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Abstract: Soil organic carbon (SOC) is a crucial factor influencing soil quality and fertility. In this
particular investigation, we aimed to explore the possibility of using diffuse reflectance infrared
fourier transform spectroscopy (DRIFT-FTIR) in conjunction with machine-learning models, such as
partial least squares regression (PLSR), artificial neural networks (ANN), support vector regression
(SVR) and random forest (RF), to estimate SOC in Sohag, Egypt. To achieve this, we collected a total
of ninety surface soil samples from various locations in Sohag and estimated the total organic carbon
content using both the Walkley-Black method and DRIFT-FTIR spectroscopy. Subsequently, we used
the spectral data to develop regression models using PLSR, ANN, SVR, and RF. To evaluate the
performance of these models, we used several evaluation parameters, including root mean square
error (RMSE), coefficient of determination (R2), and ratio of performance deviation (RPD). Our survey
results revealed that the PLSR model had the most favorable performance, yielding an R2 value of
0.82 and an RMSE of 0.006%. In contrast, the ANN, SVR, and RF models demonstrated moderate to
poor performance, with R2 values of 0.53, 0.27, and 0.18, respectively. Overall, our study highlights
the potential of combining DRIFT-FTIR spectroscopy with multivariate analysis techniques to predict
SOC in Sohag, Egypt. However, additional studies and research are needed to improve the accuracy
or predictability of machine-learning models incorporated into DRIFT-FTIR analysis and to compare
DRIFT-FTIR analysis techniques with conventional soil chemical measurements.

Keywords: DRIFT-FTIR spectroscopy; soil organic carbon; PLSR; ANN; SVR; RF; soil quality; Sohag

1. Introduction

SOC is the main factor influencing soil quality, fertility, agricultural economic viability,
and sequestration of atmospheric carbon dioxide (CO2). The presence of SOC modifies the
physical, chemical, and biological properties of the soil, resulting in improved soil water
and nutrient retention [1] as well as improved soil health and sustainability [2]. SOC plays
a crucial role in carbon sequestration and climate change mitigation [2].

The range of SOC can differ depending on various factors such as soil type, land
management practices, and vegetation cover [3]. SOC levels below 1.5% are considered
low and may indicate long-term degradation, limited organic matter inputs, or intensive
cultivation without appropriate organic matter management [1]. On the other hand, SOC
levels ranging from 1.5% to 3% are considered moderate and suggest reasonably good or-
ganic matter content, reflecting adequate organic inputs and appropriate land management
practices [4].
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Accurate determination of SOC is of immense importance in formulating effective
land management tactics, environmental regulations, climate change mitigation plans, and
conservation methodologies aimed at increasing soil carbon sequestration [5,6]. It provides
vital information for understanding and monitoring soil health, carbon sequestration
potential, and sustainable land use practices [7–10].

There are various common techniques available for determining SOC, including
Walkley-Black and dry elemental analysis methods. However, the Walkley-Black method
is commonly used in routine soil-testing laboratories due to its widespread adoption [11].
However, this method is known to be time-consuming, laborious, expensive, and envi-
ronmentally hazardous [12]. On the other hand, near-infrared spectroscopy (NIRS) and
mid-infrared spectroscopy (MIRS) are rapid and non-destructive techniques that exploit the
spectral properties of soil samples to estimate SOC content [13]. These advanced techniques
provide faster results and can be applied in the laboratory, in situ, or during large-scale
investigations [14].

The use of DRIFT-FTIR spectroscopy and other advanced techniques to estimate SOC
aligns with the principles of precision agriculture, which involves the implementation of
site-specific management practices based on soil variability [15]. By examining the spectral
patterns of soil samples, DRIFT-FTIR spectroscopy can offer valuable insights into the
spatial distribution of SOC content in a field. One of the main advantages of DRIFT-FTIR
spectroscopy is its ability to provide accurate and rapid SOC determination, as previously
studied by [16,17], typically requiring only a few minutes per sample. This efficiency allows
for high sample throughput, making it well-suited for large-scale studies or monitoring
programs where time efficiency is crucial [18]. Additionally, DRIFT-FTIR spectroscopy
facilitates the monitoring of carbon sequestration efforts for sustainable agriculture and
climate change mitigation [6].

DRIFT-FTIR spectroscopy is a non-destructive method, which means that soil samples
remain intact and can be used for later analyzes or for archiving. DRIFT-FTIR spectroscopy
can provide accurate estimates of SOC content when properly calibrated and validated [19].
The technique uses the specific infrared absorption characteristics of soil organic functional
groups, allowing quantification of SOC with good accuracy over a wide range of SOC
values, from low to high levels [20]. However, the accuracy and precision of the determi-
nation may vary within this range. DRIFT-FTIR spectroscopy is particularly effective for
estimating SOC levels between 1% and 10% (w/w) or higher [21]. This range covers typical
SOC levels found in agricultural soils and can be reliably detected using well-developed
calibration models and appropriate sample analysis techniques. The presence of gypsum
and limestone can have an impact on the level of SOC. Adding limestone to soil as a
liming agent can significantly increase plant biomass above and below ground, which
increases carbon yield [22]. Additionally, the presence of limestone in the soil can increase
soil pH, which will impact microbial activity and soil carbon sequestration [23,24]. A
significant amount of terrestrial carbon can be stored in gypsum soils, preventing it from
being released as carbon dioxide, the main greenhouse gas, into the atmosphere [25]. The
application of gypsum can continuously dissolve organic carbon, leading to higher organic
carbon content compared to unchanged controls [26].

In some cases, DRIFT-FTIR spectroscopy can detect SOC content as low as 0.5% or
less, but this may require careful calibration and validation. It is important to note that the
lower detection limits of the DRIFT-FTIR determination of SOC may depend on factors
such as soil mDRIFTix, the presence of interfering substances, and instrument sensitivity.
Additionally, extremely high SOC contents (>30% or more) can pose problems in terms
of spectral saturation, where absorption bands associated with SOC become saturated,
making accurate quantification more difficult [19]. Certain soil characteristics affect the
DRIFT-FTIR analysis, such as soil moisture (by changing the water absorption bands), pH
(extreme values of soil pH [very acidic or alkaline] can affect spectral properties of organic
compounds and reduce analysis accuracy estimation of SOC), texture (some textures, such
as clay-rich soils, may exhibit higher spectral noise due to increased interference from clay
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minerals), clay minerals, and iron oxides (overlapping absorbances of these minerals can
facilitate the interpretation of spectra for SOM characterization) [4]. These influence the
accuracy of prediction models [27].

To eliminate the effect of soil moisture on the FTIR spectra, all soil samples were oven
dried at the same temperature for the same time. On the other hand, to solve the problem
of the effects of several soil parameters, such as pH, texture, minerals, oxides, etc., there are
certain procedures which can be described as follows.

(i) Sample preparation was carried out uniformly and one procedure was used for sample
collection, storage, and analysis.

(ii) Spectral preprocessing techniques, such as normalization to FTIR spectra, can help
reduce noise and variability in spectra, thereby facilitating the identification and
interpretation of organic carbon bands.

(iii) Using calibration models of PLSR, ANN, RF, and SVR can help correlate FTIR spectra
with SOC content while considering the effect of other soil parameters.

(iv) Standardization of FTIR measurements, including calibration of instruments to ensure
that the data collected is reliable and consistent for different soil parameters.

The correlation between DRIFT-FTIR data and soil organic carbon (SOC) content
is established through the absorption of infrared radiation in the mid-infrared range
(4000–400 cm−1) by the organic functional groups present in the ground [19]. The in-
frared spectrum contains unique absorption bands for different functional groups, such as
aliphatic compounds, aromatic compounds, and carboxylic acid groups. Chemical bonds
exhibit distinct vibrational movements, including stretching, bending, and deformation,
specific to each molecule. DRIFT-FTIR spectroscopy measures the molecular vibrations
of organic compounds, producing a spectral fingerprint that can be used to estimate SOC
content [28,29]. The calibration process involves the analysis of a set of soil samples with
known SOC content (determined by traditional laboratory chemical methods) using DRIFT-
FTIR spectroscopy [19]. The transmission data, usually represented as a spectral curve, is
then correlated with the corresponding SOC content of each sample. This information is
then used to build calibration models that establish the relationship between reflectance
and SOC content. The correlation between the reflectance data is usually represented as a
spectral curve, and the corresponding SOC content of each sample is used. This information
is then used to build calibration models that relate reflectance data to SOC content. Once
these calibration models are developed, reflectance data acquired from unknown soil sam-
ples can be input into the models to estimate SOC content [15]. The spectral information is
used by the models to correlate with the known SOC content obtained from the calibration
samples. This correlation allows quantitative estimation of SOC levels in unknown samples
by analyzing their infrared spectra. The accuracy of this estimate depends on the quality
and representativeness of the calibration data set. To assess the accuracy and reliability of
calibration methods, cross-validation techniques such as splitting the dataset into training
and validation sets or using independent validation samples are used [30].

Several machine-learning models can be used to estimate SOC using DRIFT-FTIR data.
The choice of model depends on factors such as characteristics of the dataset (homogeneity
and size), sample size (a large sample size is suitable for complex models while a smaller
sample size is suitable for simple models), feature selection, and desired interpretability.
Among these models, PLSR, SVR, RF, and ANN models can be used to predict SOC using
DRIFT-FTIR spectra. These machine-learning models are described as follows:

1.1. PLSR is a widely adopted regression technique for analyzing spectroscopic data,
including DRIFT-FTIR. It identifies latent variables in the data and establishes a
linear relationship between these factors and the targeted variable (SOC). PLSR
is particularly suited to the processing of collinear and high-dimensional spectral
data [18].

1.2. SVR is a popular machine-learning algorithm that maps DRIFT-FTIR spectral data to
SOC values while aiming to maximize the error tolerance margin. It can effectively
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handle nonlinear relationships and has the potential to provide accurate predic-
tions [15].

1.3. RF regression is an ensemble learning method combining multiple decision trees to
provide predictions. It can handle complex relationships between variables, handle
high-dimensional data, and has built-in feature importance ranking, which can help
identify the most relevant spectral features for SOC estimation [31].

1.4. ANN models, such as feed-forward neural networks, can capture complex nonlinear
relationships between spectral features and SOC. By training on the DRIFT-FTIR
dataset, ANNs can learn patterns and make predictions based on spectral informa-
tion [20].

Model effectiveness is influenced by various factors, including the caliber and rele-
vance of training data, feature engineering methods, hyperparameter tuning, and cross-
validation approaches. Accordingly, it is advisable to study and compare the performance
of distinct models on particular datasets to identify the optimal model for SOC estimation
using DRIFT-FTIR data.

The effectiveness of PLSR, ANN, RF, and SVR machine-learning models has been
widely studied in recent research for estimating and predicting SOC using DRIFT-FTIR
data. The R-squared (R2) value, which is commonly used to evaluate the accuracy of SOC
prediction, can vary depending on various factors such as the calibration dataset, complex-
ity of the soil system, quality spectral data, and the calibration model used. It is difficult
to provide an accurate R2 value as it can differ significantly between different studies.
However, in general, R2 values for SOC prediction in calibration models using DRIFT-FTIR
spectroscopy typically range from 0.7 to 0.9 or higher [18,20]. However, relying solely on
the R2 value may not fully account for the effectiveness or reliability of the calibration
model. It is advisable to consider additional statistical measures such as root mean square
error (RMSE), bias, or validation measures to comprehensively evaluate the accuracy and
predictive performance of SOC estimates using the DRIFT-FTIR spectroscopy [20,32,33].
Goydaragh et al. [16] predicted the SOC content of some Iranian soils using DRIFT-FTIR.
They found that the Cupist and Bat machine-learning models performed well for prediction
with an R2 of 0.77 and RMSE of 0.28. Xu et al. [34] used DRIFT-FTIR-DRIFT data to predict
SOM in some Chinese soils with reasonable performance while the R2 values of PLSR, SVR,
and CNN were 0.701, 0.643, and 0.635, respectively. Veum et al. [35] used PLSR combined
with MIR ground data to predict SOC with an R2 of 0.69, while they predicted SOC using
VIS-NIR with an R2 = 0.94. Calderon et al. [36] obtained good predictability of SOC using
MIR data and the PLSR model, while the prediction R2 was 0.81. Margenot et al. [37] used
the ANN model with DRIFT-FTIR spectra to predict SOC. They found that the R2 of the
ANN validation was 0.92 with RMSE = 0.35.

The choice of significant bands in DRIFT-FTIR spectral data for SOC estimation or
prediction varies depending on the specific research studies and calibration models used.
The selection of these bands can be influenced by the presence of organic functional
groups in the MOS. However, some general regions and bands in the mid-infrared
range (4000–400 cm−1) have been identified as useful for SOC prediction using DRIFT-
FTIR spectroscopy, as reported in [16,38–40]. Specifically, C-H stretching vibrations
are associated with bands between 2950 and 2800 cm−1, which correspond to aliphatic
(saturated) hydrocarbons.

The spectral region between 1750 and 1660 cm−1 is attributed to the stretching vibra-
tions of the C=O bond, which can be attributed to various carbonyl functional groups such
as ketones, esters, or carboxylic acids [41]. The presence of O–H stretching vibrations origi-
nating from hydroxyl (OH) groups can be inferred from the bands observed in the range of
3500–3000 cm−1. C–O stretching vibrations originating from C–OH or C–O–C functional
groups are represented by bands on the order of 1200 to 1000 cm−1. Aromatic compounds
can be associated with bands observed from 1600–1490 cm−1. Baes and Bloom [42] reported
that the weak band near 1550 cm−1 in the black soil spectra can be attributed to the aromatic
C=C vibration, which reveals the distinctive structure of organic matter in the soil.
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In Egypt, traditional methods of soil analysis are used. These methods are quite
expensive due to the high price of chemicals. Additionally, these methods are laborious
and time-consuming. Additionally, such studies or research are lacking in Egypt, as it is
difficult to find similar work on using DRIFT-FTIR to estimate SOC.

The research deficiency lies in the fact that previous studies on Sohag soils failed
to conduct a comparative analysis of various machine-learning models with the aim of
estimating SOC using the data DRIFT-FTIR. Accordingly, this study aims to fill this gap by
using several machine-learning models, including PLSR, ANN, RF, and SVR, to predict
SOC in agricultural soils located in Sohag, Egypt, as a representative of alluvial soils. The
ultimate goal is to identify the most efficient prediction model that can be used to estimate
SOC based on DRIFT-FTIR data.

Based on the previous introduction, the main objective of this study is to predict SOC
using the DRIFT-FTIR technique alongside various prediction models (PLSR, ANN, RF,
and SVR). These models will be used to analyze soil samples obtained in the Sohag region
of Egypt.

2. Materials and Methods

The methodology employed in this study is illustrated in Figure 1. The methodological
framework included a series of steps from the collection of soil samples to their preparation,
followed by SOC analysis using the conventional chemical method (Walkley-Black method);
DRIFT-FTIR data acquisition; data processing; modeling using various models such as
PLSR, ANN, SVR, RF; and SOC estimation using DRIFT-FTIR data, respectively.
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2.1. The Study Area

The region examined encompasses part of Sohag Governorate, stretching from the
town of Tima in the north to the town of El-Baliana in the south. It mainly includes historic
agricultural fields located in the Nile Valley as well as recently reclaimed lands. The
search area is located between latitudes 26◦10′21.28′′ and 26◦50′30.95′′ N and longitudes
31◦20′51.45′′ and 32◦09′49.11′′ E, with elevations ranging from 61 to 73 m above sea level.
A map illustrating the study region can be found in Figure 2. This research area is located
in North Africa, known for its hot summers, mild winters, and limited rainfall. The air
temperature in this region fluctuates between 36.5 ◦C in summer and 15.5 ◦C in winter.
Relative humidity ranges from 51 to 61% in winter, 33 to 41% in spring, and 35 to 42% in
summer. Weather data for the year 2022 relating to the study area were obtained from the
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website (https://weatherspark.com/ (accessed on 13 July 2022)). In Sohag Governorate,
cultivated alluvial areas extend along the banks of the Nile. The Nile is the main source
of irrigation for existing agricultural soils, while groundwater supplies irrigation to some
areas of recently reclaimed land.
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The research site includes an alluvial plain, which is ancient cultivated agricultural
soil. The majority of these soils have a dense texture, with clay being the main component,
and moderate drainage. The study area generally cultivates a variety of crops, such as
wheat, corn, alfalfa, sorghum, beans, tomato, potato, pepper, eggplant, onion, and others.
During field sampling visits, some concerns were identified, including salinity in some
areas caused by the intensive use of chemical fertilizers and soil degradation due to urban
sprawl on agricultural fields.

2.2. Soil Sampling

Based on the generated physiographic map of Sohag Governorate, there are 12 physio-
graphic units, as shown in Figure 2. The studied soils were located in the alluvial plain.
Ninety soil samples from the surface layer (0–30 cm) were obtained vertically (North and
South) across the study area, as shown in Figure 3. These soils were classified up to the level
of great group level according to the world reference base (WRB) soil classification [43].
These soils belonged to the order Entisols [44].

https://weatherspark.com/
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The selection of sampling sites was based on the spatial heterogeneity observed in
the alluvial soil. To account for the variability present across the area, a random sampling
approach was used. This involved collecting soil samples from random locations within the
designated sampling area. The study area included two distinct land uses: cultivated soils
and uncultivated soils (soils after harvest of previous crops). Soil samples from uncultivated
soils were collected following the harvest of previously cultivated crops. It is important to
note that soil sampling took place during the summer of 2022, ensuring the absence of any
plant residue. The WGS-1984 coordinate system was used to accurately record the latitudes
and longitudes of the soil sampling sites using a GPS device (Garmin e-trix Kansas, USA)
in the field. Aslan-Sungur et al. [45], Goydaragh et al. [16], and Tiruneh et al. [46] collected
a similar number of samples for SOC prediction based on DRIFT-FTIR spectra and the
same models used.

2.3. Soil Samples Preparation and Analysis

The collected soil samples were subjected to an air-drying process for three days
at a room temperature of 40 ± 2 ◦C. During this time, all visible plant roots, rocks, and
debris were carefully removed. Subsequently, the dried soil samples were crushed using
a wooden mortar and then passed through a 2 mm sieve. In order to characterize the
collected soil samples, routine soil analysis was carried out. Soil pH was measured using
a pH-meter equipped with a glass electrode, including the pH 211 microprocessor pH-
meter manufactured by HANNA Instruments (Leighton Buzzard, United Kingdom). This
measurement was carried out on a soil/water suspension in a ratio of 1:2.5. To determine
the electrical conductivity (EC) of the soil, an electrical conductivity meter known as Orion
Model 150 (USA) from the United States was used. The EC measurement was carried
out on an extract obtained from a soil/water ratio of 1:2.5. The particle size distribution
of the soil was determined using the international pipette method referenced in [47,48].
Soil fractions (sand, silt, and clay) were calculated based on the mentioned method. The
total calcium carbonates present in the soil were estimated volumetrically using the Colins’
calcimeter (USA)as mentioned in [49]. Soil organic carbon (SOC) content was determined
by the wet oxidation method known as the Walkly and Black method, as described in [48].

2.4. Spectral Data Acquisition

To obtain ground spectral data, the methodology described by Margenot et al. [50]
was followed. The prepared soil samples were ground again, then passed through a
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0.2 mm sieve and oven dried at 60 ◦C overnight to remove moisture OH groups. Then, the
sieved samples were scanned using the Bruker Alpha Platinum-DRIFT-FTIR spectrometer
(Germany), covering the spectral range of 4000 to 400 cm−1 of the wavenumber region,
with a resolution of a wavenumber interval of 4 cm−1. This analysis was performed
using KBr pellets as the output of the device in transmission form. The resulting soil
spectral signatures, acquired in transmission format from the DRIFT-FTIR spectrometer,
were converted to text format using Origin-pro software version 8.0.63.988. This conversion
facilitated the processing and sharing of the data with other software packages. Table 1
shows the significant bands that were observed in the DRIFT-FTIR spectra in the studied
samples and their assignments.

Table 1. The significant bands in the DRIFT-FTIR spectra of soil or some similar substrates and
their assignments.

Wavenumber (cm−1) Functional Group Substrate Assignment Reference

3696, 3622, 3620 Si–O-H–vibrations Soil Clay minerals, gibbsite, Fe
oxides [51–53]

3640–3610/3420–3400 O–H stretching Soil/peat Alcohols and phenols [54,55]
3246 H-bonded OH Soil Humic acid [56]

3000–2800 C–H stretching Lignite aliphatic methylene groups [57]
2941, 2922, 2885, and 2850 methyl C–H stretching Soil aliphatic compounds [1]

2925–2855 asymmetric stretching of
CH3 and CH2

Soil, Peat Methyl and Methylene [55,58]

1725–1710 C=O stretching Peat carboxylic acids [55]

1760–1690, 1640, 1644,1648 C=O stretching and
COO- Soil carboxylic acids [56,59]

1600–1500/1625–1610 C=C stretching Lignite/Peat aromatic compounds [55,60]
Around 1584 C=O stretching Soil carboxylic acids [58]

1540 C–N stretching or N–H
bending vibrations Soil amide groups [61]

1433–1427, 1420–1425 C–O Soil carbonate minerals [53,62,63]

1420, 1380/1370 C–H Peat/Soil

Methoxyl and methyl/
C–H absorption in

aliphatics, CO–CH3
vibrations in lignin-

derived phenols

[53,64–66]

1200–1300 C–O stretching Soil carbohydrates, cellulose,
and hemicellulose [19]

1270 and 1235 C–O stretching Peat Phenolic group and
aromatic ethers [67]

1060–1010
Al–OH

Deformation or C–O
stretching

Soil Kaolinite or polysaccharide
groups [53]

1033–1030 Si–O–Si, Si–O stretching Soil Clay minerals or quartz [50]

915 Al–OH Soil Kaolinite and smectite
minerals [68–70]

870–890 C–O Soil carbonate minerals [53]
779, 780, 690–695,

468 Si–O Soil Quartz [52]

537–539 Al–O deformation Soil Kaolinite mineral [71]

2.5. Soil Laboratory Data and Spectral Data Preparation

The laboratory soil test data were subjected to descriptive statistical analysis, in which
the mean, standard deviation (SD), and maximum and minimum SOC values were calcu-
lated using the analysis software package data from Microsoft Excel software. Additionally,
the soil spectral data (in transmission format) was merged with the laboratory SOC data
into a single Microsoft Excel spreadsheet for easy processing and subsequent calculations.
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2.6. Removing the Outliers

There are various reasons why it is crucial to eliminate outliers from the DRIFT-
FTIR dataset when determining SOC. One of the important benefits is improved model
performance. Four SOC content values and their corresponding DRIFT-FTIR data were
removed as outliers. These removed outliers are considered unrepresentative of the entire
dataset. By removing outliers, a more resilient and accurate prediction model can be
built [19].

Removal of outliers was achieved through the use of the Box–Cox procedure [72]. The
“invBoxCox” function of R studio software version 2022.07.2 [73] was used to transform all
calibration and validation datasets for the analyzed soil parameters. In order to obtain a
normal distribution, the Box–Cox transformation (Equation (1)) was applied to the target
variable (soil parameter). The normal distribution tends to perform better and provide
more accurate results [74]. The Box–Cox transform is known for its ability to remove white
noise (outliers), which improves the prediction ability of calibration and validation models.

wt =

{
log(yt) if λ = 0;

(yλ
t − 1

)
/λ otherwise.

(1)

where ‘w’ is the transformed data of the targeted soil parameter ‘y’; ‘t’ is the time period
(not included because the data is not a time series); and ‘λ’ is the parameter that we chose.

2.7. Partial Least-Squares Regression (PLSR)

Numerous researchers, including [5,6,14,75–77], have utilized PLSR to estimate or
predict SOC. To conduct a quantitative spectrum analysis based on highly correlated
predictor variables, the PLSR serves as a constructed prediction model. The PLSR algorithm
is employed to select the orthogonal components that increase the variance of the predictor
(X spectra that are mean-centered prior to decomposition) and response variables (Y lab
data from the chemical analysis). PLSR breaks down X and Y into factor loading (P and q)
and factor scores (T). The residues E and f are incorporated into Equations (2) and (3) to
account for the remaining noise factors that can be disregarded [78].

X = TP + E (2)

Y = Tq + f (3)

The R Studio PLS package [73] was utilized to develop various soil parameter calibra-
tion and validation models by employing soil DRIFT-FTIR spectral data and laboratory
soil data by removing data outliers; data normalization (using spectral range from 0 to 1
values); data division (into two data sets; 70% for the calibration data-set and 30% for the
validation data); and data sorting (according to their weights among the calibration and
validation data-sets).

By using 70% of the data, the optimal PLSR calibration model can be determined
through leave-one-out cross-validation, which is selected by evaluating multiple bilinear
components to ascertain the appropriate number to retain in the models. The predictive
accuracy of the models was assessed by computing the root mean square error (RMSE) of
the predictions [79]. For developing the PLSR-validation model, 30% of the data was tested
using the same process.

2.8. The Neural Network Approach

Many researchers have used ANN to estimate or predict SOC, as evidenced by studies
by [5,6,77,80,81]. In order to identify the optimal data weights in an ANN model, the
Levenberg–Marquardt training approach was used. This approach ensures that the ANN
model includes the minimum number of neurons required to accurately simulate the
training data [81]. To predict the soil parameters for all soil data, the ANN model was
implemented using MATLAB_R 2019a software (ver. 9.60). Various experiments were
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carried out, using sigmoidal linear activation functions, while taking precautions to avoid
overfitting during the model development phase. This was achieved by carefully selecting
the number of hidden neurons, with 70% of the data allocated to establishing or training
the model, 15% to model validation, and the remaining 15% to model testing. The same
procedure was followed by Prashanth et al. [82] and Xu et al. [83].

P = fn

(
b0 + ∑h

k=1

(
wkfn

(
bhk + ∑m

i=1 wikxi

)))
(4)

where: P is the data prediction; fn is the transfer function; b0 is the output layer bias; h is
the hidden layer neuron number; k is the hidden layer neuron value; wk, is the connection
weight between k and a single output neuron; bhk is the bias at the k and b0; m is the
number of input variables; i is the layer of input; wik is the connection weight between i
and k; and xi is the input value.

The normalization of data sets allowed for the generation of quality indicators, namely
RMSE and RPD, to assess the accuracy of the ANN regression model.

2.9. Support Vector Regression

Several researchers [20,84,85] have used SVR to predict SOC. When dealing with linear
and nonlinear multivariate problems in regression classification, the least squares support
vector regression (LS-SVR) method is preferred over quadratic programming due to its
simplicity. LS-SVR is commonly used in chemometrics, which includes applications such as
soil spectroscopy that are highly nonlinear [86]. However, a standard SVR, typically used
for linear classification, may not have strong predictive power for such nonlinear regression
problems. Therefore, a kernel function [87,88] should be incorporated to improve its
performance in nonlinear regression, with the Gaussian radial basis function (RBF) kernel
and LS-SVR being used in the training approach. the current study (Equation (5)).

Experiments with polynomial kernels were also carried out. As indicated by De Bra-
banter et al. [89], the regularization parameter gamma (γ) plays a crucial role in balancing
smoothness and minimizing training errors. Furthermore, the square bandwidth of the
Gaussian curve, denoted σ2 (Equation (6)), is required to refine the RBF kernel algorithm.
The initial random parameters are selected using Leave-One-Out cross-validation [90] and
then optimized using the conventional simplex technique [91].

K
(
Xi, Xj

)
= exp

(
−
∥∥Xi − Xj

∥∥ 2

σ2

)
(5)

γ = 1/2 σ2 (6)

where K is a kernel radial basis function, Xi and Xj are vector points in any fixed dimensional
space, and σ2 is the squared bandwidth of the Gaussian curve.

The vis-NIR features produced from the latent variables (LVs) calculated from the PLS
regression model serve as input parameters for training the LS-SVR. Similar methods were
used by Mouazen et al. [92], but instead of using SVR as in the current study, they used an
artificial back-propagation neural network (BPNN) using the latent variables derived from
PLSR as input.

2.10. Random Forest (RF)

The random forest model is an ensemble learning method that consists of a collection
of individual decision trees, trained on different random subsets of training data and using
random subsets of features. The principles of the random forest model can be summarized
as ensemble learning that combines predictions from multiple individual decision trees
to improve overall predictive performance [93]. The second principle of the RF model
concerns decision trees, while each tree is constructed using a random subset of the training
data and a random subset of the available features, which introduces diversity into the
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individual trees. The aggregation bagging or bootstrapping technique in RF is used to
create the random subsets of the training data. The RF model has other principles such
as random feature selection and vote and reduce overfitting. These principles help the
RF model to be robust, accurate, and resistant to overfitting, making them widely used in
various machine-learning applications [94].

Many researchers have used RF as a classifier or regression technique to estimate or
predict SOC, as evidenced by studies conducted by [18,95–97]. Breiman [98] explains the
process occurring in the RF model which incorporates numerical values as random input
vectors or variables randomly selected from a tree predictor at each node (rotation). A
notable advantage of random forest regression, over other tree techniques, is its use of
the RF classifier to construct a training dataset by randomly selecting and constructing
individual trees for each feature [99].

2.11. Validation of the Developed Prediction Models

To evaluate the performance or accuracy of all applied prediction models, three
evaluation parameters (R2, RMSE, and RPD) were utilized to evaluate the performance of
the constructed prediction models, as given in Equations (7)–(9).

2.11.1. The Correlation Coefficient (R2)

R2 = n −

∑
(

Ypred − Ymeas

)2

∑(Yi − Ymeas)
2

 (7)

where Ypred is the soil predicted values; Yi is the soil measured values mean; Ymeas is the
soil measured values; and n is the number of measured or predicted values.

2.11.2. Root Mean Square Error (RMSE)

RMSE =

√
1/nΣ(Y − X)2 (8)

where Y is the soil predicted values; X is the soil measured values; and n is the number of
measured or predicted values.

2.11.3. The Ratio of Performance Deviation (RPD)

RPD =
SD

RMSE
(9)

where SD is the standard deviation.

2.12. Mapping of Spatial Distribution of SOC

To show how the prediction models differ, the spatial distribution map of SOC was
generated using the Ordinary Kriging (OK) interpolation method. This involved putting
the predicted SOC data from each prediction model and the geographic coordinates of the
soil sampling locations into Arc-GIS (ver. 10.4.1) [100]. The geostatistical assistant tool was
then used to facilitate the mapping process.

3. Results and Discussions
3.1. Soil Characterization of the Study Area

The soil samples studied are characterized in Table 2. Soil pH values ranged from 7.04
to 8.80, with a mean of 7.67, indicating a range from neutral to strongly alkaline. Most soil
samples had a slightly alkaline medium environment. The soils in the study area ranged
from non-saline to very saline, where EC values ranged from 0.21 to 7.86 dS m−1 with an
average EC value of 1.01 dS m−1. The SOC ranged from 0.42 to 2.64%, with an average
value of 1.39%. The calcium carbonate (CaCO3) content of these soils ranged from 0.41 to
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13.78%, with an average of 2.37%, indicating a range from non-calcareous to calcareous.
Soils in the study area are classified as flat alluvial (plain) soils, with textures ranging from
moderate to heavy. The sand fraction ranged from 10.12 to 66.19% with an average value of
42.18%, while the silt fraction ranged from 15.70 to 33.80% with an average value of 24.40%.
The clay content of these soils ranged from 18.11 to 56.08%, with an average of 33.422%.

Table 2. The characterization of the studied soil samples.

Statistical Parameter
Soil pH
(1:2.5)

EC (1:2.5) OC CaCO3 Sand Silt Clay

dS m−1 %

Mean 7.67 1.01 1.39 2.37 42.18 24.40 33.42
Standard Deviation 0.30 1.15 0.48 1.85 7.77 3.06 6.95
Minimum 7.04 0.210 0.42 0.41 10.12 15.70 18.11
Maximum 8.80 7.86 2.64 13.78 66.19 33.80 56.08

3.2. Soil Spectra

Soil spectral data in the range of 4000–400 cm−1, obtained from the DRIFT-FTIR
spectrometer, are shown in Figure 4. Comparing this spectrum with the reference spectra of
known organic compounds, the content of soil organic carbon can be determined as stated
in [101]. The DRIFT-FTIR spectroscopy technique can be used to identify organic carbon
in soil by analyzing the detailed spectrum of the soil sample, which provides information
about specific functional groups associated with organic carbon. The DRIFT-FTIR spectrum
of soils is complex and includes various peaks related to different organic functional groups.
For example, hydroxyl (OH) stretching vibrations, which are generally observed around
3400 cm−1, are associated with the presence of organic matter in the soil, as mentioned
in [102], or associated with minerals of smectite which overlap with organic matter.
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Figure 4. The soil spectral data obtained from DRIFT-FTIR spectroscopy.

Methyl C–H stretching vibrations in aliphatic compounds can be observed at specific
wavenumbers, such as 2941, 2922, 2885, and 2850 cm−1 [1]. Calderón et al. [58] and
Shvartseva et al. [55] reported that the bands at 2925 and 2855 cm−1 correspond to the
asymmetric stretching vibrations of CH3 and CH2 groups, respectively. On the other
hand, stretching vibrations of C=O bonds in carboxylic acids, esters, and ketones can
be observed around 1735 cm−1. It is possible that the peaks at 1640 and 1690 cm−1 are
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the result of stretching of C=O bonds [59]. Furthermore, Huang et al. [103] and Syu and
Prendergast [104] suggested that the bending observed at 1643 and 1639 cm−1 is associated
with the stretching of C=O and C=C bonds in aromatic compounds such as lignin and
humic substances, which are generally found in soils rich in organic matter. Bands 1427 to
1433 cm−1 showed carbonate minerals [62], which sometimes overlap with bands of organic
material. Peaks between 1390 and 1380 cm−1 indicate symmetric stretching carboxylate [19],
while peaks around 1200–1300 cm−1 are associated with stretching vibrations of C=O bonds
in carbohydrates, cellulose, and hemicellulose.

DRIFT-FTIR spectroscopy has the ability to quantitatively analyze soil organic carbon
content. It should be emphasized that the precise location and intensity of these peaks
can vary depending on the composition and type of soil [105]. By calibrating a series of
soil samples with known organic carbon content, a calibration curve can be established.
The intensity of specific peaks in the DRIFT-FTIR spectrum associated with organic carbon
can then be compared to the organic carbon content of the soil sample. This correlation
allows estimation of the organic carbon content in unknown soil samples based on their
DRIFT-FTIR spectra. Additionally, multivariate analysis techniques, such as partial least
squares regression (PLSR) or principal component analysis (PCA), can be used to analyze
DRIFT-FTIR spectra of soil samples in conjunction with their corresponding measurements
of organic carbon. These techniques help identify spectral features or combinations of
features that have the strongest correlation with organic carbon content.

DRIFT-FTIR spectra of soil samples can be used to generate models capable of
predicting organic carbon (OC) content in new soil samples. Spectral indices provide a
reliable option for estimating SOC, and specific spectral indices or ratios can be calcu-
lated from DRIFT-FTIR spectra of soil samples to estimate organic carbon content. These
indices are based on the intensities or ratios of specific peaks or bands associated with
organic carbon in the DRIFT-FTIR spectrum. By calibrating these indices with the mea-
sured organic carbon content, they can be used as indicators of the organic carbon content
in soil samples. The DRIFT-FTIR spectrum of soil can be combined with calibration
curves, multivariate analysis, or spectral indices to estimate SOC content. However, the
correlation between maximum intensity and SOC content can be influenced by various
factors specific to each soil type and environmental conditions. Therefore, it is crucial
to consider these factors and conduct site-specific calibration and validation studies
taking into account soil type and environmental conditions in order to establish accurate
relationships between DRIFT-spectral characteristics. FTIR and SOC content [106]. In
our study, the climatic conditions are similar in all locations of soil sampling, in addition,
these soils are under the same soil type and classification with some variations in the
collected soil samples’ characteristics.

3.3. DRIFT-FTIR Spectral Behavior

From Figure 5, it is evident that there is a variation between the soil spectral signatures
which is due to the variability of SOC content in the soil samples. Figure 6 shows repre-
sentative DRIFT-FTIR spectral behavior as well as significant peaks (obtained from the
device) for the studied soil samples. The DRIFT-FTIR spectral behavior can be concluded
in three spectral regions; the first spectral region extends from 400 to 1100 cm−1, while
there are sharp peaks with different transmission values. The second zone varies from
1300 to 2000 cm−1, which includes a few spectral peaks. The third region of the spectra ex-
tends from 3400 to 3700 cm−1, while a few spectral peaks are also observed. No significant
peaks were recorded in the spectral region from 2000 to 3400 cm−1.
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Soil spectral signatures exhibit variation, as shown in Figure 5, which can be attributed
to variability in SOC content present in soil samples. Figure 6 provides a representative
display of the DRIFT-FTIR spectral behavior, highlighting the significant peaks observed in
the soil samples studied.

3.4. Soil Organic Carbon Prediction
3.4.1. SOC Prediction Using PLSR

Figure 7 presents the scatter plots illustrating the comparison between measured and
predicted SOC values in the calibration and validation PLSR models. The performance
evaluation of the PLSR model, including R2, RPD, and RMSE, is shown in Table 3. The
data obtained from the analysis revealed that the R2 value for the PLSR calibration model
was 0.9101, while the RMSE and RPD values were 0.00589%. and 1.864, respectively. In
the case of the PLSR validation model, the R2 value was 0.8269, with the RMSE and RPD
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values being 0.00604% and 1.757, respectively. Application of PLSR in conjunction with
DRIFT-FTIR data allows prediction of SOC by correlating spectral measurements obtained
by DRIFT-FTIR and SOC content corresponding in the soil samples. These results are
consistent with previous studies conducted by [15,18,20].
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Table 3. The calibration and validation prediction models’ performance parameters.

The Prediction Model
Calibration Model (n = 60)

Regression Equation
R2 RPD RMSE (%)

PLSR 0.9101 1.864 0.00589 y = 1.3203x − 0.5195
ANN 0.9743 2.446 0.00433 y = 0.9800x + 0.1200
SVR 0.8018 1.571 0.00612 y = 1.0944x − 0.1346
RF 0.9633 2.236 0.00563 y = 1.4846x − 0.7143

The prediction model Validation model (n = 26) Regression Equation
R2 RPD RMSE (%)

PLSR 0.8269 1.757 0.00604 y = 1.803x − 1.1236
ANN 0.5269 1.142 0.00956 y = 0.78x + 0.19
SVR 0.2708 0.534 0.02784 y = 0.5791x + 0.4684
RF 0.1806 0.341 0.01052 y = 1.2343x − 0.5384

Compared to other machine-learning models, PLSR exhibits higher accuracy in SOC
estimation for various reasons. The main factor is handling multicollinearity, with PLSR
being particularly adept at handling scenarios in which there is multicollinearity between
independent variables [107]. PLSR is an appropriate method to effectively take these
interactions into account [108]. By creating latent variables or components, PLSR can
reduce the dimensionality of data and capture the most relevant information from the
original dataset. This is particularly useful in soil science, where the number of potential
predictor variables is often high relative to the number of samples available [109]. In
situations where soil data sets have a relatively small number of samples compared to the
number of potential predictor variables, PLSR can be robust, particularly where traditional
machine-learning models may have difficulty with overfitting or instability. Soil data sets
can be noisy due to inherent variability in environmental conditions and measurement
errors [110]. The higher accuracy of SOC estimation can be attributed to the ability of PLSR
to model and extract relevant information from datasets containing noise. In the field of
soil science, where understanding the factors that impact SOC content is of significant
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importance, the creation of latent variables by PLSR offers valuable insights into the
importance and relationships of the variables [111].

3.4.2. SOC Prediction Using ANN

Figure 8 presents the scatterplots illustrating the comparison between the measured
and predicted SOC values in the calibration and validation ANN models. The perfor-
mance evaluation of the ANN model is evaluated based on three factors: R2, RPD, and
RMSE, which are shown in Table 3. The data obtained from the analysis revealed that the
R2 value for the ANN calibration was 0.9743. Additionally, the RMSE and RPD values
were 0.00433% and 2.446, respectively. On the other hand, the R2 value for the ANN
validation model was 0.5269, with corresponding RMSE and RPD values of 0.00956%
and 1.142, respectively. Emadi et al. [112], predicted and mapped SOC using spectral
data in some soils of Iran. They found that ANN model performed moderately which R2

value of validation was 0.55.
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SOC estimation using the ANN model is subject to various limitations. One of these
limitations is the need for a substantial amount of data to effectively capture the complex
relationships between input features and SOC [113]. Training an ANN model involves ad-
justing the weights of the connections between neurons based on the input data. The more
data available, the more the network can learn the underlying patterns and relationships
within the data. In cases where data availability is limited or the data has high variability,
the ANN model may struggle to generalize accurately. Additionally, the complexity of the
ANN model can lead to overfitting, especially when the training data is limited or contains
noise. Overfitting can harm the generalization ability of the model, thereby affecting the
accuracy of SOC estimation [113]. Moreover, the black-box nature of the ANN model can
hamper its interpretability, making it difficult to understand the underlying factors that
influence SOC content. In fields such as environmental sciences, interpretability plays a
crucial role in obtaining valuable information about modeled processes [114]. The ANN
training process can be demanding in terms of computational resources and time, especially
when working with large and complex environmental datasets. Additionally, ANN re-
quires tuning various hyperparameters, including the number of layers, neurons per layer,
learning rate, and activation functions, which can be a difficult task and involve consider-
able trial and error. Furthermore, ANN performance in SOC estimation can be negatively
affected by noisy input data, especially in environments with high variability [115].
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3.4.3. SOC Prediction Using SVR

The SOC values in the calibration and validation SVR models are shown as scatterplots
in Figure 9, respectively. Table 3 shows the performance evaluation factors of the SVR
model, including R2, RPD, and RMSE. The results showed that the R2 of the SVR calibration
model was 0.8018, with an RMSE of 0.00612% and an RPD of 1.571. In contrast, the R2

of the SVR validation model was 0.2708, with an RMSE of 0.02784% and an RPD of 0.534.
Xu et al. [15] used DRIFT-FTIR data integrated with the SVR prediction model to estimate
SOC, obtaining a validation R2 of 0.81.
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SOC estimation using the SVR prediction model is subject to several limitations. The
performance of the SVR model is highly dependent on the appropriate tuning of hyperpa-
rameters, including the kernel, regularization parameter, and kernel-specific parameters. If
these hyperparameters are not chosen appropriately, the performance of the SVR model
might not be optimal [116]. Additionally, when dealing with large datasets, the scalability
of SVR may be less effective due to its computational complexity, especially when nonlinear
kernels are used [117]. Unlike other regression approaches, SVR models are not easily
interpretable, which can be a limitation when trying to understand the factors influencing
SOC estimation [118]. Although SVR is capable of modeling nonlinear relationships, the
selection and tuning of the kernel function can have a significant impact on its performance,
posing a challenge that may require domain expertise [116]. Additionally, SVR can be sensi-
tive to noise in the input data, potentially affecting its predictive performance, particularly
when the signal-to-noise ratio is low [119,120]. It is important to note that SVR does not
inherently perform feature selection or handle categorical variables, making proper feature
engineering crucial to ensure model effectiveness [121].

3.4.4. SOC Prediction Using RF

The scatterplots of the measured and predicted values of SOC in the calibration and
validation RF models are shown in Figure 10, respectively. The data obtained from the
study (Table 3) indicated that the R2 of the RF calibration was 0.9633, while the RMSE and
RPD were 0.00563% and 2.236, respectively. On the other hand, the R2 of the RF validation
model was 0.1806, while the RMSE and RPD were 0.01052% and 0.341, respectively. In a
similar study, Rial et al. [122] reported an R2 value of approximately 0.93 for predicting
SOC using the RF model and DRIFT-FTIR soil spectral data.

There are various potential reasons why a random forest forecast model has low
accuracy in SOC estimation. For any prediction model, one of the main factors is insufficient
training data, which may prevent the model from accurately capturing the complexity of
SOC dynamics if it was trained on a dataset limited or not representative [123]. Additionally,
the selection of input features, such as soil properties, environmental factors, or geographic
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information, may not adequately capture SOC variability, resulting in lower predictive
accuracy [124]. The model may also be overfitted to noise present in the training data,
resulting in poor generalization to new data, or underfitted, failing to capture important
patterns in the data. Additionally, suboptimal performance may result from inadequate
tuning of model hyperparameters, such as depth or number of trees [125]. Finally, random
forests, while powerful, can struggle to capture complex nonlinear relationships in SOC
data if not configured appropriately [126].
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3.5. Comparison between Used Machine-Learning Models
3.5.1. PLSR

The PLSR model demonstrates superior accuracy in estimating SOC because of dif-
ferent reasons. The main reason is that the PLSR is able to effectively manage the mul-
ticollinearity relations between the SOC laboratory or measured data and DRIFT-FTIR
spectra [107,108]. The second reason is that PLSR is able to reduce the data dimensionality
(caused by a high number of DRIFT-FTIR spectral data compared to the number of soil
samples) and obtain the most effective information from the original data by creating sev-
eral components [109]. The third reason is that the PLSR is able to be robust when a small
number of samples is used. The fourth reason is that PLSR is able to extract pertinent infor-
mation from datasets that contain noises (caused by inherent variability in environmental
conditions and measurement errors) and after removing data outliers [110,111].

3.5.2. ANN

The ANN model has a moderate performance compared to the PLSR model due to a
variety of reasons. The first reason is that a high number of soil samples is needed to find a
good relation between laboratory SOC data and DRIT-FTIR spectra [113]. Training an ANN
involves adjusting the weights of the connections between neurons based on the input data.
The second reason that the ANN model did not perform well is because of data variability. The
third reason is that the ANN model can lead to overfitting when the training data is limited
or contains noise [113]. The fourth reason is the black-box nature of the ANN model in data
processing is considered a big challenge for SOC data interpretation which is very important to
understand the relation between SOC and DRIFT-FTIR spectra [114]. The fifth reason is that the
ANN model includes a high number of neurons and layers which can involve errors [115].

3.5.3. SVR

Due to a variety of reasons, the SVR model has a poor performance for predicting SOC.
The first reason is that the SVR model depends on the tuning of hyperparameters and kernel
regularization whereas if there is any change in this process, the SVR predictability may
not be good [116]. The second reason is the computational complexity of the SVR model
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when nonlinear kernels used in the presence of a small data set lead to low efficiency [117].
The third reason is that although the SVR model is capable of modeling nonlinear relations,
the variability of the SOC data influences its performance negatively [118,119]. The fourth
reason is that the SVR model is sensitive to noisy data and also the feature selection process
which can affect the predictability of the model [120,121].

3.5.4. RF

The RF model performed poorly because of a variety of reasons. The smallness of
the dataset is the first reason which can affect the performance of prediction [123]. The
second reason is that the RF model doesn’t consider the spatial distribution and variability
of SOC as well as the soil characteristics’ interaction which leads to poor accuracy [124].
The third reason is that the RF model may also be overfitting to noise in the used data. The
fourth reason is that RF requires a large amount of data as well as inadequate tuning of
hyperparameters particularly in tree depth or number of trees [125]. The fifth reason is that
the RF model may not perform well with complex nonlinear relations [126].

However, the findings of this research demonstrate that the PLSR model outperforms
other machine-learning models, such as ANN, RF, and SVR, in predicting SOC using DRIFT-
FTIR data. PLSR is particularly adept at handling highly collinear and high-dimensional
data, making it an effective tool for analyzing DRIFT-FTIR spectra. Additionally, PLSR
performs well with noisy and multicollinear datasets. Furthermore, PLSR offers a straight-
forward approach to interpreting the relationship between the input DRIFT-FTIR data and
SOC content. These benefits make PLSR a more accessible method for estimating SOC
compared to traditional chemical soil analysis techniques.

3.6. Mapping of Spatial Distribution of SOC

Figure 11 illustrates the spatial arrangement of the SOC across the designated study re-
gion. The SOC distribution is represented by eight distinct colored classes, which effectively
capture the range of variability in SOC levels within the area.
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4. Conclusions

This study investigates the use of diffuse reflectance infrared Fourier transform spec-
troscopy (DRIFT-FTIR) and machine-learning models to estimate soil organic carbon (SOC)
in Sohag, Egypt. The researchers collected ninety surface soil samples and estimated total
organic carbon content using both the Walkley–Black method and DRIFT-FTIR spectroscopy.
The spectral data were used to develop regression models using PLSR, ANN, support
vector regression (SVR), and random forest (RF). The PLSR model shows the most favorable
performance, yielding an R2 value of 0.82 and an RMSE of 0.006%. However, the ANN,
SVR, and RF models demonstrated moderate to poor performance, with R2 values of 0.53,
0.27, and 0.18, respectively.

The soil samples were classified as flat (plain) alluvial soils, with texture ranging
from moderate to heavy. The DRIFT-FTIR spectral behavior can be divided into three
regions: 400–1100 cm−1, 1300–2000 cm−1, and 3400–3700 cm−1. PLSR models exhibit
greater accuracy in SOC estimation due to their ability to handle multicollinearity and
create latent variables or components. ANN models have limitations, such as the need for
a large number of soil samples, data variability, overfitting, and the black-box nature of
ANN models. The performance of the SVR model depends on the appropriate tuning of
hyperparameters, which can be difficult to choose and interpret. Random forest forecasting
models have low accuracy in SOC estimation due to insufficient training data, selection of
input features, overfitting to noise, insufficient tuning of hyperparameters, and difficulty in
capturing complex nonlinear relationships in SOC data.

Author Contributions: Conceptualization, F.N.T., A.R.A.M. and O.I.A.N.; methodology, F.N.T.,
A.R.A.M., M.A.E.A. and A.S.; software, F.N.T., A.R.A.M. and A.S.; validation, F.N.T., A.R.A.M. and
A.S.; formal analysis, F.N.T., A.R.A.M., O.I.A.N., M.A.E.A. and A.S.; investigation, F.N.T., A.R.A.M.
and O.I.A.N.; resources, F.N.T., A.R.A.M. and O.I.A.N.; data curation, F.N.T. and A.R.A.M.; writing
original draft preparation, F.N.T., A.R.A.M., O.I.A.N., M.A.E.A. and A.S.; writing review and editing,
F.N.T., A.R.A.M., M.A.E.A. and A.S.; visualization, F.N.T. and A.R.A.M.; supervision, F.N.T., A.R.A.M.,
O.I.A.N. and A.S.; project administration, F.N.T., A.R.A.M., M.A.E.A. and A.S.; funding acquisition,
F.N.T., A.R.A.M., O.I.A.N., M.A.E.A. and A.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original data can be demand from the corresponding authors
if needed.

Acknowledgments: The manuscript presented a scientific collaboration between scientific institutions
in two countries (Egypt and Italy). The authors would like to thank the Sohag University, Sohag,
Egypt for funding the field survey and spectral measurements using the DRIFT-FTIR device. The
authors declare that the free Free Grammar Checker (QuillBot AI) was used in English grammar
Detection only in the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Thabit, F.N.; El-Shater, A.H.; Soliman, W. Role of silt and clay fractions in organic carbon and nitrogen stabilization in soils of

some old fruit orchards in the Nile floodplain, Sohag Governorate, Egypt. J. Soil Sci. Plant Nutr. 2023, 23, 2525–2544. [CrossRef]
2. Mesfin, S.; Gebresamuel, G.; Haile, M.; Zenebe, A. Modelling spatial and temporal soil organic carbon dynamics under climate

and land management change scenarios, northern Ethiopia. Eur. J. Soil Sci. 2021, 72, 1298–1311. [CrossRef]
3. Mostafa, S.M.; Gameh, M.A.; Abd ElWahab, M.M.; El Desoky, M.A.; Negim, O.I. Environmental negative and positive impacts of

treated sewage water on the soil: A case study from Sohag Governorate, Egypt. Egypt. Sugar J. 2022, 19, 1–11. [CrossRef]
4. Ali, M.H.; Mustafa, A.R.A.; El-Sheikh, A.A. Geochemistry and spatial distribution of selected heavy metals in surface soil of

Sohag, Egypt: A multivariate statistical and GIS approach. Environ. Earth Sci. 2016, 75, 1257. [CrossRef]

https://doi.org/10.1007/s42729-023-01209-3
https://doi.org/10.1111/ejss.13060
https://doi.org/10.21608/esugj.2022.150163.1015
https://doi.org/10.1007/s12665-016-6047-x


Soil Syst. 2024, 8, 22 21 of 25

5. Wang, J.; Liu, T.; Zhang, J.; Yuan, H.; Acquah, G.E. Spectral variable selection for estimation of soil organic carbon content using
mid--infrared spectroscopy. Eur. J. Soil Sci. 2022, 73, e13267. [CrossRef]

6. Wang, S.; Guan, K.; Zhang, C.; Lee, D.; Margenot, A.J.; Ge, Y.; Peng, J.; Zhou, W.; Zhou, Q.; Huang, Y. Using soil library
hyperspectral reflectance and machine learning to predict soil organic carbon: Assessing potential of airborne and spaceborne
optical soil sensing. Remote Sens. Environ. 2022, 271, 112914. [CrossRef]

7. Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Noelia
Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales.
Geoderma 2019, 333, 149–162. [CrossRef]

8. Kopittke, P.M.; Dalal, R.C.; Hoeschen, C.; Li, C.; Menzies, N.W.; Mueller, C.W. Soil organic matter is stabilized by organo-mineral
associations through two key processes: The role of the carbon to nitrogen ratio. Geoderma 2020, 357, 113974. [CrossRef]

9. Rocci, K.S.; Lavallee, J.M.; Stewart, C.E.; Cotrufo, M.F. Soil organic carbon response to global environmental change depends on
its distribution between mineral-associated and particulate organic matter: A meta-analysis. Sci. Total Environ. 2021, 793, 148569.
[CrossRef]

10. Bai, Y.; Zhang, S.; Mu, E.; Zhao, Y.; Cheng, L.; Zhu, Y.; Yuan, Y.; Wang, Y.; Ding, A. Characterizing the spatiotemporal distribution
of dissolved organic matter (DOM) in the Yongding River Basin: Insights from flow regulation. J. Environ. Manag. 2023, 325,
116476. [CrossRef]

11. Pedreño, J.N.; Benslama, A.; Lucas, I.G.; Candel, M.B.A. Organic matter in farming systems in Southern Spain by LOI and
Walkley-Black methods (No. EGU22-9368). In Proceedings of the 24th EGU General Assembly, Vienna, Austria, 23–27 May 2022.
[CrossRef]

12. Nayak, A.K.; Rahman, M.M.; Naidu, R.; Dhal, B.; Swain, C.K.; Nayak, A.D.; Tripathi, R.; Shahid, M.; Islam, M.R.; Pathak, H.
Current and emerging methodologies for estimating carbon sequestration in agricultural soils: A review. Sci. Total Environ. 2019,
665, 890–912. [CrossRef]

13. Reda, R.; Saffaj, T.; Ilham, B.; Saidi, O.; Issam, K.; Brahim, L. A comparative study between a new method and other machine
learning algorithms for soil organic carbon and total nitrogen prediction using near infrared spectroscopy. Chemom. Intell. Lab.
Syst. 2019, 195, 103873. [CrossRef]

14. Hong, Y.; Munnaf, M.A.; Guerrero, A.; Chen, S.; Liu, Y.; Shi, Z.; Mouazen, A.M. Fusion of visible-to-near-infrared and mid-infrared
spectroscopy to estimate soil organic carbon. Soil Tillage Res. 2022, 217, 105284. [CrossRef]

15. Xu, X.; Du, C.; Ma, F.; Shen, Y.; Wu, K.; Liang, D.; Zhou, J. Detection of soil organic matter from laser-induced breakdown
spectroscopy (LIBS) and mid-infrared spectroscopy (ATR-FTIR) coupled with multivariate techniques. Geoderma 2019, 355, 113905.
[CrossRef]

16. Goydaragh, M.G.; Taghizadeh-Mehrjardi, R.; Jafarzadeh, A.A.; Triantafilis, J.; Lado, M. Using environmental variables and Fourier
Transform Infrared Spectroscopy to predict soil organic carbon. Catena 2021, 202, 105280. [CrossRef]
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