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Abstract: Coarse-grained molecular dynamics simulations are employed to investigate the spa-
tiotemporal evolution of vesicles (polymersomes) through the self-assembly of randomly distributed
amphiphilic BAB triblock copolymers with hydrophilic A and hydrophobic B blocks in an aqueous
solution. The vesiculation pathway consists of several intermediate structures, such as an intercon-
nected network of copolymer aggregates, a cage of cylindrical micelles, and a lamellar cage. The
cage-to-vesicle transition occurs at a constant aggregation number and practically eliminates the
hydrophobic interfacial area between the B block and solvent. Molecular reorganization underlying
the sequence of morphology transitions from a cage-like aggregate to a vesicle is nearly isentropic.
The end-to-end distances of isolated copolymer chains in solution and those within a vesicular
assembly follow lognormal probability distributions. This can be attributed to the preponderance of
folded chain configurations in which the two hydrophobic end groups of a given chain stay close
to each other. However, the probability distribution of end-to-end distances is broader for chains
within the vesicle as compared with that of a single chain. This is due to the swelling of the folded
configurations within the hydrophobic bilayer. Increasing the hydrophobicity of the B block reduces
the vesiculation time without qualitatively altering the self-assembly pathway.

Keywords: triblock copolymer; micelle; vesicle; polymersome; molecular dynamics; information
entropy; nanomedicine; biomimetic

1. Introduction

Block copolymers (BCPs) have been a focal point of research for several decades. They
have been engineered to produce various morphologies by altering the combinations of
chemically distinct polymer segments that interact selectively with their environment, such
as an aqueous/organic solvent or a polymer matrix. The ability to tailor morphological
features by manipulating polymer chain length, composition, and monomer chemistry
has led to their applications in areas such as advanced material manufacturing, catalysis,
emulsification, environmental remediation, targeted drug delivery, gene therapy, and
medical diagnostics [1–12].

While several experimental studies have shed light on BCP phase behavior in solutions,
a comprehensive theoretical understanding of the energetic and entropic factors driving
morphological changes is only slowly emerging [13–17]. Real-time visualization of the
self-assembly processes in copolymer solutions is challenging due to the limitations of
current imaging technologies, often leading to reliance on cryogenic Transmission Electron
Microscopy (cryo-TEM) imaging or nuclear magnetic resonance (NMR) spectroscopy for
morphology characterization [18,19]. Shape transitions in BCP systems are often interpreted
using simple geometric models based on the elegant packing parameter concept [13].
However, experimental [16,17,20–25] and molecular/mesoscopic simulation [26–42] studies
have revealed an extraordinary diversity of BCP morphologies with complex topological
and interfacial characteristics.
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The self-assembly of BAB triblock copolymer solutions, in which B and A represent
the solvophobic and solvophilic blocks, respectively, was investigated by Kotaka et al. [43],
who reported that poly(methylmethacrylate)-polystyrene-poly(methylmethacrylate) BCPs
in a toluene-p-cymene (pCY) solvent mixture with high pCY content form highly branched
structures. Balsara et al. [44] suggested that micellization in BAB triblock solutions
with solvophilic A blocks could lead to morphologies with B-rich cores surrounded by
loops of A segments. A series of quasi-elastic light-scattering experiments conducted on
poly(vinylpyridine)-polystyrene-poly(vinylpyridine) solutions in toluene, which preferen-
tially solvates the polystyrene block, confirmed only the presence of individual micelles [44].
However, certain BCP–solvent combinations promote the formation of networks in which
adjacent solvophobic spherical aggregates are connected by extended A strands. Such
branched structures are arguably thermodynamically favorable since they avoid the en-
tropic penalty associated with loop formation. In subsequent experiments with different
triblock polymer–solvent systems, network structures facilitated by extended solvophilic
segments have been directly observed or inferred [45–52]. Overall, the evolution and
stability of such structures depend on the entropic and energetic contributions to the
system’s free energy, which are, in turn, dependent on the molecular architecture and
polymer–solvent interactions.

Depending on the chain length, the mole fraction of A/B and monomer chemistry,
BAB, and ABA copolymers can form different nanostructures, such as lamellae, star-like
or flower-like micelles, and vesicles [53–55]. In general, BAB architectures with solvents
with a relative preference for the A block readily form bilayers and vesicles (polymer-
somes) [56–61]. Hence, they are excellent candidates for the synthesis of vesicles that are
extensively used to encapsulate therapeutic agents for targeted drug delivery [62,63] or
stimuli-responsive nanoparticles for applications in medical imaging [64]. In comparison,
ABA polymers tend to readily form network structures and are often used to produce
thermoreversible gels [65–67].

Self-consistent field theory [30–32], dissipative particle dynamics (DPD) [33–41], and
coarse-grained molecular dynamics (CGMD) simulations with prescribed or biased initial
conditions [28,29,42] have been employed to study bilayer-to-vesicle transitions and the
kinetics of copolymer exchange between self-assembled aggregates in BCP solutions. Fur-
ther, CGMD simulations that account for solvent-mediated hydrophobic interactions have
been implicitly used to study differences in copolymer architecture (linear vs. bottlebrush)
with respect to self-assembly in solution [68] and the shape deformation of polymersomes
induced by osmotic pressure stress [69]. Mattice et al. used Monte Carlo simulations to
study self-assembly in ABA copolymers [70–72] and found that they form a rich variety
of structures. In their simulations, the formation of branched structures in ABA triblock
copolymer solutions was observed under conditions in which the corresponding AB di-
block copolymers would provide steric stabilization for a polymer colloid. Chen et al. [73]
explored the self-assembly pathways in coil–rod–coil triblock copolymers in a rod-selective
solvent using DPD simulations and constructed a phase diagram of the predicted mor-
phologies. They observed the formation of different types of micelles while changing the
relative block fractions and rod length. These authors also identified a kinetic process
leading to vesiculation that involved intermediate structures such as rodlike micelles and
lamellae, as observed in CGMD simulations of AB BCPs [27]. Han et al. [74] reported two
mechanisms of vesicle formation through ABA polymers with Monte Carlo simulations,
which are facilitated by either solvent diffusion into a spherical micelle or the deformation
of a lamellar structure. Kangarlou et al. [75] performed CGMD simulations of polyethylene
oxide molecules end-capped with cholesterol in water by using the MARTINI force field
and predicted the formation of flower-like micelles. Song et al. [76] conducted a Monte
Carlo simulation study on the effect of the hydrophilicity of the B block on the self-assembly
of cyclic AB and BAB polymers. They found that increasing the compatibility between
the B block and solvent results in a sequence of morphological changes in the following
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order: network structures, cylindrical micelles, disklike (lamellar) and toroidal-like micelles,
vesicles, and multicompartment vesicles.

Despite the insights gained from the abovementioned studies, simulations with near-
molecular-scale resolutions that capture the real-time evolution of the self-assembly process
in the presence of explicit solvent-mediated interactions in triblock copolymer solutions are
lacking. As isolated copolymers dispersed within a solvent are brought together by ther-
modynamic forces to form a molecular assembly, their individual configurations undergo
significant changes due to inter-chain interactions. Our previous work on vesicle formation
in AB BCPs [27] revealed that, once a molecular aggregate of a critical size is formed, the
isentropic reorganization of polymer chains within a constrained geometrical environment
directs the pathway of morphology evolution, guided by the motif of reducing hydropho-
bic contacts. CGMD simulations of vesiculation in BAB BCPs reported in this work track
configurational changes at the single-chain level and, hence, provide a fuller understanding
of the energetic and entropic mechanisms underlying the self-assembly process.

The equilibrium configurations of BAB and AB copolymers in solvents with greater
affinity for the A block are qualitatively different. A comparison of the probability distribu-
tion functions of the magnitude of the end-to-end vector of AB and BAB polymers of the
same chain length and the A/B molar ratio is provided in Figure S2 in the SI, along with
depictions of representative chain topologies. Specifically, the most probable configuration
for AB copolymers corresponds to a semi-stretched state. In comparison, BAB copoly-
mers exhibit more complex configurational dynamics resulting in dominant equilibrium
topologies that resemble hairpins, rings, and “ρ” shapes, in which a hydrophobic end
group stays close to another hydrophobic portion of the chain. Such differences in chain
architecture/topology could have a pronounced influence on vesiculation pathways. This
is explored in this work by performing CGMD simulations of vesicle formation in BAB
copolymer solutions.

The CGMD simulations reported in this work are adapted from previous studies
on self-assembly, shape transitions, and the rheology of surfactant solutions [26,27,77–84].
They utilize the MARTINI coarse-graining approach and force fields [85]. These simulations
provide a detailed picture of vesicle formation from an initially homogeneous copolymer
solution, capturing various intermediate (transient) morphologies. We present the simula-
tion methodologies and data analysis techniques in Section 2, the results in Section 3, and
the conclusions in Section 4.

2. Methods
2.1. Methods and Software

The force field constraints of the molecular models used in this work were based on
the requirements of the MARTINI force field [85].

Stretching and bending interactions between bonded beads were modeled using weak
harmonic potentials Vb and Vθ , respectively, provided by Equations (1) and (2) below:

Vb (b) =
1
2

Kb(b − b0)
2 (1)

Vθ (θ) =
1
2

Kθ(cos(θ)− cos(θ0))
2 (2)

where b0 and θ0 represent the equilibrium bond distance and equilibrium bond angle at the
minimum energy configuration, respectively, and Kb and Kθ represent constants associated
with bond-stretching and -bending energies, respectively. The non-bonded interactions
between beads i and j are described by a 6–12 Lennard−Jones (LJ) potential represented by

VLJ
(
rij
)
=

C(12)
ij

r12 −
C(6)

ij

r6 . (3)
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Equation (3) can also be written as

VLJ
(
rij
)
= 4εij

[(
σij

r

)12
−

(
σij

r

)6
]

, (4)

where
C(12)

ij = 4εijσ
12
ij and C(6)

ij = 4εijσ
6
ij. (5)

In the above equations, r represents the distance between beads i and j, εij is the depth
(minimum) of the potential well (energy function), and σij is the distance at which VLJ is
zero. εij and σij are also referred to as the interaction strength and cutoff length, respectively.

The MARTINI force field requires the LJ potential to be shifted smoothly to 0 between
0.9 and 1.2 nm rather than using a hard cutoff to avoid singularities in the computation
of the inter-particle forces. This is achieved by using a potential−switch function, SV,
represented by

SV
(
rij
)
= C(12)

ij S(12) − C(6)
ij S(6), (6)

where

S(α) =



1
rα − C ; r ≤ rshi f t

1
rα − A

3

(
r − rshi f t

)3
− B

4

(
r − rshi f t

)4
− C ; rshi f t < r ≤ rcut

0 ; r > rcut

(7)

α = 6 or 12.

In Equation (7), parameters A, B, and C are defined by

A = −α
(α + 4)rcut − (α + 1)rshi f t

rα+2
cut

(
rcut − rshi f t

)2 , (8)

B = α
(α + 3)rcut − (α + 1)rshi f t

rα+2
cut

(
rcut − rshi f t

)3 , (9)

and
C =

1
rα

cut
− A

3

(
rcut − rshi f t

)3
− B

4

(
rcut − rshi f t

)4
, (10)

where the values rshi f t = 0.9 nm and rcut = 1.2 nm are used. The force field parameter values
used in this study are listed in the Supplementary Information as Tables S1–S3.

In the present simulations, water (four-molecule cluster, represented by W), PB
monomer (represented by B), and PEO monomer (represented by A) are modeled by bead
types P4, C4, and SNda, respectively [85,86]. In total, 400,000 water beads; 40,000 antifreeze
water beads (modeled by bead type WF) [87]; and 3883 polymer chains consisting of five
PB, ten PEO, and five PB beads (10.7 wt%) were randomly placed in an initial cubical box
with a linear dimension of 40 nm using the PACKMOL 20.14.0 software [88]. The spring
constant, Kb, for the harmonic bond-stretching potential of the PEO (A) segment is an order
of magnitude greater than that for the PB (B) block. Further, Kθ for the A block is twice that
of the B block. Resultantly, the middle (solvophilic A) block is stiffer than the side (solvo-
phobic B) segments. Hence, the BAB system considered in our work has certain similarities
to the mechanical properties of a coil–rod–coil copolymer, which has been shown by DPD
simulations to form vesicular structures [73]. The simulations were performed using the
Gromacs 2020.2 MD software. The reference pressure and temperature were 1 bar and 300 K,
respectively. First, simulations were conducted to minimize the energy of the initial system
by using the steepest descent algorithm. This was followed by a short (2 ns in this work)
NVT simulation to equilibrate the system at a desired temperature to ensure algorithmic
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stability. Subsequently, a sufficiently long NPT simulation (production run) was carried out
(600 ns in this work). In the subsequent discussions, the state of the system at the start of
the NPT simulations was referred to as the initial condition (t = 0). More details about the
simulation are provided in the Supplementary Information as Section S1. The molecular
visualization was performed using VMD 1.9.3. Data analysis and graphing were performed
using MatlabTM 2023, Microsoft 365TM, Visual C++ 2022, and OriginlabTM 2022.

2.2. Data Analytics

Discrete spatiotemporal data generated from the CGMD simulations were analyzed
to identify copolymer clusters. Any two beads with center-to-center separations less than
the cutoff distance were regarded as part of a cluster (aggregate). Further, within any bead
in each cluster, there exists at least one bead at a distance less than the cutoff value. In
this study, we used 0.5 nm as the cutoff distance. This selection is based on the cutoff
distance of 0.47 nm for non-bonded LJ interactions between PB and PEO monomers. We
also calculated solvent-accessible surface area (SASA), which may be interpreted as the
surface area of the solvent–polymer interface. Specifically, SASA was measured as the
area circumscribed by the motion of the center of a spherical probe that slides along the
periphery of the polymer beads that constitute a cluster [89].

2.2.1. Information Entropy (H)

To quantify the changes in the configurational entropy associated with the packing of
copolymers within various intermediate assemblies leading to vesiculation, we calculated
the probability distribution function (pdf ) of the extension of the polymer chains. First,
the end-to-end distance of each chain (Q) in the cluster was calculated. Given p(Q), we
calculated the information entropy, H, of the structure using its standard definition as
H(Q) ≡ ∑ p(Q) ln (p(Q)) [90], where the discrete summation was carried out for the ensemble
of copolymers within a cluster. The end-to-end vector is the most widely used structure
parameter in polymer kinetic theory [91]. Specifically, p(Q) quantifies the distribution of
polymer stretch, which depends on the polymer configuration. A broader Q distribution
points to greater configurational diversity and, hence, larger degrees of configurational
freedom (entropy). This is discussed further in Section 3.1.1.

2.2.2. Pair Correlation Function (g(r))

Pair correlation function (g(r)) describes how the density of B, A, or W beads varies as
a function of distance from the center of mass of a cluster along the radial direction. A larger
value of g signifies more tightly packed beads. In general, g shows (local density)/(overall
density). g(r) is represented by

g(r) =
< ρ(r) >

ρ
=

1
ρ

∑N
i=1δ1(ri − r)δ2(r + ∆r − ri)

1
V(r)

(11)

where < ρ(r) > is the average density of beads at a distance, r, from the center of mass;
ρ = 3Nm/

(
4πr3

max
)

is the average cluster density; Nm is the total number of monomer
beads contained in the cluster; rmax is the distance of the farthest bead from the center of
mass of the cluster; V(r) = (4/3)π

[
(r + ∆r)3 − r3

]
; and

δ1(x) =
{

0, i f x < 0
1, i f x ≥ 0

and δ2(x) =
{

0, i f x ≤ 0
1, i f x > 0

. (12)

Equation (12) means beads at the inner boundary are included. while those at the
outer boundary are excluded. In the calculation, we used ∆r = 0.1 nm.
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3. Results and Discussion
3.1. Morphology Evolution

Figure 1 illustrates the evolution of morphology during vesiculation in BAB copoly-
mers in the NPT simulation. The structure evolution during the NVT simulation is provided
in Figure S1 as the Supplementary Information. The polymers form core (B)-corona (A)
micelles that are interconnected by bridges of elongated A segments: see Figure 1a. This
structure is unstable due to its relatively large solvent–polymer interfacial area. Hence, it
coarsens by the merger between neighboring micelles and, to a lesser extent, the incorpo-
ration of small polymer aggregates from the solution (Figure 1b). The coarsening process
continues until a cage-like morphology with a circumferential mesh of cylindrical micelles
is established (Figure 1c,d). The cylindrical micelles rearrange and coalesce with adjacent
structures to form a large lamellar (bilayer) shell with holes (Figure 1e). This structure
subsequently evolves into a fully closed bilayer (vesicle) (Figure 1f,g). As seen in Figure 2,
the closure of the bilayer is accompanied by a reduction in the volume (or, equivalently,
the radius of gyration, Rg) of the structure. In the early stages of structure evolution, the
aggregation number, N, grows rapidly due to copolymer aggregation. The step changes
in N seen in the later stages of morphology evolution are caused by the addition of small
polymer aggregates into the primary structure. Overall, once the cage-like structure shown
in Figure 1d is formed, the vesiculation process is facilitated largely through its reorgani-
zation at a nearly constant aggregation number. Figure 1h shows the radial distribution
functions (rdf s) of water, as well as monomers A and B, for the vesicle depicted in Figure 1g.
It can be inferred that the vesicle has a water core radius of approximately 6 nm that does
not contain any polymers. The vesicle wall has a diffuse double-layer structure with the
rdf s exhibiting two well-defined A peaks on either side of the B-rich inner layer.
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Figure 1. Structure evolution: (a) 0 ns (initial condition of the NPT simulation): a network of
interconnected spherical aggregates; (b) 10 ns: a network of ellipsoidal micelles; (c) 20 ns; (d) 30 ns:
cage of cylindrical micelles; (e) 50 ns: a lamellar cage; (f) 150 ns: precursor to a vesicle; (g) 600 ns: a
vesicle at equilibrium. Panel (h) shows the pair correlation functions of the vesicle shown in panel (g).
The black, blue, and red lines represent water, A, and B, respectively. The smaller illustration next to
panel (a) is an exploded view of the micelle network. The smaller illustrations next to panels (b–g)
show the cross-section of the corresponding structure.
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Figure 2. Structure evolution: aggregation number (N) and radius of gyration (Rg) versus time. The
step changes seen in N correspond to the merger of a small copolymer aggregate with the primary
structure. For snapshots 4–6, cross-sections are also shown. The dotted line shows the time at which
a fully enclosed vesicular structure is formed.

We studied the changes in the distribution of copolymer chain configurations during
the vesiculation process. Figure 3a–g show the pdfs of the end-to-end distance, Q, of the
polymer chains within the structures depicted in Figure 1a–g. The probability distribution
function, p(Q), for the interconnected micelle morphology shown in Figure 1a exhibits two
prominent peaks, namely, the one at the larger Q value (≈4.9 nm), corresponding to the
stretched polymers that form the bridges between the micelles, and the second at the lower
Q value (≈1.7 nm), representing the folded configurations within the micelles. As the self-
assembly process progresses, the peak at the larger Q value becomes smaller and eventually
disappears, implying that folded configurations become the predominant ones within the
assemblies. There is a very small, albeit persistent, third peak at Q ≈ 0.5 nm, which is close
to the cutoff distance for non-bonded interactions in the simulations. This corresponds to
a relatively small number of ring-like polymer chains. In Figure 3g, p(Q), obtained from
CGMD simulations of a single chain in solution, is also shown for comparison. Polymer
chains that constitute the vesicle exhibit a broader Q distribution compared with that of an
isolated (single) chain in solution. The mutual affinity of B-type monomer pairs is greater
than those of A–B and B–solvent pairs. This allows for the opening of the hairpin-like
configurations of the individual polymer chains within the B-rich inner layer of the vesicle,
thereby resulting in greater end-to-end distances.
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3.1.1. Interfacial Area and Information Entropy

The variations in the SASA and H, normalized with respect to their initial values,
accompanying vesiculation are shown in Figure 4. The polymer–solvent interfacial area
decreases rapidly at the early stages of self-assembly. However, once the lamellar cage is
formed at t ≈ 60 ns, the SASA does not change appreciably. The total SASA at equilibrium
is approximately 16% of its initial value. As expected, the decrease in the relative SASA is
greater for the hydrophobic segments (≈99%) than that for the hydrophilic ones (≈74%).
In other words, the self-assembly and reorganization of the copolymers are guided by the
motif of almost entirely shielding the hydrophobic monomers from the solvent, i.e., to
reduce the unfavorable interfacial energy of the hydrophobic interactions at the expense
of gaining curvature energy. A qualitatively similar energetic motif of vesicle formation
has been inferred from CGMD simulations of AB copolymer solutions [27]. However, the
vesiculation pathway in the AB solutions consists of topologically simpler morphologies
(spherical/rod-like micelles and rectangular/discoid lamella) compared with those de-
picted in Figure 1. The complex intermediate structures observed in BAB solutions may
be a consequence of the remarkable diversity inherent to the single-chain configurations
produced by the selective A–B segmental interactions with the solvent, as well as the
relative differences in A–B and A–A pair affinities in triblock systems, as illustrated by
Figure S2 in the Supplementary Information.
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The variations in H along the vesiculation pathway (≈9%) are modest compared
with those in the SASA. When the cage-like structure (Figure 1d) is formed from the
interconnected micelles (Figure 1a), the number of stretched chains is significantly reduced.
This decreases H, as seen in Figure 4. While a cage-like structure (≈40 ns) reorganizes into
a vesicle (≈150 ns), H increases slightly. This can be attributed to the opening of the folded
chain configurations due to increased attractive B–B pair interactions within the bilayer.
The small decrease in H for t > 150 ns is due to the rearrangement of the copolymers within
the closed bilayer forming a nearly spherical and compact vesicle. During this process, Rg
also decreases by a very small amount (from 11.7 nm to 11.3 nm) (Figure 2).

3.2. Effect of Solvent Affinity of the Hydrophobic Segment on Self-Assembly

We further investigated the effect of the variation in hydrophobicity of the B block on
the self-assembly mechanism. In the above simulations, bead type C4 from the MARTINI
database was used to model the B monomers. The set of force field parameters for this
bead type, provided in Table S1 in the Supplementary Information, mimics a polybutadiene
monomer. As mentioned in Section 2, the bead type SNda used for segment A models
a polyethylene oxide monomer. To simulate variations in solvent affinity, we keep the
bead type of the A segment unchanged and change that of the B segment. Specifically, we
perform a set of simulations of self-assembly in 5B10A5B copolymer solutions in which the
A monomer has the characteristics of type SNda and the B monomer is modeled by the
bead type Cn, n = 1, 2, 3, 4, 5. The hydrophilicity of the Cn bead type is in the following
order: C1 < C2 < C3 = C4 < C5. The difference between bead types C3 and C4 is that the
latter is more attractive to A beads. The relevant force field parameters of the Cn beads are
provided in Table 1.

Table 1. Time required for the formation of a fully enclosed vesicular structure for chains with
hydrophobic segments with different degrees of hydrophobicity.

Type C1 C2 C3 C4 C5

εB−W (kJ/mol) 2.0 2.3 2.7 2.7 3.1

εB−A (kJ/mol) 2.7 2.7 2.7 3.1 3.5

Vesiculation Time (ns) 84 ± 8 105 ± 9 142 ± 13 130 ± 17 N/A

Simulations showed that the conclusions reached regarding the pathway of mor-
phology evolution, as well as variations in SASA and H presented in Section 3.1, are
qualitatively unchanged for bead types C1–C4; see Figure S3 in the SI for an illustration of
the self-assembly process for the C1-type copolymer, as well as Figure 5 for the variations
in N, SASA, and H for the various bead-types. However, the kinetics of self-assembly and
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vesiculation are influenced by the hydrophilicity of the B segment: the less hydrophilic
the beads, the faster the vesicle formation process. For instance, as seen in Table 1, the
vesicle formation time predicted for the copolymers with the C1-type B segment is nearly
one-half of that for the C3/C4-type cases. Further, the kinetics of vesiculation for the C3-
and C4-types are statistically indistinguishable, as evidenced by data provided in Table 1
and Figure 5.
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Figure 5. (a) Aggregation number (N), (b) radius of gyration (Rg), (c) information entropy (H), and
(d) relative total SASA versus time for BAB copolymer solutions with varying degrees of hydrophilic-
ity in the B block (C1 < C2 < C3 = C4 < C5).

Figure 6 shows the p(Q) of a single chain in solution at equilibrium and chains within
the equilibrium morphologies for copolymers with B monomers of different C1–C5 charac-
teristics. As the hydrophilicity of the B segment increases, the distribution of chain lengths
becomes broader, as expected. Moreover, in all cases, the pdfs of the chains within the
molecular assemblies are broader and exhibit a peak shift to larger Q values as compared
with those of single chains. This is due to the swelling of chains within the B-rich regions
of the bilayers. Further, the pdfs show a very good degree of fit to lognormal distributions,
as previously reported for AB copolymers [27].

The BCP architecture with the most hydrophilic B block (C5 beads) does not form
vesicles but instead forms multilayered spherical micelles. The primary driving force for
self-assembly is hydrophobic interactions that lead to the shielding of the B blocks from
the solvent (water). However, morphology selection depends on the relative affinities of
the A and B blocks with the solvent and with each other. The enhanced hydrophilicity
of the C5 beads makes them significantly more compatible with the A segment. This
inhibits the tendency of microphase separation and promotes the formation of multilayered
micelles with mixed domains, as evidenced by the rdfs shown in Figure 7h. Figure 7
shows the self-assembly pathway for the C5-type copolymers. Interconnected copolymer
aggregates are formed at the early stages of self-assembly (Figure 7a). Subsequently,
adjacent micelles aggregate to form short rods (Figure 7b). Up to this stage, the morphology
evolution parallels those seen in vesicle-forming BAB solutions (Figure 1 and Figure S3 in
the Supplementary Information). However, owing to the enhanced hydrophilicity, the rod-
like micelles of the C5-type BCPs merge with adjacent structures to form longer wormlike
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micelles, with spatial distributions shown in Figure 7c,d. Fragments that break away from
the largest (primary) structure cause a decrease in Rg. The primary structure further shrinks
to become a spherical multilayer micelle (Figure 7e–g). The rdf s plotted in Figure 7h clearly
show a B-rich region in the micelle core surrounded by a shell that contains both A and B
monomers inside and hydrophilic A segments at the solvent–micelle interface.
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Figure 6. p(Q) vs. Q for BAB copolymer solutions with varying degrees of hydrophilicity in the B
block (C1 < C2 < C3 = C4 < C5) for (a) a single chain in solution and (b) the self-assembled structures
at equilibrium. Cases C1–C4 form vesicles, whereas C5 forms spherical micelles. Lines represent
lognormal fits to the simulation data shown in the symbols.
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(f) 150 ns, and (g) 600 ns. Panel (h) shows the radial distribution functions of the micelle shown
in panel (g). The black, blue, and red lines represent water, A, and B, respectively. The smaller
illustrations next to panels (b–g) show the cross-sections of the corresponding large structures.

4. Conclusions

CGMD simulations of the real-time evolution of vesicles—starting with an initial condi-
tion of randomly distributed stretched BAB copolymer chains in an explicit solvent—have
been performed to identify intermediate self-assembled states along the vesiculation path-
way. The vesiculation process is facilitated by the rapid formation of interconnected spheri-
cal aggregates; the merger of spherical aggregates to form a cage-like assembly made up of
cylindrical micelles that reorganize into lamellar (bilayer) structures; and the closure of the
lamellar cage to form a vesicle. The SASA decreases monotonically during vesiculation,
with a near (99%) elimination of the hydrophobic (B–solvent) interface. The transition from
a cage-like morphology to vesicle morphology occurs at a practically constant aggregation
number with negligible changes in configuration entropy. Such a vesiculation mechanism
facilitated by the isentropic reorganization of an aggregate of a critical size (aggregation
number) has also been observed in CGMD simulations of AB copolymer simulations [27].
However, the intermediate structures predicted in BAB systems are topologically complex
in comparison with the regular transient shapes (spherical/rod-like, rectangular/discoid
lamella [25,27]) seen during vesicle morphogenesis in AB diblock polymers. The end-
to-end distance of a single chain at equilibrium and that of individual chains within the
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equilibrated vesicular structure follow lognormal probability distributions. However, the
latter distribution is broader, suggesting that the increased hydrophobicity (the increase in
the number of proximal B monomer pairs) within the bilayer results in the swelling of the
hairpin-shaped BAB copolymer chains. The simulations were used to probe the influence
of monomer chemistry on morphology evolution. Increasing the hydrophobicity of the B
segments does not influence the self-assembly pathway. However, it makes the kinetics of
vesiculation faster. Decreasing the hydrophilicity of the B segments prevents the forma-
tion of vesicles and promotes a molecular assembly process that results in multi-layered
spherical micelles.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/colloids8030029/s1, Section S1: Simulation Details; Table S1: Parameter
values for non-bonded interactions for the BAB copolymer; Table S2: Parameter values for bond
stretching interactions; Table S3: Parameter values for bond bending interactions; Figure S1: Structure
evolution in the NVT simulation; Figure S2: p(Q) vs. Q for an AB diblock and a BAB triblock
copolymer. Typical chain configurations are shown alongside; Figure S3: Structure evolution for
the C1-type B segment: (a) 0 ns, (b) 10 ns, (c) 20 ns, (d) 30 ns, (e) 40 ns, (f) 50 ns, (g) 150 ns, and
(h) 600 ns. (i) shows the cross-section of the structure in panel (h). References [92,93] are cited in the
Supplementary Materials.
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