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Abstract: Traversal time in the tunneling effect for ultrasonic waves in tapered waveguides is derived
considering its analogy with quantum and electromagnetic wave tunneling. If, as traversal time, the
so-called phase time is considered, the ultrasonic wave packet shows the equivalent in acoustics of
superluminality, i.e., the derived velocity, crosses the limit of bulk transverse ultrasonic waves in the
medium of the waveguide that is the equivalent of c in the quantum and electromagnetic cases. The
graphs clearly illustrating this so-called Hartman effect are obtained confirming the experimental
results in the three different fields.
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1. Introduction

The existence of a formal analogy among the equations that govern wave propagation
allows for the extension of, in some cases, the results of the phenomena whose study
originates in areas of different physical disciplines. This is the case, for example, of the
phenomenon of the so-called superluminal propagation of evanescent waves, whose name
directly recalls the field of electromagnetism, but which also has close analogies in quantum
physics and, as demonstrated in this paragraph, even in acoustics. The unifying concept
is that of the propagation of an impulse or a wave packet in a medium with a strong or
anomalous dispersion: a packet of acoustic, electromagnetic or quantum wave probability
density waves can therefore be considered equivalent.

Let us therefore imagine not a monochromatic wave but a wave packet limited in time
and space with a central carrier frequency and an envelope with a modulated amplitude,
which, therefore, introduces components at different frequencies through the Fourier
analysis: the so-called phase velocity Vf = ω/k can be identified as the velocity of the
crests of the carrier frequency, but already Lord Rayleigh [1] identified the fact that the
packet envelope moves with the group velocity Vg = dω/dk (at first order), which has, in
the case of anomalous dispersion, peculiar characteristics, e.g., can become negative when
the frequency decreases rather than increases with increasing k.

Anomalous dispersion was first studied for mechanical oscillators [2] and later, by
Sommerfeld and Brillouin, in materials that absorb light in which the group velocity can be
greater than c (the velocity of light in vacuum) or even negative within the absorption [3].
The phase velocity can be greater than c in many cases, for example, inside waveguides,
but this does not create problems because, representing the velocity of a continuous series
of crests, this does not carry the signal information.

On the other end, if the group velocity is identified as the velocity at which a signal
(information) travels, the problem of the limit of the principle of causality set by the
constancy of the velocity of light in the vacuum of special relativity immediately arises, but
this identification is possible only in cases of “normal” dispersion where the deformation
of the packet is slight and the group velocity remains below the velocity c.

Sommerfeld and Brillouin then continued to define signal velocity as that of the point
of rise of the signal intensity equal to half its steady-state value, which can be demonstrated
to proceed at the group velocity, but they introduced the concept of “velocity of the wave
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front” ideally defined as that of a discontinuity in the signal of the step function type with
an infinite derivative and it is this last velocity, certainly carrying information, which is
subject to the limitation of the velocity c just as the velocity, to be defined, with which the
energy is transported [3,4].

All these velocities, in a non-dispersive medium coincide and are equivalent, for elastic
waves, to the bulk transverse waves velocity of that medium while, for electromagnetic
waves, it is the velocity of light in that medium or c if it is a vacuum. However, it must be
noted that the definition of a wave front with an infinite derivative (vertical slope) is only
ideal, requiring an infinite bandwidth in the frequency components, which is unachievable
in any real signal generator. In reality, physical signal generators only produce a finite
spectra due to their natural inertia in reaching the steady-state amplitude (impossibility of
a vertical rise of the wave front) and the necessarily finite content of energy in the signal
because an infinite frequency bandwidth would require, due to the Plank relation E = h̄ω,
an infinite energy.

The limitation of the frequency bandwidth for a physical detector highlights the limits
of reasoning based on classical physics. In the latter case, a “classical” detector can detect
a theoretically small quantity of energy as desired, whereas a physical detector needs
at least a quantum of energy h̄ω. Regardless of the interpretation, when we talk about
propagation at superluminal velocity, we are referring to a clear and measurable effect that
involves the group velocity and therefore requires the use of a wave packet. This effect
has been predicted theoretically and measured experimentally in different conditions: for
example, in anomalous dispersion zones near an absorption line [5–7], in nonlinear [8] and
linear gain lines [9–11], in a active plasma [12], optically [13] and, finally, in a tunnel effect
barrier [14–17].

This last physical situation in which superluminal wave packets are found, is the
one we want to take into consideration here because there is a close analogy between the
quantum tunneling effect of a particle through a potential barrier and the crossing of a
zone, limited in space, in which propagation is prohibited for both electromagnetic- and
acoustic-guided wave packets.

The so-called Hartman effect [18] has been theoretically analyzed [19] and experi-
mentally measured in different fields [16,20,21] for which the crossing time of a quantum
potential barrier [22] initially increases with the dimensions of the barrier and then rapidly
reaches a constant value, which is of the order of magnitude of the inverse of the carrier
frequency of the wave packet, independent of the dimensions of the barrier. It is immediate
that, by simply defining the velocity of crossing the barrier as the ratio between its dimen-
sions and the time taken to cross it, the velocity grows with the dimensions of the barrier
when the time reaches a constant value, until it reaches superluminal values.

It is necessary to point out, however, in this phenomenon that the time considered is
that of detecting the half height of the rise of the wave front, therefore, we are talking about
the observation of the packet envelope, which should correspond to the group velocity,
on the other hand, the superluminal velocity defined in this way is not a real velocity that
can be defined at every point, since, inside the barrier where the waves are evanescent,
there is no defined propagation and corresponding velocity. Other possible definitions
of the tunneling crossing time and the corresponding velocity are possible, although the
interpretations are not unambiguous [23,24].

Having this said, let us focus on the fact that the tunneling phenomenon is essentially
a wave one. So the same principles and the same equations, in opportune cases, can
be applied for very different kinds of waves, from the quantum wave functions to the
electromagnetic waves to, and this is the case of interest here, the acoustic or ultrasonic
waves in matter. The key point is that there must exist a zone where the propagation
is forbidden and the waves become evanescent; the limitation in extension of this zone
permits the propagating wave to resume after the end of the “barrier”, even with a different
amplitude and phase with respect to the normal propagation but in a way that it is possible
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to imagine that the wave will succeed to cross the barrier in a certain time and with a
certain speed.

The importance of the ultrasonic simulation of phenomena, originally studied in other
fields, thanks to the analogy of the equations, in specific cases, has been increasingly pointed
out in recent years. From the analogy of the acoustic black hole with the optical one [25], to
the quantum phenomenon of Hawking radiation [26], a simulation with ultrasound adds
the possibility to study a phenomenon in conditions impossible to have in the original
situation and with a rescaling and changing of the measurable quantities that amplifies the
studying of details non-reachable otherwise.

So, in our case, it is possible to reply and rescale the measurable quantities like traversal
time and signal intensity and frequency in a way that is more accessible than in the quantum
and electromagnetic fields. Moreover, further details can be studied like, for example, the
field inside the barrier being almost impossible to examine in other situations. In this
article, the conjecture about the traversal time of an “opaque” barrier being of the same
order of the inverse of the used frequency and the demonstration of its independence via
the opaque barrier length have been found for ultrasonic-guided waves. The rescaling and
the specifics of the ultrasonic-guided waves’ environment opens the way to experiments
that promise more detailed results than the ones possible in the other mentioned fields.

2. Material and Methods
2.1. Analogy between the Quantum Tunneling Effect and Evanescent, Electromagnetic- or
Acoustic-Guided Waves

Recall that the Schrödinger equation leads to a negative kinetic energy in the case of
tunneling since the potential energy V is greater than the total energy of the particle E; the
equation for a one-dimensional barrier is

d2ψ

dx2 + 2
m
h̄2 (E − V)ψ = 0. (1)

where m the mass of the particle, E its total energy and V the potential energy of the barrier.
Its monochromatic solution leads to evanescent modes within the barrier (where V > E) of
the type

ψ(V>E) = Ae−qx + Be+qx (2)

where q is such that, having defined the free de Broglie wavenumber as k =
√

2mE/h̄2,

which becomes k′ =
√

2m(E − V)/h̄2 if a potential V < E is present, is defined as

q = −ık′ =
√

2m(V − E)/h̄2 inside the barrier where V > E.

So, defining for the barrier a characteristic k0 =
√

k2 + q2 =
√

2mV/h̄2, then it is
possible to write down the Schrödinger equation as

d2ψ

dx2 + (k2 − k2
0)ψ = 0. (3)

The Schrödinger equation is then completely analogous to the Helmholtz equation for
guided waves. This equation is applicable to both guided electromagnetic waves and
guided acoustic waves, where ψ represents the electric field inside the waveguide in the
former case and the polarized displacement in the horizontal transverse direction, relative
to the typical waveguide axis, of the so-called SH (Shear Horizontal) in the latter case of
acoustic-guided waves.

For guided waves, k is then the wavenumber of the bulk waves of the fields in the
material medium considered, while k0 is the cut-off wavenumber of the guide such that
k0 = nπ/b, where n = 1, 2, 3 . . . is the order of the possible propagation modes inside a
guide of thickness b.
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In a wave guide, it is therefore possible to simulate a potential barrier by narrowing
the guide along section d in such a way that k0 > k and, therefore, the propagation

wave number in the direction of the guide axis β =
√

k2 − k2
0 becomes imaginary, giving

rise to evanescent waves inside the narrowed part of the guide. For the electromagnetic
waves k = ω/v, where v is the bulk velocity of the wave in the material while for the
ultrasonic SH waves k = ω/Vs with Vs the velocity of the transverse bulk waves in the
medium considered.

The quantum tunneling effect happens when the particle, represented by a wave
packet of the probability density wave function with central frequency corresponding
to the De Broglie wavelength, passes through an area in which a forbidden potential
barrier is present, therefore, it has a precise analogy with the propagation of a packet of
electromagnetic or acoustic waves within a tapered guide in such a way that the waves are
evanescent in the narrowed, limited area representing the barrier.

The equations describing the quantum tunneling effect can be transformed in the
ones describing the propagation, in a waveguide, through a forbidden barrier with
the substitution

h̄
m

−→ v2

ω
(4)

where v is the bulk electromagnetic wave velocity or the bulk ultrasonic wave transverse
velocity in the material that constitutes the waveguide.

2.2. A Possible Definition of Traversal Time: The Phase Time

Let us consider the solution of a one-dimensional Schrödinger equation for a given
value of energy E in presence of potential barrier V. The solution can be expressed in
three parts, ψ1(x), ψ2(x) and ψ3(x), respectively, the wave function, on the left, inside and
on the right of the barrier, as in Figure 1:

ψ1(x) = Ae+ıkx + Be−ıkx

ψ2(x) = Ce−qx + De+qx

ψ3(x) = Fe+ıkx. (5)

Considering a rectangular-shaped potential barrier placed along the x axes between posi-
tions x = 0 and x = d, the boundary conditions of continuity of the wave function and of
its derivative lead to a system for the wave amplitudes to solve:

A + B = C + D

ık(A − B) = −q(C − D)

Ce−qd + De+qd = Feıkd

−q(Ce−qd − De+qd) = ıkFeıkd. (6)

Eliminating the amplitudes B, C and D, it is possible to find the complex transmission
coefficient

√
Teıα such that

√
Teıα ≡ F

A
=

4ıkq
−(q − ık)2eqd + (q + ık)2e−qd e−ıkd, (7)

and an analogous expression for the reflection coefficient R = B/A.
It is given a wave packet strictly picked around value k, impinging on the barrier; its

Fourier components will be of the form
√

T(k)exp[ıα(k) + ıkx − ıE(k)t/h̄]. The transmitted
wave packet will be thus described by the expression

ψT =
1√
2π

∫ +∞

−∞

√
T(k)eıα(k)ekxe−ıω(k)tdk (8)
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where, for a particle, ω(k) = E(k)/h̄.

Figure 1. Scheme of a potential barrier of width d with, indicated, the three wave functions for each
zone, the incident amplitude A, the reflected B and the transmitted F and the evanescent waves
amplitudes C and D.

The phase time is the time associated with a recognizable element of the packet such
as, for example, the peak to which we assign a position x(t). To follow the peak, we can
use the stationary phase method: we rewrite the exponential in the integral as eıF(k), where
F(k) represents the total changing of phase of the individual components, with a phase
shift due to propagation with the path inside the barrier, included. The method, therefore,
consists of neglecting the contribution to the integral in the regions in which F(k) varies
rapidly with k, since the rapid oscillations of the function tend to give a null contribution to
the integral. The main contribution to the integral comes instead from the regions around
the extremal points of F(k), those where the first derivative with respect to k vanishes [14].
This leads to the equation

dα

dk
+ x(t)− dω

dk
t = 0; (9)

thus the process of tunneling through a barrier of length d leads to a spatial delay δx = dα/dk
and the traversal phase time tϕ

T is defined as the ratio of the spatial delay due to the overall
phase shift to the group velocity vg [27].

From Equation (7)

F
A

eıkd = T1/2eı(α(k)+kd) =
2kq

2kq cosh(qd)− ı(k2 − q2) sinh(qd)
(10)

so the phase displacement

α(k) + kd = tan−1
[

k2 − q2

2kq
tanh(qd)

]
. (11)

The phase time for the barrier crossing is then

tϕ
T =

1
vg

d
dk

(α(k) + kd) =
m

h̄kq
2qd k2(q2 − k2) + k4

0 sinh(2qd)
4k2q2 + k4

0 sinh(qd)
(12)

The time defined in this way is certainly an important reference concept, but it is necessary
to mention why this definition does not conclude the theoretical discussion, indeed other
definitions of traversal time have been hypothesized and the problem is still open.
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Problems with Phase Time

Let us consider the reflection phase time tϕ
R (defined in the same way as tϕ

T but now
for the reflected particle) and the dwell time tϕ

D (dwell time) [28] defined as the average
time spent by the particle in a certain spatial interval (x1, x2), which may possibly include
the expression barrier having the expression

tϕ
D =

1
J(k)

∫ x2

x1

|ψ(x, k)|2dx (13)

that is the ratio between the number of the particles in the interval that includes the barrier
and the flux of the incident probability density J(k) = h̄k/m.

Then, necessarily, the condition tϕ
D = Rtϕ

R + Ttϕ
T where R and T are, respectively, the

reflexion and transmission coefficients, should be satisfied. In our case, instead, there is an
additional sinusoidal term [14,23,29]:

tϕ
D = Rtϕ

R + Ttϕ
T +

√
R

kvg
sin(Φ − 2kx1) (14)

where Φ is the phase displacement of the reflected wave. This term represents the inter-
ference between the reflected wave function and the one incident on the barrier. Since, to
define the velocity of crossing the barrier, we need the actual traversal time taken by the
particle (or by the wave packet) to cross it, the phase transmission time tϕ

T , as defined above,
cannot represent the actual traversal time because it contains an additional interference
term in which the contributions of transmission and reflection are not separable.

2.3. SH Modes in Ultrasonic Waveguides

It is given an ultrasonic rectangular waveguide, characterized by an ideally infinite
length (direction z) along which the waves propagate, an ideally infinite width (direction
y) and a finite thickness b (direction x) comparable with the wavelength. The normal
stress-free condition at the surface of the waveguide rules the propagation of the possible
modes. With respect to the waveguide, it is possible to distinguish three polarizations of
the ultrasonic waves. The longitudinal one L and, of the two shear, the one polarized in
the vertical direction (SV) along the thickness and the other polarized in the horizontal
direction (SH) along the width of the waveguide.

When a shear horizontal wave is reflected at the interface constituted by the waveguide
surfaces, the boundary conditions are fully satisfied by a reflection in another SH wave,
while the shear vertical SV is partially reflected and partially transformed in a longitudinal
L and so the longitudinal generates at reflection both the SV and L kind. So two kinds of
modes can propagate along the waveguide, the pure shear modes, horizontally polarized,
SH and modes that are a combination of longitudinal ad shear vertical polarization called
Lamb modes.

Let us focus on the SH modes that have a dispersion relation that is the analogue of
the electromagnetic and quantum cases and has an analytic expression for the function ω(k)
while the dispersion relation for Lamb waves must be solved numerically to obtain the
function ω(k). From a mathematical point of view, it is possible to define a displacement
vector u⃗, a scalar potential ϕ and a vector potential ψ⃗ such that

u⃗ = ∇ϕ +∇× ψ⃗. (15)

Through Christoffel equation for isotropic medium [30], it is possible to demonstrate that
the shear waves depend only on ψ⃗ with a wave equation

∆ψ⃗ − 1
v2

s

∂2ψ⃗

∂t2 = 0 (16)
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where vs is the shear bulk velocity vs =
√

µ/ρ and µ is the shear modulus [31].
In the rectangular waveguide, the SH waves reflect on themselves back and forth be-

tween the surfaces. Their shear wavenumber vector of modulus ks = ω/vs, has transversal
component kts along y direction and component β along the direction of propagation z.
SH waves have the only displacement component along the horizontal direction x, so the
vector potential ψ⃗ has the only component along the vertical y direction such that

ψy = Ae−ıβz cos(ktsy + α) (17)

and
ux = −∂ψ

∂z
= ıβψy = ıβAe−ıβz cos(ktsy + α). (18)

The boundary conditions impose the component of the stress, normal to the surfaces

Txy = µ
∂ux

∂y
= ıβktsµAe−ıβz sin(ktsy + α), (19)

to be null at y = ±b/2. This leads to α = 0 and to the condition of transverse resonance
given by

kts =
nπ

b
(n ∈ N). (20)

So a number n of SH modes exist that satisfy the boundary conditions and that have a
wavenumber of propagation β such that

β2 = k2
ts −

(nπ

b

)2
=

(
ω

vs

)2
−

(nπ

b

)2
. (21)

This dispersion relation is the analogue of that of the electromagnetic waveguide. Excluding
the n = 0 mode, which is simply a shear bulk wave propagating parallel to the z direction,
all the other modes have a cut-off frequency below which the mode is evanescent.

2.4. Phase Time for SH Ultrasonic Waves

The transmission phase time tϕ
T , as defined in Section 2.2, is an important reference

concept that can also be defined in the acoustic field. Let us consider its expression for a
potential barrier simulated by a zone in which the waves become evanescent (e.g., an area
with less thickness than a waveguide such that the frequency is under the cut-off limit)
for SH waves. A waveguide of thickness b is considered in which the propagation of a
particular SH mode is possible with dispersion Equation (21)

β =

√
ω2

v2
s
−

(nπ

b

)2
(22)

where the wave vector β⃗, of the propagating wave along the waveguide, is real and the
propagating mode has expression

ψ = ψ0eı(βz−ωt) (23)

In the narrowed section of the waveguide of length d, if the thickness b′ is such that
b′ < nπvs/ω, the correspondent β′ becomes imaginary and it is substituted by

q = ıβ′ =

√(nπ

b′
)2

− ω2

v2
s

(24)

and the wave becomes evanescent with expression

ψ = ψ0e−qzeıωt. (25)
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Defining, then

k0 =

√(nπ

b′
)2

−
(nπ

b

)2
, (26)

the traversal phase time for SH waves has an expression analogous to (12)

tϕ
T =

1
vgq

2qd β2(q2 − β2) + k4
0 sinh(2qd)

4β2q2 + k4
0 sinh(qd)

(27)

where the group velocity is vg = v2
s β/ω.

3. Results
3.1. Theoretical Results for SH Waves

In a concrete example, we can consider a waveguide with the thickness b = 2 mm
tapered in an area with a smaller thickness of b′ = 0.7 mm, of length d; the velocity of
the transverse waves is set to vs = 3100 m/s, which is typical of aluminum. In this case,
it is found that the cut-off frequency of the evanescent wave zone is ν0 = 2.214 MHz. In
Figure 2, the phase time is graphed as a function of frequency for the first mode n = 1 and
a barrier d = 3 mm long. To be noted, the barrier resonances above the cut-off frequency
and the monotonic decrease in traversal time below the cut-off frequency.

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
0

2

4

6

8

10

12

ν (MHz)

t T�
�μ

s
)

Figure 2. Phase time tϕ
T (in µs) vs. frequency ν (in MHz). To be noted, the resonances due to the

narrowed section of the waveguide, above the cut-off frequency of 2.214 MHz and the almost constant
value below the cut-off.

If we adjust the width frequency ν = 2.200 MHz (wavelength λ = 1.41 mm) just below
the cut-off frequency ν0 = 2.214 MHz, in Table 1 are indicated the values of the traversal
phase time τ

ϕ
T and the corresponding traversal velocity VT defined as the ratio between

the length of the barrier (evanescent zone) and the traversal phase time, corresponding
to different lengths d of the barrier. It is possible to note the so-called Hartman effect, for
which the traversal time tends to a constant limit value, independent of the barrier length,
resulting in a rapid increase in traversal velocity; the effect happens when, increasing the
barrier length d, it becomes opaque, i.e., βd ≫ 1. Remembering that the velocity of the bulk
transverse waves vs = 3100 m/s represents the analogue of the velocity of light in the
medium that constitutes the electromagnetic wave guide, it is possible to note that, with
these parameters, the acoustic analogue of the apparent superluminal behavior is already
reached with a barrier length corresponding to few wavelengths of the signal.
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Table 1. Traversal phase time and velocity for different lengths of the barrier for SH waves at
frequency ν = 2.200 MHaz and cut-off frequency ν0 = 2.214 MHz.

Barrier Length d (mm) Traversal Phase Time tϕ
T (µs) Traversal Velocity VT (m/s)

3 1.0646 2818.0

8 1.3489 5930.6

13 1.3543 9598.9

18 1.3544 13,290.2

23 1.3544 16,981.9

28 1.3544 20,673.7

At lower frequencies then, i.e., further inside the potential well, the Hartman effect is
reached even for shorter barrier lengths and the value of the traversal time limit decreases
slightly and it is within the order of magnitude of a fraction of a microsecond.

This is graphed in Figure 3, where the phase time is in the function of the barrier length
for several frequencies under the cut-off. The plateau of constant phase time, showing the
Hartman effect, is reached for lower frequencies at shorter barrier lengths.

0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

d (mm)

t Tϕ
(μ
s
)

Figure 3. Phase time tϕ
T (in µs) vs. barrier length d (in mm) for some frequencies under the cut-off:

looking at the plateau on the right of the figure (Hartman effect), the curves from the bottom to the
top are, respectively, at a frequency of 1.5, 1.7, 1.9 and 2.1 MHz. To be noted that the deeper the
frequency is under cut-off, the sooner (at a shorter barrier length) the plateau of constant phase time
(Hartman effect) is reached.

Defining the traversal velocity as the ratio between barrier length and phase time
increment during the crossing; in Figure 4, it is possible to see at which barrier length the
value of this velocity goes above the limit velocity of shear bulk waves in the material for
different frequencies. The lower the frequency, the shorter the barrier length is necessary to
cross above this limit.

3.2. Some Experimental Results in the Literature

The traversal time measurements in the tunneling effect in quantum mechanics pose
several problems for issues related to non-invasive measurements of quantum objects [22].
In electromagnetism and acoustics, measurements of the delay of the packet envelope were
instead carried out for different frequencies and in different situations in which evanescent
waves were involved.
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0.5 1.0 1.5 2.0
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1.0

1.5

2.0

2.5

d (mm)

η

Figure 4. Let us define the velocity through the barrier as v = (barrier length)/(phase time). In the
figure, this is represented on the vertical axis, the adimensional ratio η = v/vs between this velocity
v and the velocity vs of the bulk transverse waves in the medium (3100 m/s in this case), which is
the velocity in the acoustic case correspondent to c of the electromagnetic case. On the horizontal
axes is the barrier length d in mm. The horizontal line represents the limit of the acoustic analogue of
superluminality. The curves are at different frequencies of 1.5, 1.7, 1.9 and 2.1 MHz. To be noted that
the curves cross the limit sooner (shorter barrier) for lower frequencies (deep under the cut-off) and
later for higher frequencies (closer to the cut-off).

Table 2 lists some experimental results in photonics (tunneling between two FTIR
total internal reflection prisms, photonic chain of dielectric layers, tapered waveguide), in
guided microwaves and in guided Lamb waves.

Table 2. Experimental results in the literature.

Barrier Type Reference Traversal Time 1/Frequency

FTIR Balcou and Dutriax [32] 40 fs 11.3 fs

FTIR Mugnai et al. [33] 134 ps 100 ps

FTIR Carey et al. [34] ≈1 ps 3 ps

FTIR Haibel and Nimtz [35] 117 ps 120 ps

Photonic chain Steinberg et al. [13] 1.47 fs 2.3 fs

Photonic chain Spielmann et al. [20] 2.7 fs 2.7 fs

Photonic chain Nimtz et al. [36] 81 ps 115 ps

Photonic waveguide Enders and Nimtz [37] 81 ps 115 ps

Microwave waveguide Ranfagni et al. [15] ≈1 ns ≈1 ns

Ultrasonic waveguide Alippi et al. [38] 0.5 µs 0.65 µs

Table 2 shows experimental results that support a hypothesis made by Nimtz and
Stahlhofen [39], for which the traversal time is of the order of magnitude of the reciprocal
of the frequency used. This is found for both the electromagnetic waves and acoustic
waves. This fact, combined with the Hartman effect of independence of the traversal time
from the length of the barrier for “opaque” barriers (beyond a minimum length) leads to
the possibility of an envelope of the wave packet traveling at very large velocities, even
superluminal for electromagnetic waves and beyond the maximum elastic velocity of the
considered medium for elastic waves.



Acoustics 2024, 6 372

We remember that in any case in particular conditions, the velocity of the envelope
does not correspond to the velocity of information transfer, therefore, the causality principle
of special relativity remains intact.

4. Conclusions

Following the formal analogy among quantum, electromagnetic and acoustic waves,
the problem of the determination of the traversal time of a potential barrier by evanescent
acoustic waves has been addressed. The analogy has been demonstrated for the SH
(shear horizontal) modes in a rectangular waveguide that have the same analytical form
of dispersion relation as quantum and electromagnetic waves; then, with an appropriate
tapering of the waveguide, a potential barrier can be simulated. The article focused in
particular on the determination of the so-called phase time, i.e., the temporal delay due to a
phase displacement for a wave packet crossing a region of forbidden propagation, putting
in evidence the so-called Hartman effect also for acoustic modes.

The Hartman effect happens for opaque barriers when the length d is such that βd ≫ 1.
The typical traversal time, in that case, is found for SH waves and compared with other
results in the literature obtained in different fields, confirming the conjecture that the traver-
sal phase time is proportional to the inverse of the typical frequency of the phenomenon
independently from the length of the opaque barrier.

This leads to an increasing in the traversal velocity defined as the barrier length
divided by the phase time, well-above the velocity limit relative to the phenomenon in
object, which, for acoustic shear-guided waves, is the shear velocity of bulk waves in the
material of which the waveguide is made and that is the analogue of the light c velocity in
electromagnetic and quantum fields. This simulation of the tunneling effect with ultrasonic-
guided waves confirms the results obtained in other fields and opens the possibility to
experimental research on other features, like the study of the signal inside the barrier, which
is impossible or very difficult to obtain in other fields of physics.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The author declare no conflicts of interest.

References
1. Rayleigh, L. On the Velocity of Light. Nature 1881, XXIV, 382. [CrossRef]
2. Rayleigh, L. On the theory of anomalous dispersion. Philos. Mag. 1899, XLVIII, 151. [CrossRef]
3. Brillouin, L. Wave Propagation and Group Velocity; Academic Press: New York, NY, USA, 1960.
4. Winful, H.G. Group delay, stored energy, and the tunnelling of evanescent electromagnetic waves. Phys. Rev. E 2003, 68, 016615.

[CrossRef] [PubMed]
5. Garrett, C.G.B.; McCumber, D.E. Propagation of a Gaussian light pulse through an anomalous dispersion medium Phys. Rev. A

1970, 1, 305. [CrossRef]
6. Chu, S.; Wong, S. Linear pulse propagation in an absorbing medium. Pys. Rev. Lett. 1982, 48, 738. [CrossRef]
7. Akulshin, A.M.; Barreiro S.; Lezama, A. Steep Anomalous Dispersion in Coherently Prepared Rb Vapor. Phys. Rev. Lett. 1999,

83, 4277. [CrossRef]
8. Basov, N.G.; Ambartsumyan, R.V.; Zuev,V.S.; Kryukov, P.G.; Letokhov, V.S. Nonlinear amplification of light pulses Sov. Phys. JETP

1966, 23, 16.
9. Chiao, R.Y. Superluminal (but causal) propagation of wave packets in transparent media with inverted atomic populations. Phys.

Rev. A 1993, 48, R34. [CrossRef]
10. Steinberg, A.M.; Chiao, R.Y. Dispersionless, highly superluminal propagation in a medium with a gain doublet. Phys. Rev. A 1994,

49, 2071. [CrossRef]
11. Wang, L.; Liu, N.; Lin, Q.; Zhu, S. Effect of coherence on the superluminal propagation of light pulses through anomalously

dispersive media with gain. Europhys. Lett. 2002, 60, 834. [CrossRef]
12. Fisher, D.L.; Tajima, T.; Downer, M.C.; Siders C.W. Envelope evolution of a laser pulse in an active medium. Phys. Rev. E 1995,

51, 4860. [CrossRef]

http://doi.org/10.1038/024382a0
http://dx.doi.org/10.1080/14786449908621313
http://dx.doi.org/10.1103/PhysRevE.68.016615
http://www.ncbi.nlm.nih.gov/pubmed/12935278
http://dx.doi.org/10.1103/PhysRevA.1.305
http://dx.doi.org/10.1103/PhysRevLett.48.738
http://dx.doi.org/10.1103/PhysRevLett.83.4277
http://dx.doi.org/10.1103/PhysRevA.48.R34
http://dx.doi.org/10.1103/PhysRevA.49.2071
http://dx.doi.org/10.1209/epl/i2002-00292-4
http://dx.doi.org/10.1103/PhysRevE.51.4860


Acoustics 2024, 6 373

13. Steinberg, A.M.; Kwiat, P.G.; Chiao, R.Y. Measurement of the single-photon tunnelling time. Phys. Rev. Lett. 1993, 71, 708–711.
[CrossRef]

14. Hauge, E.H.; Støvneng, J.A. Tunneling times: A critical review. Rev. Mod. Phys. 1989, 61, 917–936. [CrossRef]
15. Ranfagni, A.; Mugnai, D.; Fabeni, P.; Pazzi, G.P. Delay-time measurements in narrowed waveguides as a test of tunnelling. Appl.

Phys. Lett. 1991, 58, 774. [CrossRef]
16. Enders, A.; Nimtz, G. Evanescent-mode propagation and quantum tunneling. Phys. Rev. E 1993, 48, 632–634. [CrossRef] [PubMed]
17. Ananthaswamy, A. Quantum Tunneling Is Not Instantaneous, Physicists Show. Scient. Amer. Space Phys. 2020, 3, N.5.
18. Hartman, T.H. Tunneling of a wave packet. J. Appl. Phys. 1962, 33, 3427. [CrossRef]
19. Ghatak, A.; Banerjee, S. Temporal delay of a pulse undergoing frustrated total internal reflection. Appl. Opt. 1989, 28, 1960.

[CrossRef] [PubMed]
20. Spielmann, C.; Szipöcs, R.; Stingl, A.; Krausz, F. Tunneling of optical pulses through photonic band gaps. Phys. Rev. Lett. 1994,

73, 2308. [CrossRef]
21. Setare, M.R.; Ghasemian, K.; Jahani, D. Hartman effect at merging point in graphene under uniaxial strain. Phys. Lett. A 2021,

387, 127004. [CrossRef]
22. Muga, J.G.; Leavens, C.R. Arrival time in quantum mechanics. Phys. Rep. 2000, 338, 353–438. [CrossRef]
23. Büttiker, M. Larmor precession and the traversal time for tunnelling. Phys. Rev. B 1983, 27, 6178–6188. [CrossRef]
24. Winful, H.G. Tunneling time, the Hartman effect and superluminality: A proposed resolution of an old paradox. Phys. Rep. 2006,

436, 1–69. [CrossRef]
25. Pelat, A.; Gautier, F.; Conlon, S.C.; Semperlotti, F. The acoustic black hole: A review of theory and applications. J. Sound Vib. 2020,

476, 115316. [CrossRef]
26. Giovanazzi, S. Hawking Radiation in Sonic Black Holes. Phys. Rev. Lett. 2005, 94, 061302. [CrossRef] [PubMed]
27. Landauer, R.; Martin T. Barrier interaction time in tunnelling. Rev. Mod. Phys. 1994, 66, 217–227. [CrossRef]
28. Leavens, C.R.; Aers, G.C. Dwell time and phase times for transmission and reflection. Phys. Rev. B 1989, 39, 1202–1206. [CrossRef]

[PubMed]
29. Landauer, R.; Martin, T. Time delay in wave packet tunnelling. Solid State Commun. 1992, 84, 115–117. [CrossRef]
30. Slawinski, M.A. Waves and Rays in Elastic Continua; World Scientific: Singapore, 2010.
31. Salencon, J. Handbook of Continuum Mechanics: General Concepts, Thermoelasticity; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2001.
32. Balcou, P.; Dutriaux, L. Dual Optical Tunneling Times in Frustrated Total Internal Reflection. Phys. Rev. Lett. 1997, 78, 851.

[CrossRef]
33. Mugnai, D.; Ranfagni, A.; Ronchi, L. The queston of tunneling time duration: a new experimental test at microwave scale. Phys.

Lett. A 1998, 247, 281. [CrossRef]
34. Carey, J.J.; Zawadzka, J.; Jaroszynski, D.; Wynne, K. Noncausal Time Response in Frustrated Total Internal Reflection? Phys. Rev.

Lett. 2000, 84, 1431. [CrossRef] [PubMed]
35. Haibel, A.; Nimtz, G. Universal tunnelling time in photonic barrier. Ann. Phys. 2001, 10, 707–712. [CrossRef]
36. Nimtz, G.; Enders A.; Spieker, H. Photonic tunneling times. J. Phys. I 1994, 4, 565. [CrossRef]
37. Enders, A.; Nimtz, G. On superluminal barrier traversal. J. Phys. I 1992, 2, 1693. [CrossRef]
38. Alippi, A.; Germano, M.; Bettucci, A.; Farrelly, F.A.; Muzio, G. Traversal time of acoustic plate waves through a tunneling section.

Phys. Rev. E 1998, 57, 4907–4910. [CrossRef]
39. Nimtz, G.; Stahlhofen, A.A. Universal tunneling time for all fields. Ann. Phys. 2008, 17, 374–379. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevLett.71.708
http://dx.doi.org/10.1103/RevModPhys.61.917
http://dx.doi.org/10.1063/1.104544
http://dx.doi.org/10.1103/PhysRevE.48.632
http://www.ncbi.nlm.nih.gov/pubmed/9960633
http://dx.doi.org/10.1063/1.1702424
http://dx.doi.org/10.1364/AO.28.001960
http://www.ncbi.nlm.nih.gov/pubmed/20555441
http://dx.doi.org/10.1103/PhysRevLett.73.2308
http://dx.doi.org/10.1016/j.physleta.2020.127004
http://dx.doi.org/10.1016/S0370-1573(00)00047-8
http://dx.doi.org/10.1103/PhysRevB.27.6178
http://dx.doi.org/10.1016/j.physrep.2006.09.002
http://dx.doi.org/10.1016/j.jsv.2020.115316
http://dx.doi.org/10.1103/PhysRevLett.94.061302
http://www.ncbi.nlm.nih.gov/pubmed/15783717
http://dx.doi.org/10.1103/RevModPhys.66.217
http://dx.doi.org/10.1103/PhysRevB.39.1202
http://www.ncbi.nlm.nih.gov/pubmed/9948302
http://dx.doi.org/10.1016/0038-1098(92)90306-T
http://dx.doi.org/10.1103/PhysRevLett.78.851
http://dx.doi.org/10.1016/S0375-9601(98)00628-8
http://dx.doi.org/10.1103/PhysRevLett.84.1431
http://www.ncbi.nlm.nih.gov/pubmed/11017535
http://dx.doi.org/10.1002/andp.20015130802
http://dx.doi.org/10.1051/jp1:1994160
http://dx.doi.org/10.1051/jp1:1992236
http://dx.doi.org/10.1103/PhysRevE.57.R4907
http://dx.doi.org/10.1002/andp.20085200603

	Introduction
	Material and Methods
	Analogy between the Quantum Tunneling Effect and Evanescent, Electromagnetic- or Acoustic-Guided Waves
	A Possible Definition of Traversal Time: The Phase Time
	SH Modes in Ultrasonic Waveguides
	Phase Time for SH Ultrasonic Waves

	Results
	Theoretical Results for SH Waves
	Some Experimental Results in the Literature

	Conclusions
	References

