting that other models capable of reporting feature importances
can also be used as alternatives. For the construction of decision trees, the importance
of attributes is naturally incorporated. An attribute’s importance is identified with its
performance as readily calculated by the relative change of a measure such as the Gini
index during the decision tree’s construction [57]. In the described example of extra trees,
the measure is not already used when generating the ensemble.

For an LoE (G∗, A) with expert ensemble {g1, . . . , gn} (here, decision trees) and data
L, let Lk be the subsample assigned to expert gk (corresponding to Xk). An importance
function ϕ assigns every expert the relative importance of each attribute; i.e., it is a map
from the LoE ensemble to the m− 1-dimensional simplex (ϕ : G∗ → Sm−1) defined by
ϕ : gk 7→ (ϕ1(gk), . . . , ϕm(gk)). The ensemble’s feature importance of the attributes is the
weighted relative importances across all experts, i.e.,

ϕexperts(G∗) =
n

∑
k=1

|Xk|
X ϕ(gk) ∈ Sm−1. (15)

For the assignment process, the importance of the features are calculated separately.
From the second surrogate family S̃ , here, an extra tree ensemble of 1000 decision trees,
a surrogate is trained to approximate the assignment function A. An importance function ϕ̃
analogous to ϕ is evaluated at the trained surrogate h to yield each attribute’s importance.
The total importance averages the above quantities with weight α, i.e.,

ϕtotal = αϕexperts(G∗) + (1− α)ϕ̃(h). (16)

The total feature importance is updated in every step of the LoE algorithm. Rather
than using these importances directly, a time average is calculated. The time-averaged total
feature importance in step t with geometric decay β is derived as follows:

Φ(t)
total = βϕtotal + (1− β)Φ(t−1)

total . (17)

The projection π to reduce the dimension of the feature space is constructed by
projecting on the r features with the highest importance.

3.4. Runtime Analysis

To determine the runtime complexity of LoE in terms of its training process, the follow-
ing considerations are taken into account. First, LoE’s runtime complexity’s determinative
factors are reiterated. Second, LoE’s training complexity is derived.

• T = number of iterations
• G = ensemble of experts
• L = labeled dataset
• C(g, (x, y) ⊆ L) = training complexity for model g for data (x, y)
• E(g, (x, y) ⊆ L) = evaluation complexity for model g for data (x, y)
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O(T · (|G| · |L|+ max
g∈G

C(g,L) + max
g∈G

E(g,L))) , with

1. Assignment data → model: = O
(
T · |G| · |L|

)
2. Expert Training: + O

(
T ·max

g∈G
C(g,L)

)
3. Model Movement: + O

(
T ·max

g∈G
E(g,L)

)
4. Performance Evaluation: + O

(
T ·max

g∈G
E(g,L)

)
(18)

The upper bound of the process in (18) is determined by four factors that repeat for
T times: First, the assignment is evaluated (1). This step calculates the distance between
each expert g ∈ G and each data point. Second, the expert training process and model
movement is carried out (2). The experts are trained on their respectively allocated data
points (i.e., trained within their territory), which is bound by the training complexity of
the concrete model types of G. Third, the trained models are moved in the direction of
their best-performing feature space. Lastly, the trained experts are used for inference
in order to measure their performance (4). This step is bound by the chosen models’
inference complexity.

The inference complexity of the method given a sample X is calculated as follows:

|G| · |X |+ max
g∈G

E(g,X ), (19)

which constitutes finding the relevant expert (i.e., the assignment process) and using this
expert for inference. Contrary to ensemble methods such as random forests or AdaBoost,
the training runtime scales with the additional factor T. This implies that the algorithm
trains T times slower. However, on inference, only one model is evaluated instead of
the whole ensemble, for which the results of each ensemble member do not need to be
aggregated. This effectively results in |G| distance calculations plus E(g, (x, y)) for the
assigned or “closest” model for each x ∈ X . This means that the inference time of LoE
scales predictably with the number of experts, while other ensemble methods scale with
the aggregated complexity of their experts.

3.5. LoE as a Rule Set Learner—RuleLoE

LoE is not a native rule set learner, but it can be transformed into an almost equivalent
one, denoted as RuleLoE, by employing its surrogate (Section 3.2.1). For this purpose, we
focus on decision trees as experts and surrogates. However, they can also be replaced by
other rule learners. Concrete decision rules are derived as logical conjunctions of (i) decision
paths leading to specific experts (i.e., the assignment path surrogate → expert) and
(ii) the decision paths of the assigned expert to the leaves. Derived decision rules are
separated into conjunctions of two components. The complexity can be influenced by user
adjustments to the two components: (i) the quality of the surrogate’s approximation and its
complexity (e.g., restricting the maximal depth of a decision tree or using feature reductions,
Section 3.3) and (ii) the amount and complexity of the experts (a larger, less complex
ensemble vs. a smaller, more complex one). Additionally, if a few experts have good
global performance (i.e., on the whole sample), pruning assignment rules can efficiently
increase performance since pruned assignment rules are more likely to direct to well-
performing experts.
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3.5.1. One-versus-Rest Surrogate

The derived rules from a decision tree as surrogate have no rule overlap; i.e., no pair of
rules is true at the same time. While this is a desired property due to having no ambiguities,
it also has potential drawbacks: No matter what query is presented to the process, there
will always be some partial overlap as every query starts at the head of the tree, hence
sharing at least one common test. This reduces the flexibility and versatility of the resulting
set of rules. However, rule overlaps and partial rule overlaps are not desirable as emerging
rules will become too similar. In practice, it is worth sacrificing the first property to obtain
more diverse rules by minimizing partial overlap. This is achieved by training one surrogate
for each expert as follows. The k-th surrogate will learn to model the assignment process
relative to the k-th expert in a binary fashion (one-versus-rest strategy, OvR). Effectively,
each of the k surrogates is presented with a binary-labeled dataset where the value 1
represents A(x) = k (and 0 otherwise). It learns to decide if the k-th model should be used
in predicting a given query. If appropriate, the k-th expert is assigned (i.e., its decision path
is followed). Otherwise, no assignment is made (i.e., the expert is not taken into account).
A visual example of a scenario using two surrogates is shown in Figure 5. Note that using
OvR in a scenario with two experts is equivalent to using exactly one surrogate as the labels
that are presented to both surrogates are the inverse of each other.

LoE with two experts
Assignment function modeled using two decision trees (OvR)

yes

a1

v3v1

no

a3<5

v2

Expert

No Experte Expert

No Expert

g1 g2

Surrogate h1 Surrogate h2

a2<3

Prediction A

yes

Prediction B

no

a4<100

Prediction C

yes

Prediction B

no

a2<10

No Expert Expert

yes no

query xq

Figure 5. Exemplified LoE instance containing two experts (g1 and g2) with A being replaced by two
decision trees (surrogates). Note that this example is only illustrative as the surrogates would be
inverse instances to each other in a 2-expert scenario.

Since the labels are different for each expert when using more than two experts, each
surrogate is trained on a different dataset. Hence, each of them learns different structures,
in particular because decision trees are sensitive to the input, ultimately resulting in
more diverse and potentially simpler rules. When using surrogates instead of the original
assignment function, the process may not always be captured perfectly since the assignment
function itself may be arbitrarily complex, whereas the surrogate’s complexity may be
limited or not be able to fully model the original function. Therefore, it can happen that
none or several of the n surrogates are assigned an expert to the query.
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3.5.2. Query Strategy

The problem of overlapping rules and uncovered queries potentially occurring in
decision sets created by OvR is still to be resolved. This is done by mimicking human
thinking. For competing rules, the rule giving the best overall result is chosen. If no rule
applies, the best-fitting one is chosen. Formally, let Ltrain be the training dataset and ri
a decision rule (e.g., ri ← age > 20 ∧ size < 180cm ⇒ positive class ). If Ni is the
number of data points to which ri is applicable, the rule’s coverage is defined as ci = Ni/|L|.
The number of covered points correctly classified by ri is N+

i , so that the rule’s precision is
θi = N+

i /Ni. Rules are assigned to a query xq as follows:

1. Rank rules by descending precision (and coverage on tie).
2. Assign xq to the covering rule with the lowest rank.
3. If no rule covers xq, return the rule with the highest fraction of clauses being evaluated

as “true” (partial rule coverage) with preference given to the rule with higher precision
on ties.

This approach, particularly step 3, is possible only because RuleLoE is a multiclass
rule learner. It is not applicable to approaches learning only one positive class, including
algorithms such as RIPPER, CN2, or BRCG. Consequently, the latter might produce fewer
rules but less data insights.

In conclusion, the proposed League of Experts algorithm and its framework reaches out
to an audience seeking to apply, develop, and evaluate explainable artificial intelligence
by providing the necessary tools. These are available at the project page of LoE and its
repository. The project page of the League of Experts (LoE) framework can be found via its
repositories under https://github.com/Mereep/loe, https://github.com/Mereep/rule_
loe, and https://github.com/Mereep/HDTree, accessed on 2 April 2024.

4. Test Results, Evaluation, and Discussion

In the following sections, we exemplify the utilization of the League of Experts al-
gorithm and its methodology given two different datasets from medicine and finance,
the UCI breast cancer dataset and the HELOC dataset. Medicine and finance are two critical
domains for the application of explainable models as the decision process may have strong
implications. For example, in medicine, a patient’s treatment can be evaluated, adjusted,
or justified. In the domain of finance, aspects of accountability and discrimination are to be
considered when, for example, credits are to be approved. Therefore, two comprehensive
experiments are conducted and analyzed as follows: First, LoE is applied and the effect of
feature space reduction is studied (Section 3.3.1). Second, LoE is transformed into RuleLoE,
whose explainability and performance are compared with alternative rule learners and
black box models (Section 4.2) and commonly known ensemble learners. Subsequently,
an in-depth analysis of decision rules is performed on the HELOC dataset. Additionally, we
conducted a series of experiments on a collection of datasets from the KEEL dataset reposi-
tory using a static model setting to allow for a performance-level overview. Following, we
provide a dataset overview.

Example dataset 1: UCI breast cancer

The UCI breast cancer dataset (UCI breast cancer dataset, https://archive.ics.uci.
edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic), accessed on 2 April 2024) [58]
contains 569 data points with 32 real-valued attributes, describing the characteristics of
cell nuclei found in digitized images of a fine-needle aspirate of breast mass, including
information on, e.g., mean radius, worst perimeter, or smoothness of the contour. Data
points are classified as malignant or benign.

https://github.com/Mereep/loe
https://github.com/Mereep/rule_loe
https://github.com/Mereep/rule_loe
https://github.com/Mereep/HDTree
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)


Mach. Learn. Knowl. Extr. 2024, 6 817

Example dataset 2: HELOC

The HELOC dataset, used in the FICO Explainable Machine Learning Challenge
(HELOC dataset, https://community.fico.com/community/xml, accessed on 2 April 2024)
and different applications of explainable AI [38,59,60], describes the credit history of 10, 549
individuals (9872 after removing identical entries), which are characterized by 23 metric
features. The risk of default is categorized as good or bad if the individual had overdue
payments for at least 90 days during a 24-month period.

Example dataset 3: KEEL

The KEEL dataset repository (Knowledge Extraction based on Evolutionary Learning)
is a dataset that “aims at providing to the machine learning researchers a set of benchmarks
to analyze the behavior of (...) learning methods” [61]. KEEL contains various datasets of
different properties. For this work, we chose a subset of the repository using medium-sized
datasets with a size between 5000 and 10, 000 samples (Table 1).

Table 1. Overview of our selected subset of the KEEL dataset with sample sizes between 5000 and
10, 000 samples.

Dataset Data Points Features Classes Class Entropy

banana 5300 2 2 0.99

coil2000 9822 85 2 0.33

marketing 6876 13 9 3.10

mushroom 5644 98 2 0.96

optdigits 5620 64 10 3.32

page-blocks 5472 10 5 0.63

phoneme 5404 5 2 0.87

ring 7400 20 2 1.00

satimage 6435 36 6 2.48

texture 5500 40 11 3.46

thyroid 7200 21 3 0.45

twonorm 7400 20 2 1.00

Used Software

All implementations were developed in Python (Python project page, https://www.
python.org, accessed on 2 April 2024, version 3.8). The package scikit-learn (scikit-learn
project page, https://scikit-learn.org, accessed on 2 April 2024, version 0.22.2.post1) was
used for our experiments with random forests, gradient boosting, extra trees, AdaBoost, sup-
port vector classifiers (SVC), and multilayer perceptrons (MLP). The repositories Wittgen-
stein (Wittgenstein project page, https://github.com/imoscovitz/wittgenstein, accessed
on 2 April 2024, version 0.1.6) and AIX360 (AI Explainability 360) [54] (AIX360 project page,
https://github.com/IBM/AIX360, accessed on 2 April 2024, version 0.2.0) were used for
RIPPER and BRCG, respectively.

4.1. Feature Space Reduction

The amount of features affects the assignment of the surrogate model h and the updates
of the expert territories’ center points. In this case, the surrogate model is a decision tree.
Intuitively, the surrogate’s complexity reduces with fewer features while becoming more
accurate in the sense of approximating LoE’s assignment function A.

For our experiments, the datasets are split into 2/3 training data and 1/3 test data.
The family of surrogates consists of decision trees of maximum depth 6. LoE’s structure
is fixed to an ensemble of n = 3 experts from the class G of decision trees with maximum

https://community.fico.com/community/xml
https://www.python.org
https://www.python.org
https://scikit-learn.org
https://github.com/imoscovitz/wittgenstein
https://github.com/IBM/AIX360
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depth 3. However, the number of features retained by the projections π varies between 10
and 100 % in 5 % increments (r = n× p with p = 0.1, 0.15, . . . , 1). For each r, LoE is trained
and evaluated over 20 runs. For these runs, different training and test data partitions are
employed, which are repeatedly used for every value of r. The test and training accuracies,
the average length of the surrogates’ decision trees h, and the assignment performance θass
(i.e., the level of the surrogate’s agreement with LoE’s assignment function) are obtained.

The feature importance is calculated via (17) with weights α = 0.5 (Equation (16)) and
geometric decay β = 0.3 (Equation (17)). The parameters themselves were not optimized.
The surrogates’ decision rules were not simplified by merging.

Test Results

For the UCI breast cancer dataset, LoE with three experts slightly overfits the training
data as seen from comparing the training with the test accuracy (Figure 6, comparison of C
and D). The former results in almost 100 % accuracy, while the latter is close to 94 % accuracy.
We surmise that it would be advisable to remove one of the experts or to constrain them.
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Figure 6. UCI breast cancer dataset results. Shown are paired box plots with their proportions of
retained features over 20 runs for (A) assignment accuracy (pass), measured on test data, (B) average
rule/path length, (C) accuracy for the test data, and (D) accuracy for the train data.

Feature reduction strongly influences the complexity and quality of the surrogate
model. As shown in Figure 6B,A, the average rule length (average weighted path length) has
a significant positive correlation with the amount of features (Pearson’s χ2 test: χ2 = 0.48,
p < 0.01), while showing a significant negative correlation with the assignment accuracy
(surrogate’s level of agreement with A; χ2 = −0.62, p < 0.01).

Similar results are obtained for the FICO data (Figure 7). The accuracy is lower with
both the training and the test dataset. However, the effect of overfitting is similar to the
UCI dataset (Figure 7C,D). However, feature reduction has an even stronger effect, whereas
the rule length has a stronger positive correlation with the amount of features (χ2 = 0.57,
p < 0.01). A stronger negative correlation with the assignment accuracy is observable
(χ2 = −0.94, p < 0.01). The strong correlations underline the importance of exploring the
optimal dimensionality for feature space reduction. When retaining more than 35% of the
attributes, the average rule length quickly approaches the maximum admissible length
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of 6 imposed by the surrogate family. This trend suggests that the derived decision rules
would become more complex if they were allowed to; i.e., the surrogate would tend to
overfit A.
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Figure 7. FICO dataset results. Shown are paired box plots with their proportions of retained features
over 20 runs for (A) assignment accuracy (pass), measured on test data, (B) average rule/path length,
(C) accuracy for the test data, and (D) accuracy for the train data.

4.2. Rule Set Generation with RuleLoE

The properties of RuleLoE (Section 3.5) concerning (i) explainability (average rule
length, ∅ rules, and # rules), (ii) faithfulness (rule coverage), and (iii) accuracy are compared
with alternative rule set learners, in particular with (1) RIPPER [36] (despite its age still
state of the art; see [46] (p. 52) and [38]), (2) Boolean decision rules via column generation
(BRCG) [38], and (3) classical CART decision trees. In terms of accuracy, RuleLoE is
compared with two black box models, namely, SVC and MLP, using, if not noted otherwise,
standard configurations.

As LoE is a form of ensemble learning, we furthermore compared LoE with a set of
different well-known ensemble learners, namely, random forest, gradient boosting, extra
trees, and AdaBoost, to allow for a more comparative analysis. As tree-based ensemble
methods possess a notion of ensemble size and and maximum tree depth analogous to
LoE, we trained two versions each: default and adjusted. Default refers to the algorithm
having default hyperparameter settings. The adjusted versions diverge from the default by
setting the ensemble size and the maximum tree depth to match LoE’s parameterization.
Our default ensemble configurations as pairs of ensemble size and max tree depth are
as follows:

• Random forest: 100/∞
• Gradient boosting: 100/3
• Extra trees: 100/∞
• AdaBoost: 50/1

At this point, it is also noted that, technically, default AdaBoost only learns decision
stumps, i.e., trees with a maximum depth of one. Although the employed ensemble learners
are using decision trees, the ensemble methods cannot easily be used for explanations as
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their results must be blended in the final stage. Especially using default hyperparam-
eters, the models produce very big ensembles, which essentially renders them to black
box models.

4.2.1. UCI Breast Cancer Dataset

A LoE ensemble of n = 9 decision trees with a maximum depth of 1 level and surrogate
trees of a maximum depth of 2 with a feature reduction to r = 11 attributes was initially
used. After training, one expert having a small territory was manually removed.

The complexity of rules differs substantially between the algorithms with no clear
pattern emerging. RIPPER and BRCG focus on a single class to determine rules (positive or
negative), whereas LoE and CART incorporate both classes, influencing complexity and
performance. Consequently, coverage is lower for RIPPER and BRCG as they assign fewer
data points to a rule. Coverage of decision trees (CART) shows 100 % accuracy as every
query has a valid rule down to the leafs. Here, RuleLoE’s performance is competitive with
the other models—including the black box models. Glass box models were furthermore
outperformed in terms of test accuracies (Table 2). None of the evaluated algorithms
outperform in each other in all categories. In this case, there is no advantage to prefer black
over glass box models.

Table 2. UCI breast cancer results. Shown are the number of rules (# rules), their average length
(∅ rules), rule coverage, and (test/training) accuracies. Italic values for RIPPER and BRCG specify
the learned positive class. Our found hyperparameters in Python notation using grid search are
ccp_alpha = 0.01 (CART, post pruning); hidden_layer_sizes = (200, ) and max_iter = 500 (MLP).

Algorithm # Rules ∅ Rules Rule Coverage (%) Accuracy (%)

RuleLoE 10 1.70 96.06/95.21 94.22/96.28

RIPPER malignant 9 1.56 39.90/36.17 95.54 / 95.21

RIPPER benign 13 1.53 61.41/61.70 93.20 / 89.89

BRCG malignant 5 2.20 37.00/35.11 98.95 / 95.21

BRCG benign 5 2.80 61.42/62.77 99.48 / 92.02

CART 7 3.00 100.00/100.00 97.11/95.74

Random forest default - - - 100.00/96.28

Random forest adjusted - - - 94.75/92.02

Gradient boosting default - - - 100.00/95.21

Gradient boosting adjusted - - - 94.23/94.15

Extra trees default - - - 100.00/97.87

Extra trees adjusted - - - 76.64/78.19

AdaBoost default - - - 100.00/95.21

AdaBoost adjusted - - - 98.95/96.81

SVC - - - 90.55/95.21

MLP - - - 94.22/95.21

4.2.2. FICO Dataset

A LoE ensemble with n = 4 experts with a maximum depth of 1 and surrogate decision
trees with a maximum depth of 2 retaining r = 8 features was initially used. One expert
was manually augmented to two levels as one of its leaves was assigned too many data
points with very low purity (i.e., skewed class distribution).

RIPPER and CART learn a large amount of rules without achieving a higher accuracy
(Table 3), whereas RIPPER shows slightly worse results. CART also learned complex rules.
Interestingly, BRCG (positive class bad) learns exactly one short rule (Predict y=bad if:
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ExternalRiskEstimate < 73), which performs well (Table 3). Naturally, ExternalRisk-
Estimate is a relevant predictor for the credit rating as it is a composition of risk markers
scoring the risk by an (undisclosed) functional relationship. Hence, BRCG’s simple for rule
determining the credit score is based on a hard threshold that is intransparent to outsiders.
This is different for RuleLoE, leading to the following rules (Figure 8).

Predict y=good if one of the following applies:

(1): ExternalRiskEstimate ≥ 76
(2): AverageMInFile ≥ 54 ∧ MSinceMostRecentInqexcl7days ≥ 1 ∧

ExternalRiskEstimate ∈ [70, 76[
Predict y=bad if one of the following applies:

(3): ExternalRiskEstimate < 69 ∧ ExternalRiskEstimate ̸= 68
(4): AverageMInFile ≥ 54 ∧ MSinceMostRecentInqexcl7days < 1 ∧

ExternalRiskEstimate ∈ [70, 76[
(5): ExternalRiskEstimate INSIDE [68, . . . , 70[
(6): AverageMInFile < 54 ∨ ExternalRiskEstimate ∈ [70, 76[

Figure 8. FICO dataset results. Shown are the obtained rules via RuleLoE.

Table 3. FICO dataset results. Shown are the number of rules (# rules), their average length (∅ rules),
rule coverage, and (test / training) accuracies. Italic values for RIPPER and BRCG specify the learned
positive class. Our found hyperparameters using grid search are ccp_alpha = 0.001 (CART, post
pruning); hidden_layer_sizes = (8, 8) (MLP).

Algorithm # Rules ∅ Rules Rule Coverage (%) Accuracy (%)

RuleLoE 6 2.00 100.00/100.00 72.04/71.73

RIPPER bad 18 2.50 50.44/49.66 73.95/70.03

RIPPER good 25 2.40 47.05/47.39 73.95/71.49

BRCG bad 1 1.00 56.01/56.29 71.12/70.38

BRCG good 2 3.00 48.50/48.22 72, 35/70.53

CART 21 4.86 100.00/100.00 74.05/71.24

Random forest default - - - 100.00/72.41

Random forest adjusted - - - 100.00/72.41

Gradient boosting default - - - 62.25/62.83

Gradient boosting adjusted - - - 76.70/73.20

Extra trees default - - - 71.12/70.38

Extra trees adjusted - - - 62.49/62.86

AdaBoost default - - - 74.89/72.71

AdaBoost adjusted - - - 71.05/69.28

SVC - - - 73.20/72.41

MLP - - - 71.58/70.17

Some of these rules could be further merged, e.g., rules (3) and (5). However, the de-
cisions naturally also involve the same nontransparent attribute ExternalRiskEstimate.
Unlike BRCG, however, we gather some further information. If the attribute ExternalRisk-
Estimate has no clear indication of a good or a bad credit score (≥76 or <70, respectively),
the attribute is disputable and the decision is based on two transparent attributes. Indi-
viduals are considered to have a good credit score if they appear on average more than
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54 months in files and their last credit inquiry dates back by more than 1 month. Concretely,
a credit score is good if AverageMInFile ≥ 54 ∧ MSinceMostRecentInqexcl7days < 1.
Otherwise, it is considered bad.

These more insightful rules of RuleLoE are less complex than the alternatives with the
single exception of BRCG with the positive class bad, which can lead to a slightly improved
performance (Table 2). Consequently, black box models are, in general, not superior to
glass box models in terms of their accuracy given our evaluated test cases, whereas the
SVC shows only a slightly higher accuracy than the other models. Considering all aspects,
RuleLoE outperformed the other methods as it contributes to knowledge discovery by
providing simple and interpretable decision rules, thereby leveraging explainability.

4.2.3. The KEEL Dataset

For all KEEL-based experiments, we used a LoE ensemble of three experts with a
maximum depth of 2. This restricted configuration was selected to prioritize the gener-
ation of succinct and interpretable rule systems, aligning with the research’s emphasis
on explanation-focused outcomes. The data were divided using a 2/3 split for training
and testing purposes. For a comparative analysis, a random forest classifier was again
evaluated, adhering to identical ensemble size and tree depth constraints (see Table 4).
Despite no dataset-specific fine-tuning being conduced, LoE demonstrates a reasonably
good performance. Some of our experiments show a low assignment accuracy (e.g., for the
data subsets marketing and texture) and, consequently, yield a RuleLoE with significantly
less performance. This effect might be attributed to an insufficient depth of the related
assignment trees or an insufficient feature reduction. The data subsets marketing, optdigits,
and texture, which show an overall suboptimal performance, feature many classes (Table 1).
Those cannot be fully expressed by trees having two levels of depth, naturally leading to
misclassifications. On average, LoE and RuleLoE surpass the random forest classifier in
accuracy, underscoring the possible benefits of LoE in producing interpretable and efficient
rule-based systems within the constraints of the experimental setup. Therefore, future
investigations should also address these observed distinctions in more detail, for which
further models should be investigated.

Table 4. Test results for the KEEL dataset, comparing the accuracy of LoE, a derived RuleLoE, and a
random forest classifier as pairs of train/test accuracies. Additionally, the number of rules and their
average length is reported. Best average results are highlighted in bold.

Dataset Random
Forest (%)

LoE (%) RuleLoE (%) Assignment
Accuracy (%)

# Rules
(∅ Length)

banana 64.74/63.87 83.75/83.02 83.55/82.68 99.35/99.31 10 (2.20)

coil2000 94.01/94.08 94.18/93.99 94.01/94.08 99.83/99.91 4 (2.75)

marketing 27.25/27.97 32.48/32.91 18.35/18.06 28.29/26.87 1 (2.00)

mushroom 90.08/89.43 99.84/99.89 98.92/99.41 99.07/99.52 8 (3.62)

optdigits 55.35/56.93 65.34/63.83 52.88/51.27 57.24/58.22 8 (3.88)

page-blocks 93.97/93.47 95.69/94.57 94.27/93.58 98.01/98.28 5 (2.80)

phoneme 75.58/76.18 79.53/79.93 76.69/76.35 90.08/89.69 9 (3.11)

ring 76.38/74.53 76.32/74.12 73.26/71.25 84.79/84.77 9 (2.44)

satimage 71.12/71.05 82.16/83.57 77.38/78.30 83.86/84.42 10 (3.40)

texture 36.28/35.32 70.91/70.19 60.22/59.89 62.61/63.86 9 (3.33)

thyroid 94.63/93.98 97.57/98.15 98.11/98.36 98.13/98.40 5 (1.60)

twonorm 80.33/79.81 94.61/94.27 74.16/75.39 75.47/75.23 3 (3.00)

Average 71.64/71.38 81.03/80.70 75.15/74.88 81.39/81.54 6.75 (2.84)
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5. Conclusions and Outlook

In this contribution, we introduced the League of Experts (LoE) framework within the
context of explainable artificial intelligence and machine learning (XAI/XML). LoE is a
particular instance of an ensemble learner that combines surrogate models in order to
leverage explainability and possibilities for human interaction. Moreover, LoE is accom-
panied by RuleLoE, a derived rule set learner. By choosing the ensemble members—the
experts—from a class of glass box models, LoE itself becomes a glass box model, which,
as demonstrated, is competitive in performance to existing glass and black box models.
Importantly, feature space reductions can be incorporated into the training process of LoE,
reducing the complexity of derived explanations. This is contrary to existing methods that
navigate through a high-dimensional feature space. Additionally, we would like to address
hyperparameter optimization, in terms of both sound default values and the automatic
tuning of ensemble members based on the provided dataset and training performance.

Consequently, many possibilities to improve LoE and RuleLoE have yet to be further
explored in regard to usability, performance, and presentation. Within our experiments, LoE
was based on decision trees. However, LoE is not limited to them. Different models may be
able to capture different attribute distributions, whereas a combination of different models
might capture more complex distributions while furthermore retaining explainability.
To guarantee the applicability of these methods, possibilities for user interaction (e.g.,
cutting nodes from decision trees, white- or blacklisting specific attributes to specific
experts, or removing individual rules from RuleLoE) have to be integrated into accessible
user interfaces, for which user studies will have to be conducted. Such an interface ideally
facilitates the integration of intuitive human understanding of a concrete application
into the corresponding machine learning pipeline. Proper user interactivity potentially
reduces hidden biases and improves causal decision mining. This introduction into the
LoE framework is hence a starting point for future developments.
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ICE individual conditional expectation plots

k-NN k-nearest neighbors

LoE League of Experts

MCS multiple classifier system

ML machine Learning

MLP multilayer perceptron

OvR one-versus-rest

PDP partial dependence plots

RuleLoE League of Experts rule set learner

SVC support vector classifier

SVM support vector machine

TreeSHAP decision-tree-based SHAP

XAI explainable artificial intelligence

XML explainable machine learning
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