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Abstract: The well-known inspection paradox or waiting time paradox states that, in a renewal
process, the inspection interval is stochastically larger than a common interarrival time having a
distribution function F, where the inspection interval is given by the particular interarrival time
containing the specified time point of process inspection. The inspection paradox may also be
expressed in terms of expectations, where the order is strict, in general. A renewal process can be
utilized to describe the arrivals of vehicles, customers, or claims, for example. As the inspection
time may also be considered a random variable T with a left-continuous distribution function
G independent of the renewal process, the question arises as to whether the inspection paradox
inevitably occurs in this general situation, apart from in some marginal cases with respect to F
and G. For a random inspection time T, it is seen that non-trivial choices lead to non-occurrence
of the paradox. In this paper, a complete characterization of the non-occurrence of the inspection
paradox is given with respect to G. Several examples and related assertions are shown, including the
deterministic time situation.
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1. Introduction

The inspection paradox, also known as the waiting time paradox or renewal paradox,
describes a paradoxical effect where observing a running renewal process with events
occurring at specific times leads to atypical findings, in the sense that the observed time
interval between events may be longer than the other intervals. For example, this happens
when the events in question are incoming claims of an insurance company and we arbi-
trarily select a time to observe the process (without knowledge of any claim arrival times).
The time we select specifies an interval between two successive claims and we record the
length of this time interval. It is stochastically larger than a regular (unobserved) interval
between two successive incoming claims.

A renewal process can be used to model the times of incoming claims, where the
waiting times between successive claims, called interarrival times, are modeled as real-
izations of independent and identically distributed non-negative random variables with
cumulative distribution function F, for example. Thus, in a realized renewal process based
on a non-degenerate distribution, we observe interarrival times of different lengths and,
when inspecting the process at a certain time t, it will be very likely to observe a comparably
larger time interval (cf. Feller [1], p. 13).

This paradoxical effect arises in various scenarios, such as waiting for a bus or a train
(cf. Feller [1], p. 12–14, Masuda and Porter [2]), observing the lifetimes of identical batteries
(cf. Ross [3], p. 460), in connection with sampling bias (cf. Stein and Dattero [4]), and in
stochastic resetting (cf. Pal et al. [5]). In a medical context, Jenkins et al. [6] discussed how
the perception of regularly occurring phase singularities, which are indicators for cardiac
fibrillation, is influenced by the inspection paradox. They found that visual observation
may systematically oversample phase singularities that last longer (potentially leading to
errors) and that longer windows of observation can minimize the effect.
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Much attention has been paid to the study of the inspection paradox, its properties,
and implications (see, e.g., Gakis and Sivazlian [7], Angus [8], Ross [9]). In particular, con-
sidering a random variable for the time of inspection instead of a deterministic time leads
to insights regarding the quantification of the effect (see, e.g., Kamps [10]). Herff et al. [11]
derived an inequality for the length of the inspection interval with a random time and
Rauwolf and Kamps [12] gave a general representation for the expected inspection interval
length, which served as the basis for the main results in this work. Several explicit examples
with random time and applications to earthquake and geyser data can be found in the
literature (see, e.g., Liu and Peña [13], Rauwolf and Kamps [12]).

In the case of a deterministic inspection time t, the inspection paradox does not occur
for a trivial choice of interarrival times having a degenerate distribution, i.e., for determin-
istic interval lengths. Moreover, it does not occur if the smallest possible interarrival time
is larger than t; i.e., if the inspection is performed prior to the first event. However, for a
random inspection time T with a left-continuous distribution function G, it is seen that
there are examples with non-trivial choices of the distribution functions F and G where
the paradox does not appear, meaning that the length of the inspection interval is also
distributed as F.

In this general situation, we give a complete characterization of the non-occurrence of
the inspection paradox with respect to the choice of G, as well as results for F in the classical
case of degenerate G. The use of an additional random inspection time led to effects and a
conclusion regarding the classical case with deterministic time, where non-occurrence of
the paradoxical situations only happened for degenerate distributions.

In Section 2, we briefly recap the classical inspection paradox. Renewal processes
with random time T are discussed in Section 3, along with examples. Section 4 contains a
complete characterization of settings with respect to the distribution function G of T. A case
with degenerate time t is studied in Section 5 regarding situations with non-occurrence of
the inspection paradox leading to degenerate interarrival times.

2. The Classical Inspection Paradox Inequality

In order to formally introduce the inspection paradox, we first briefly recapitulate con-
cepts of renewal processes. An introduction to renewal processes can be found in, e.g., Cox [14],
Feller [1], Ross [3], Pinsky and Karlin [15], Mitov and Omey [16], and Kulkarni [17].

Let X1, X2, . . . be a sequence of non-negative, independent, and identically distributed
(iid) random variables on some probability space with a common distribution function F,
F(0) < 1. These random variables will be called interarrival times in the following. Then,
the sequence of occurrence times (Sn)n∈N0 given by

S0 = 0 and Sn =
n

∑
i=1

Xi, n ∈ N,

defines a renewal process (see Figure 1). The corresponding renewal counting process is
denoted by (N(t))t≥0, where

N(t) :=
∞

∑
n=1

1[0,t](Sn), t ≥ 0,

counts the number of occurrences up to time t. In particular, N(t) ≥ n ⇐⇒ Sn ≤ t holds
for all n ∈ N0 and for all t ≥ 0.

| | | |
S0 = 0 S1 S2 S3 . . . occurrence times

X1 X2 X3 . . . iid random variables, ≥ 0, ∼ F , F (0) < 1

Figure 1. Renewal process.
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When we inspect a renewal process at some fixed time t > 0, exactly N(t) renewals
have already taken place. The last renewal prior to t was at time SN(t) and the subsequent
renewal will occur at time SN(t)+1. The renewal interval covering t is referred to as the
“inspection interval” and its length is given by XN(t)+1 = SN(t)+1 − SN(t) (see Figure 2).
Representations for the survival function and the expected value of the inspection interval
length XN(t)+1 can be found in the literature (see, e.g., Gakis and Sivazlian [7], pp. 44–45).

| | | |
0 SN(t) t SN(t)+1 time

XN(t)+1 (≥st X1)
Figure 2. Inspection interval

The inspection paradox of renewal theory then states that

P(XN(t)+1 > x) ≥ P(X1 > x) for all x ≥ 0 and t ≥ 0 (1)

(cf. Angus [8], Ross [3]), which means that the inspection interval is stochastically larger
than a common renewal interval, i.e., XN(t)+1 ≥st X1. Consequently, in terms of expected
values, the mean inspection interval length exceeds the mean length of any regular renewal
interval, in the sense that

EXN(t)+1 ≥ EX1 for all t ≥ 0. (2)

No paradoxical effect occurs in the trivial case where the interarrival times have a
degenerate distribution, i.e., Xi ∼ εa, i ∈ N, for some a > 0, as equality holds in the
inspection paradox, i.e., P(XN(t)+1 > x) = 1(a,∞](x) = P(X1 > x) for all x ≥ 0, and all
events in the corresponding renewal process take place perfectly on time. In other words,
all time intervals (including the inspected interval) have precisely the same length. Up to
this point, it has remained open whether this is the only example in which equality holds for
fixed t. The answer will be provided in the following sections by means of a generalization
to a random inspection time T, for which the equality in (1) and (2) is characterized.

3. The Inspection Paradox with a Random Inspection Time

Instead of a fixed point in time t ≥ 0, we can also consider a random variable to model
the time of inspection. Let T be such a random inspection time, i.e., a non-negative random
variable that is independent of the renewal process and has a left-continuous distribution
function G given by G(t) = P(T < t), t ∈ R.

Then, (1) implies that the paradoxical effect occurs as in the classical inspection para-
dox with

P(XN(T)+1 > x) ≥ P(X1 > x) for all x ≥ 0, (3)

i.e., XN(T)+1 ≥st X1, and from (2) we conclude

E(XN(T)+1) ≥ E(X1) (4)

for the inspection paradox in terms of expectations.
In Section 2, we saw that equality in (1) in the fixed time case, i.e., for the choice

T ∼ εt, happens when the interarrival times have a degenerate distribution. The following
example shows that, in a trivial case but for non-degenerate distributions of X1 and T,
equality in (3) and (4) holds true. Thus, introducing a random inspection time can lead to
other cases with equality in (3) and (4).

Example 1. Consider a Binomial renewal process with interarrival times having a geometric
distribution on N, i.e.,

P(Xi = k) = p(1− p)k−1, k ∈ N, i ∈ N,
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and a random inspection time T with a two-point distribution, i.e., with P(T = 0) = P(T = 1/2) =
1/2. Since N(t) = 0 for t < 1, we have XN(t)+1 = X1, and thus XN(T)+1 = X1 holds. The
situation is trivial in the sense that the inspection is made prior to X1. In particular, the distribution
function G is constant on the support of the interarrival times with G(k) = P(T < k) = 1 for all
k ∈ N.

On the other hand, in many well-known examples, Inequality (1) is strict for t > 0
and so is (3); e.g., this is the case for a Poisson process with exponentially distributed
interarrival times. The same holds true in connection with random inspection times; we
refer to Liu and Peña [13] who discussed the choice of an exponentially distributed random
inspection time.

In fact, the gap between the expected inspection interval length and a common expected
interval length can be quantified for any choice of distribution. Rauwolf and Kamps [12]
derived the following representation

Eϕ(XN(T)+1) = Eϕ(X1) +
∞

∑
n=1

Cov(ϕ(Xn), G(Sn)), (5)

where ϕ : [0, ∞) → [0, ∞) is a measurable function such that all expected values and
integrals are well-defined and exist finitely. If ϕ is monotone non-decreasing, then all
covariance terms are non-negative. In particular, this leads to a representation for the
expected inspection interval length by choosing ϕ(x) = x, x ≥ 0,

EXN(T)+1 = EX1 +
∞

∑
n=1

Cov(Xn, G(Sn)), (6)

and to a representation for P(XN(T)+1 > z) by choosing ϕ(x) = 1(z,∞)(x), x ≥ 0, z ≥ 0.
Thus, Inequalities (3) and (4) can be derived from (5), and choosing T ∼ εt leads to formulae
in the classical case from Section 2.

As in Example 1, the introduction of a random inspection time T leads to various
other possible and non-degenerate cases with non-occurrence of the inspection paradox.
Concerning the identification of these respective situations, Formula (5) offers the option to
examine cases where all covariance terms are equal to zero. On the other hand, Formula (5)
also facilitates the study of situations with possible large gaps between EXN(T)+1 and EX1,
say. For examples, we refer to [12].

In the following discussion, we will need the left and right endpoints of the support of
the interarrival times, the formal introduction of which is given in Notation 1.

Notation 1. Let X be a random variable with right-continuous distribution function F. Let F−1 be
the quantile function defined by F−1(y) := inf{x : F(x) ≥ y}, y ∈ (0, 1). Then, the left and right
endpoints α and ω of the support of X are denoted by

α := lim
x→0+

F−1(x) and ω := lim
x→1−

F−1(x).

The support of X then lies in the interval [α, ω] if ω < ∞ or in [α, ∞), otherwise, and
will be denoted by supp(X).

The following result by Behboodian [18] given in Lemma 1 can be utilized to determine
whether a covariance of two functions of a random variable is zero. In particular, this
will be applied to determine whether the covariance terms in (5) are positive or zero. An
alternative proof can be found in Rauwolf [19].

Lemma 1 (cf. [18], Theorem 2). Let X be a non-negative and non-degenerate random variable
with support S := supp(X) and probability distribution P. Let h1 : [0, ∞) → R and h2 :
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[0, ∞)→ R be two monotone non-decreasing, measurable functions such that Cov(h1(X), h2(X))
exists finitely. Then,

h1|S ≡ c1 or h2|S ≡ c2 [PX ] for some c1, c2 ∈ R ⇐⇒ Cov(h1(X), h2(X)) = 0.

If none of the functions h1 and h2 in Lemma 1 are constant on S , then the covariance
of h1(X) and h2(X) is strictly positive.

Based on the representation with the covariance terms, we present an example of a
renewal process with absolutely continuous interarrival times and a particular choice for
the distribution function G of the random inspection time such that EXN(T)+1 = EX1 holds.

Example 2. Let the interarrival times Xi, i ∈ N, have a uniform distribution on the interval [1, 1.3]
with a density function f given by f (x) = 10

3 1[1,1.3](x), x ∈ R. Furthermore, let the random
inspection time T have the left-continuous distribution function G given in Figure 3. The function
G is constant on the interval [1, 1.3], i.e., on the support of X1, and therefore, an application of
Lemma 1 yields covariance Cov(X1, G(X1)) = 0. Similarly, G is constant on the support of the
occurrence times S2, S3, . . . from which equality in Equation (5) follows for any choice of ϕ. In
between the supports of Sn and Sn+1, n ∈ N, the form of the distribution function G (left-continuous
version) is arbitrary.

0

1

4

1

2

3

4

1

0 1 2 3 4 5

G(x)

x

Figure 3. A distribution function G with non-occurrence of the inspection paradox.

The equality in Example 1 can also be derived by applying Lemma 1. This approach
facilitates finding new explicit examples with equality—especially in the case of random
inspection times which allow for other possibilities than in the classical inspection paradox
with a degenerate time T ∼ εt.

4. Non-Occurrence of the Inspection Paradox

A general result regarding non-occurrence of the inspection paradox can be derived on
the basis of Representation (5) with a random inspection time. This is realised in Theorem 1
and the result is applied to the special cases of equality in (3) and (4); see Subsection 4.2
and Remark 3, respectively. Either result can be used to decide whether a strict inequality
holds for specific choices of distribution functions F and G. In particular, the condition for
equality is easy to check and can therefore be utilized without calculating, e.g., the expected
value of XN(T)+1 explicitly.

4.1. General Results

This subsection is concerned with determining distributions for X1 and T with distribu-
tion functions F and G, respectively, such that Eϕ(XN(T)+1) = Eϕ(X1) holds, given that ϕ
is not a constant function. Lemma 2 serves as a key component in the discussion and states
that given the support endpoints of the interarrival times, we can explicitly calculate the
smallest index n for which the succeeding occurrence times Sn have overlapping supports.
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Throughout, α is called an atom of (the distribution of) X1 if P(X1 = α) > 0.

Lemma 2. Let the interarrival times have a left support endpoint α > 0 and right support endpoint
ω > α. Then, there exists a natural number κ ∈ N0 at which the supports of two consecutive
occurrence times Sn and Sn+1, n ≥ κ + 1, overlap in the sense that P([nα, nω] ∩ [(n + 1)α, (n +
1)ω]) > 0. In particular, κ is given by

κ :=


⌊ α

ω− α

⌋
, if ω 6= k+1

k α, k ∈ N,

k, if ω = k+1
k α for some k ∈ N and α and ω are no atoms of X1,

k− 1, if ω = k+1
k α for some k ∈ N and α or ω are atoms of X1.

Proof. Assuming that there is no point of overlap for any n ∈ N, i.e., that

nω < (n + 1)α for all n ∈ N

leads to ω ≤ lim
n→∞

n+1
n α = α which is a contradiction to the assumption that α < ω.

Therefore, there exists a natural number for which the supports of successive occurrence
times with large enough indices overlap. If ω 6= k+1

k α for some k ∈ N, then

nω− (n + 1)α > 0 ⇐⇒ n ≥
⌊ α

ω− α

⌋
+ 1.

If the right support endpoint ω is of the form ω = k+1
k α for some k ∈ N and α or ω is

an atom of X1, then the first point of overlap is at (k + 1)α = kω, i.e., the supports of Sk and
Sk+1 touch (κ = k− 1). If neither α nor ω are atoms of X1, then the first overlap happens
for the supports of Sk+1 and Sk+2 (i.e., κ = k).

The trivial case α = 0 is excluded in Lemma 2 as the support of X1, covered by the
interval [0, ω] (or [0, ∞)), is a subset of the support of Sn, covered by [0, nω] (or [0, ∞)), for
all n ∈ N. In this case, the supports of all occurrence times overlap.

We will now determine cases with equality of the expected values in (5), i.e., non-
occurrence of the inspection paradox, under the general assumption that G is a left-
continuous distribution function.

Theorem 1. Let the interarrival times (Xi)i∈N have left support endpoint α > 0, finite right
support endpoint ω > α and let κ be defined as in Lemma 2.

Let ϕ : [0, ∞) → [0, ∞) be a measurable, monotone non-decreasing function such that all
expected values and integrals are well-defined and exist finitely. Furthermore, assume that ϕ is not
constant on S PX1 -almost surely.

Let T be a non-negative random variable with left-continuous distribution function G that is
independent of the interarrival times (Xi)i∈N.
Then, Eϕ(XN(T)+1) = Eϕ(X1) is equivalent to

(i) G(x) =
κ

∑
j=0

gj(x)1(jω,(j+1)α](x) +
κ

∑
j=1

cj1(jα,jω](x) + 1((κ+1)α,∞)(x), x ∈ R,

if α is no atom of X1,

(ii) G(x) =
κ

∑
j=0

gj(x)1(jω,(j+1)α](x) +
κ

∑
j=1

cj1[jα,jω](x) + 1[(κ+1)α,∞)(x), x ∈ R,

if α is an atom of X1,

(7)

where 0 ≤ c1 ≤ . . . ≤ cκ ≤ 1 are constants and gj : (jω, (j + 1)α] → [0, 1], j = 0, . . . , κ, are
functions such that G is a left-continuous distribution function.
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If ω = ∞, then Eϕ(XN(T)+1) = Eϕ(X1) is equivalent to G(x) = g0(x)1(0,α](x) +
1(α,∞)(x), x ∈ R, if α is not an atom of X1, and to G(x) = g0(x)1(0,α](x) + 1[α,∞)(x), x ∈ R,
g0(α) = 1, if α is an atom of X1.

Proof. With Equation (5), Eϕ(XN(T)+1) = Eϕ(X1) is equivalent to

∞

∑
n=1

Cov(ϕ(Xn), G(Sn)) = 0 ⇐⇒ Cov(ϕ(Xn), G(Sn)) = 0 for all n ∈ N,

since ϕ and G are both monotone non-decreasing, and thus all covariances are non-negative.
For n = 1, applying Lemma 1 yields

Cov(ϕ(X1), G(X1)) = 0 ⇐⇒ G(x) = c1 for PX1 -almost all x ∈ S

for some constant c1 ∈ [0, 1] due to the assumption that ϕ is not constant on S PX1 -almost
surely. First, assume that P(X1 = α) = 0, i.e., α is not an atom of X1. Since G as a
distribution function is monotone non-decreasing and assumed to be left-continuous, we
have G(x) = c1 for all α < x ≤ ω. With the same arguments, we obtain for a general n ≥ 2

Cov(ϕ(Xn), G(Sn)) = 0 ⇐⇒
∫ ∞

0
Cov(ϕ(Xn), G(x + Xn))︸ ︷︷ ︸

≥0

dF∗(n−1)(x) = 0

⇐⇒ Cov(ϕ(Xn), G(x + Xn)) = 0 for PSn−1 -almost all

x ∈ supp(Sn−1)

⇐⇒ G(x + y) = cn for PXn -almost all y ∈ S and

for PSn−1 -almost all x ∈ supp(Sn−1),

for a constant cn ∈ [0, 1] by using Lemma 1. This implies G(x + y) = cn for all nα < x + y ≤
nω, due to the monotonicity and continuity of the distribution function G. Furthermore,
the sequence of constants (cn)n∈N needs to satisfy c1 ≤ . . . ≤ cn for all n ∈ N (since G is
monotone non-decreasing) and lim

n→∞
cn = 1 (since lim

x→∞
G(x) = 1).

With Lemma 2, κ + 1 ∈ N is the index where the supports overlap, and thus cn+1 =
cn+2 = . . . = 1 for all n ≥ κ. If ω = ∞, then κ = 0, and thus the distribution function G
has to be of the form G(x) = g0(x)1(0,α](x) + 1(α,∞)(x), x ∈ R. Otherwise, the distribution
function G has to be of the form

G(x) =



0, x ≤ 0,
g0(x), 0 < x ≤ α,
c1, α < x ≤ ω,
g1(x), ω < x ≤ 2α,
c2, 2α < x ≤ 2ω,
...

...
cκ , κα < x ≤ κω,
gκ(x), κω < x ≤ (κ + 1)α,
1, x > (κ + 1)α,

(8)

where 0 =: c0 ≤ c1 ≤ . . . ≤ cκ ≤ cκ+1 := 1 and gj : (jω, (j + 1)α] → [0, 1], j = 0, . . . , κ, are
functions such that cj ≤ gj(x) ≤ cj+1 for all jω < x ≤ (j + 1)α, j = 0, . . . , κ, and such that
g0, . . . , gκ are monotone non-decreasing and left-continuous.

If P(X1 = α) > 0, then G(x) = cn necessarily has to hold for all nα ≤ x ≤ nω,
n ∈ N. Thus, for G as in (7) to be left-continuous at the points α, . . . , (κ + 1)α, the additional
assumption gj((j + 1)α) = cj+1, j = 0, . . . , κ, is needed.
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For the opposite implication, noticing that G as in (7) is constant on the support of all
occurrence times and applying Lemma 1, we see that the covariances Cov(ϕ(Xn), G(Sn))
are all equal to zero. This leads to equality of the expected values.

We note that the constant κ as introduced in Lemma 2 indicates the kind of support
the interarrival times have. For example, κ = 0 can correspond to the case 0 < 2α < ω,
where ω may be infinite. In this case, the distribution of the random inspection time T can
be chosen as T ∼ ε0, T ∼ εα or T ∼ twopoint{0, α} among others. On the other hand, ω
must be finite for κ ≥ 1.

Remark 1. The case X1 ∼ εα for α > 0 (which would correspond to α = ω in Theorem 1) is
excluded, because it is already well-known from the literature (cf. Section 2) that XN(t)+1 ∼ X1
and that the expected values are always equal, i.e.,

Eϕ(XN(t)+1) = Eϕ(X1) for all t ≥ 0.

The equality remains when introducing a random variable T. This can also be derived with the
following argument: If X1 ∼ εα, then Sn ∼ εnα for all n ∈ N implies Cov(ϕ(Xn), G(Sn)) = 0
for all n ∈ N and for any choice of the distribution function G, leading to equality for any ϕ.

Theorem 1 can be applied to any interarrival distribution. In particular, only the
left support endpoint α and the right support endpoint ω of the interarrival times are of
interest. Given a specific interarrival distribution and a distribution function G, Theorem 1
establishes whether or not the inspection paradox occurs.

Example 3. The case ω = 2α is a particular one (see Lemma 2 with k = 1). According to
Theorem 1 where α is supposed to not be an atom of X1, i.e., κ = 1, the inspection paradox does not
occur if G is given by

G(x) = g0(x)1(0,α](x) + c11(α,2α](x) + 1(2α,∞)(x), x ≥ 0,

with g0 and c1 chosen such that G is left-continuous.
Here, for α = 1, T may have a two-point distribution on S = {1, 2} and X1 may be uniformly

distributed on the interval (1, 2).
In the case of α being an atom of X1, i.e., κ = 0, G is given by

G(x) = g0(x)1(0,α](x) + 1[α,∞)(x), x ≥ 0,

and g0(α) = 1 has to be fulfilled.

Furthermore, the following example derived from the results of Theorem 1 shows
that, in the degenerate time case with T ∼ εt, equality in (1) or (2) can also take place
for non-degenerate interarrival times. Nevertheless, this situation is irrelevant, since the
inspection time coincides with the lower bound of the support of X1.

Example 4. For absolutely continuous interarrival times with a left endpoint α := t > 0 (i.e., α
is not an atom of X1) and right endpoint ω > 2t, which corresponds to the case κ = 0, we
have equality Eϕ(XN(t)+1) = Eϕ(X1) for any ϕ satisfying the assumptions of Theorem 1, since
G(x) = 1(t,∞)(x), x ≥ 0, is of the form (7) with g0 ≡ 0.

Therefore, choosing ϕ(x) = 1(z,∞)(x) and ϕ(x) = x for x ≥ 0 in Theorem 1, we obtain an
example for which

P(XN(t)+1 > z) = P(X1 > z), z ≥ 0, and EXN(t)+1 = EX1, respectively,

holds even though the interarrival times have a distribution other than the degenerate distribu-
tion. Consequently, requiring equality for a single z and t is not sufficient in general to derive a
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characterization for the distribution of the interarrival times. This case will be considered in detail
in Section 5.

The case α = 0 that was not included in Theorem 1 is studied separately in the
following theorem.

Theorem 2. Let the non-degenerate interarrival times have a left support endpoint α = 0, where
P(X1 = 0) = 0. Let ϕ : [0, ∞)→ [0, ∞) be a measurable, monotone non-decreasing function such
that all expected values and integrals are well-defined and exist finitely. Furthermore, assume that ϕ
is not constant on S := supp(X1) PX1 -almost surely.

Let T be a non-negative random variable with a left-continuous distribution function G that is
independent of the interarrival times (Xi)i∈N.

Then, Eϕ(XN(T)+1) = Eϕ(X1) holds if and only if T has a degenerate distribution in 0 for
every ω > 0.

Proof. Analogously to the proof of Theorem 1, G(x) = cn must hold for all 0 < x ≤ nω
and for all n ∈ N, wherefore we obtain c1 = . . . = cn = 1 for all n ∈ N. Thus, G is a
distribution function of the degenerate distribution in 0. The opposite direction follows
directly from an application of Lemma 1.

Remark 2. If p := P(X1 = 0) > 0 in Theorem 2 and G(x) = 1(0,∞)(x) is the left-continuous
version of the distribution function of the degenerate distribution in 0, then the first covariance
Cov(ϕ(X1), G(X1)) is positive and an inspection paradox occurs. This is the case as G is not
constant PX1 -almost surely on the support of the interarrival times.

In the above situation with ϕ(x) = x and P(X1 = 1) = 1− p, we find

P(N(0) = k) = pk, k ∈ N, and P(N(0) = 0) = 1− p,

and thus EXN(0)+1 = 1− p + p2 > 1− p = EX1.

4.2. Equality of the Survival Functions

Choosing ϕ(x) = 1(z,∞)(x), x ≥ 0, z ≥ 0, in Theorem 1 yields distributions with
equality in the inspection paradox, in the sense that P(XN(T)+1 > z) = P(X1 > z).
In general, a random inspection time T having a distribution function of the particular
form (7) is sufficient for equality in the inspection paradox. More precisely, the inspection
paradox does not appear in this case and both random variables XN(T)+1 and X1 are
identically distributed, as stated in the following corollary.

Corollary 1. Let the interarrival times have a left support endpoint α > 0 and right support
endpoint ω > α. If T has a distribution function of the form (7), then

P(XN(T)+1 > z) = P(X1 > z) for all z ≥ 0,

i.e., XN(T)+1 =st X1.

Proof. Since the G given in (7) is constant on the supports of Xn and of Sn for all n ∈ N,
applying Lemma 1 yields Cov(1(z,∞)(Xn), G(Sn)) = 0 for all n ∈ N and for all z ≥ 0 as in
the proof of Theorem 1. Therefore, with

P(XN(T)+1 > z) = P(X1 > z) +
∞

∑
n=1

Cov(1(z,∞)(Xn), G(Sn))︸ ︷︷ ︸
=0

for all z ≥ 0,

XN(T)+1 and X1 are identically distributed.
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In the characterization of Theorem 1, the function ϕ is assumed to be non-constant on
S PX1 -almost surely. Therefore, for the function 1(z,∞)(·) to take both values 0 and 1 on the
support of X1 with positive probability, we require z ∈ supp(X1).

Corollary 2. Let the interarrival times have a left support endpoint α > 0, right support endpoint
ω > α and let S := supp(X1). Let T be a non-negative random variable with left-continuous
distribution function G that is independent of the interarrival times (Xi)i∈N. If there is a z ∈ S
such that 1(z,∞)(·) takes both values 0 and 1 on S with positive probability and

P(XN(T)+1 > z) = P(X1 > z),

then G is of the form (7).

Proof. This follows from Theorem 1 for the choice ϕ(x) = 1(z,∞)(x), x ≥ 0.

Corollary 2 shows that equality for an appropriate value of z is enough to determine
the general form of the distribution function G (on finite intervals). Thus, if we have
equality of the survival functions of XN(T)+1 and X1 for this z ∈ S , then T is of the form (7)
and Corollary 1 yields XN(T)+1 =st X1.

Remark 3. The inspection paradox is also discussed in terms of expected values, as we have seen in
Sections 2 and 3. With the choice ϕ(x) = x, x ≥ 0, it follows under the assumptions of Theorem 1
that equality of the expected values EXN(T)+1 = EX1 holds if and only if G is of the form (7).

Similarly, equality of the moments, i.e., E(Xm
N(T)+1) = E(Xm

1 ), also determines the distribu-
tion of T. This can be obtained from Theorem 1 via the choice ϕ(x) = xm, x ≥ 0, m > 0.

5. Equality in the Degenerate Time Case

As discussed in Section 2 and in Remark 1, no paradoxical effect appears for the
inspection interval length given degenerate interarrival times, regardless of whether the
inspection time is random or deterministic. On the other hand, degenerate interarrival
times are not the only example with this property (cf. Example 4). In this section, we further
study equality in the inspection paradox by means of a fixed sequence of inspection times.

The following Theorem 3 states that having such a sequence of fixed times for which
equality holds is sufficient for the interarrival times to have a degenerate distribution.

Theorem 3. Let the interarrival times (Xi)i∈N have a distribution function F with F(0) < 1. Let
(ti)i∈N ⊆ (0, ∞) be a sequence of monotone increasing times (ti < ti+1, i ∈ N) with lim

i→∞
ti = ∞,

such that
EXN(ti)+1 = EX1 for all i ∈ N.

Then, X1 = α almost surely for some α > 0, i.e., F(x) = 1[α,∞)(x), x ≥ 0.

Proof. We assume that the interarrival times have a left support endpoint α ≥ 0 and right
support endpoint ω > α and define S := [α, ω] if ω < ∞ and S = [α, ∞) if ω = ∞. Thus,
it is assumed that the support contains at least two values and this is shown to lead to a
contradiction in the following. Due to Representation (6) with T ∼ εti , equality holds if
and only if

Cov(Xn,1(ti ,∞)(Sn)) = 0 for all n ∈ N and for all i ∈ N.

In the case n = 1, an application of Lemma 1 yields

Cov(X1,1(ti ,∞)(X1)) = 0 for all n ∈ N and for all i ∈ N

⇐⇒ 1(ti ,∞)(x) = const for PX1 -almost all x ∈ S and for all i ∈ N. (8)
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From (8), we obtain that S necessarily has to lie in a bounded interval, i.e., ω < ∞. Let
Sn := [nα, nω], n ∈ N. As in the proof of Theorem 1, the case n ≥ 2 leads to

1(ti ,∞)(x + y) = const for PXn -almost all x ∈ S ,

for PSn−1 -almost all y ∈ Sn−1 and for all i ∈ N.

Due to Lemma 2, there exists a κ ∈ N0 such that P([nα, nω]∩ [(n + 1)α, (n + 1)ω]) > 0
for all n ≥ κ + 1. This implies ⋃

n≥κ+1

[nα, nω] = [(κ + 1)α, ∞),

i.e., the supports of Sκ+1, Sκ+2, . . . cover all real numbers greater than or equal to (κ + 1)α.
Since the unbounded sequence (ti)i∈N consists of monotone increasing real numbers, there
exists a smallest k ∈ N with tk > (κ + 1)α and an n ∈ N with n ≥ κ + 2 such that
tk ∈ [nα, nω].

If nα < tk < nω, then the indicator function

1(tk ,∞)(x + y) =

{
0, x ∈ S and y ∈ (nα− x, tk − x],
1, x ∈ S and y ∈ (tk − x, nω− x],

, i.e., x + y ∈ Sn,

has a jump and is not constant for PXn -almost all x ∈ S and PSn−1-almost all y ∈ Sn−1.
Concerning the occurrence time Sn, we obtain Cov(Xn,1(tk ,∞)(Sn)) > 0, which is in contra-
diction to the assumed equality.

If tk = nα, then tk lies in the preceding interval with (n− 1)α < tk < (n− 1)ω, since
this interval overlaps with the interval [nα, nω] due to n− 1 ≥ κ + 1. Again, the indicator
function 1(tk ,∞)(·) is not constant for PXn−1 -almost all x ∈ S and PSn−2 -almost all y ∈ Sn−2.
In consequence, Cov(Xn−1,1(tk ,∞)(Sn−1)) > 0 is a contradiction to the equality.

If tk = nω, then tk lies in the subsequent interval (n + 1)α < tk < (n + 1)ω, which
implies Cov(Xn+1,1(tk ,∞)(Sn+1)) > 0, leading to a contradiction.

In conclusion, |S| = 1 must hold PX1-almost surely and there exists an α > 0 with
X1 = α almost surely and F(x) = 1[α,∞)(x), x ≥ 0. The constant α has to be positive due to
F(0) < 1.

Note that having only a finite number of times ti with equality in Theorem 3 does not
suffice to derive that the interarrival times have a degenerate distribution. If there was a
largest tN < ∞, then X1 could have a support lying to the right of tN and consisting of
more than one number and we would still have equality.

The same arguments as in Theorem 3 lead to an analogous result in case of the classical
inspection paradox inequality for a sequence of time points. In a similar way to the
main result in Section 4, Theorem 3 and the following Corollary 3 can be combined by
using a function ϕ that is assumed to be not constant almost surely on the support of the
interarrival times.

Corollary 3. Let the interarrival times (Xi)i∈N have the distribution function F with F(0) < 1. Let
(ti)i∈N ⊆ (0, ∞) be a sequence of monotone increasing times (ti < ti+1, i ∈ N) with lim

i→∞
ti = ∞.

Let z ∈ S := supp(X1) such that 1(z,∞)(·) takes values 0 and 1 on S with positive probability and

P(XN(ti)+1 > z) = P(X1 > z) for all i ∈ N.

Then, X1 = α almost surely for some α > 0, i.e., F(x) = 1[α,∞)(x), x ≥ 0.

We note that in both Theorem 3 and Corollary 3, we did not assume that any particular
point ti lies in the support of an occurrence time, as this assumption alone does not suffice
(in Example 4, the time t lies in the support of X1). In order to infer that the interarrival
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times have a degenerate distribution based on only one time point t, it is necessary to
assume that t lies in the support of an occurrence time whose support overlaps with both
the support of the preceding and the succeeding occurrence time. This is formally stated
in Corollary 4.

Corollary 4. Let the interarrival times (Xi)i∈N have a distribution function F with F(0) < 1.
Assume that there exists a k ∈ N with k ≥ κ + 2 and a t > 0 such that t ∈ supp(Sk). Then,

EXN(t)+1 = EX1

implies X1 = t/k almost surely, i.e., F(x) = 1[t/k,∞)(x), x ≥ 0.

Proof. Due to the equality of the expected values and to Representation (6), the covari-
ances Cov(Xn,1(t,∞)(Sn)) must be equal to zero for all n ∈ N. Assume that the sup-
port of Sk contains at least two different points, then P(supp(Sk−1) ∩ supp(Sk)) > 0 and
P(supp(Sk) ∩ supp(Sk+1)) > 0 holds due to Lemma 2. As in the proof of Theorem 3, we
can infer that t lies in the inner of either the support of Sk, of Sk−1 or of Sk+1, respectively,
which leads to a contradiction. Thus, supp(Sk) = t implies P(Sk ≤ x) = 1[t,∞)(x); i.e., Sk
has a degenerate distribution in t. Since Sk is the sum of k iid interarrival times, we then
have X1 = t/k almost surely.

6. Conclusions

By considering a random inspection time in a renewal counting process, interesting
effects come into play and new insights are gained regarding the distribution of the random
time. With respect to the well-known inspection paradox, non-trivial choices of this
distribution and the distribution of the interarrival times lead to non-occurrence of the
paradox in contrast to the situations for a deterministic time. In the general case, a complete
characterization of the (non-)occurrence of the inspection paradox with respect to G is given.
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