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Abstract: The management of decentralized energy resources and smart grids needs novel data-
driven low-latency applications and services to improve resilience and responsiveness and ensure
closer to real-time control. However, the large-scale integration of Internet of Things (IoT) devices
has led to the generation of significant amounts of data at the edge of the grid, posing challenges for
the traditional cloud-based smart-grid architectures to meet the stringent latency and response time
requirements of emerging applications. In this paper, we delve into the energy grid and computa-
tional distribution architectures, including edge–fog–cloud models, computational orchestration, and
smart-grid frameworks to support the design and offloading of grid applications across the compu-
tational continuum. Key factors influencing the offloading process, such as network performance,
data and Artificial Intelligence (AI) processes, computational requirements, application-specific fac-
tors, and energy efficiency, are analyzed considering the smart-grid operational requirements. We
conduct a comprehensive overview of the current research landscape to support decision-making
regarding offloading strategies from cloud to fog or edge. The focus is on metaheuristics for identi-
fying near-optimal solutions and reinforcement learning for adaptively optimizing the process. A
macro perspective on determining when and what to offload in the smart grid is provided for the
next-generation AI applications, offering an overview of the features and trade-offs for selecting
between federated learning and edge AI solutions. Finally, the work contributes to a comprehensive
understanding of edge offloading in smart grids, providing a Strengths, Weaknesses, Opportuni-
ties, and Threats (SWOT) analysis to support cost–benefit analysis in decision-making regarding
offloading strategies.

Keywords: smart grid; edge offloading; edge–cloud integration; offloading criteria; edge orchestration;
metaheuristics; reinforcement learning

1. Introduction

As Internet of Things (IoT) sensors and actuators are deployed in smart grids, op-
eration and control need real-time processing closer to the edge for faster response and
to support the development of context-aware, Artificial Intelligence (AI)-driven energy
services [1]. This trend is accelerated by the integration of renewable energy sources at
the edge of the grid, which requires holistic solutions and decentralized energy and com-
putational infrastructures to ensure energy resilience and decrease carbon footprint [2].
However, in smart-grid decentralized scenarios, the offloading of processing workloads
towards the edge nodes is challenging due to the heterogeneity, diversity of resources, appli-
cation characteristics, and edge uncertainty [1]. Challenges like real-time data-processing,
reducing latency, and security need to be systematically addressed in the smart grid, and
edge and fog computing can play a fundamental role in energy sector decentralization [3].

Different edge-computing and energy-grid-related factors need to be considered to
offload and orchestrate in near real-time applications at the edge of the smart grid to
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address operational problems brought by the integration of renewable energy sources
while minimizing data transfers [1,4]. The challenge is to make optimal computational
orchestration decisions under uncertain and dynamic conditions [5] given by edge resource
capacity demand (e.g., bandwidth and memory), failures (e.g., data network link), the
latency of the network, energy consumption of resources, and lifecycle activities of applica-
tions. Automation is a key aspect in managing edge-offloading solutions in smart grids and
is facilitated by recent advancements in application virtualization, semantic integration,
and the data connectivity of edge devices [6].

Moreover, the edge-offloading decisions are also influenced by the contextual aspects
of the data, encompassing requirements like low response time and various network
performance characteristics [7]. Edge AI is emerging as a new paradigm for the efficient
management of smart grids, leveraging the improvement of machine-learning models
that can run at the edge of the grid [8]. Edge AI is facilitated by factors such as the
development of training pipelines with improved usability and advancements in edge-
computing infrastructure, which occur more rapidly than the reduction of wide-area
network latency. Additionally, the adoption of IoT devices in the smart grid generates
significant big data that requires AI to process, with stringent time processing requirements
to prevent energy shortages [5,9]. Edge–fog–cloud federated frameworks offer promising
solutions for processing data using AI at the edge nodes and orchestrating a global model
in the cloud [10,11]. Nevertheless, their applications in smart-grid scenarios and integration
with new real-time context-aware energy asset-management services are rather limited,
even though they bring clear benefits in terms of data management in smart grid, privacy,
and security, or addressing latency impact on services’ delivery. However, presently, energy
services focus on assuring the links and connectors for analyzing data in the cloud, taking
advantage of the potential unlimited computational resources [12].

In this context, a comprehensive overview of the current state of research is needed to
support sound decisions regarding smart-grid applications offloading from cloud to fog
or edge. The edge-offloading implementation is complex, requiring substantial upfront
investments and posing integration and security challenges. This report aims to bridge
knowledge gaps, serving as a comprehensive guide that explores edge offloading in the
energy sector, focusing on architecture, criteria, and decision-making techniques. Existing
architecture and offloading decision-making criteria need to be analyzed in the context
of the smart grid to support applications orchestration across the computing continuum,
supporting the implementation and delivery of AI-driven energy services at the edge of
the smart grid. We overview the smart grid and computational distribution architectures,
including edge–fog–cloud models, orchestration architecture, and serverless computing,
considering decentralization and the case of edge offloading. Despite their potential, these
architectures face challenges in coordinating tasks due to the complexity of management
across layers. As the optimization problem is computationally complex and involves a high
dimensionality of the solution space, it is addressed using heuristics-based computing or
reinforcement learning models. We analyze the decision-making variables and optimization
algorithms to assess their efficiency and applicability to edge offloading. Finally, we provide
a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis to support edge-
offloading decision-making in smart grids, improve computational resource allocation, and
enhance overall smart-grid decentralized organization.

The rest of the paper is structured as follows. Section 2 presents the basic concepts
of edge, fog, and smart grids. Section 3 offers an overview of existing architectures for
smart grid and edge offloading. Section 4 analyses the criteria used in offloading decision-
making, and Section 5 focuses on heuristics and reinforcement learning solutions. Section 6
concludes the paper and discusses the strengths, weaknesses, opportunities, and threats
related to edge offloading in smart grid.
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2. Basic Concepts

The emergence of new IoT technologies and intelligent infrastructure models has led
to a significant increase in the number of network-connected devices and the volume of
data that moves across the network. Consequently, traditional data-processing performed
entirely in a cloud environment resulted in large communication latencies, making it
difficult to deliver real-time results in internet-based applications [13]. These applications
run mainly on the end users’ mobile devices, which are limited in terms of computational
resources and storage capacity, while data-processing ensures that the functionalities are
executed in the cloud. In this context, using the traditional network architecture creates
a high network load, and communication becomes completely inefficient [14]. Edge and
fog computing paradigms emerged to address the bottlenecks of cloud-based architectures
by moving the data-processing at the edge of the network, closer to the place where it is
generated and consumed. Edge and fog computing are important in offloading cloud-based
applications by providing the required computational and storage resources and services
closer to the users (see Figure 1).
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In the smart-grid context, the integration of IoT monitoring devices has led to the
generation of big data that presents challenges to cloud-based applications due to latency
and responsiveness problems. In this sense, the edge or fog computing infrastructure
could be used between the energy grid monitoring devices and the cloud level, enabling
data-processing closer to the edge and reducing the data exchanges with the cloud [15].
Edge servers can be deployed with enough processing capacity to allow the analysis of IoT
data and provide faster decision-making for optimizing decentralized energy systems and
the data being processed locally. In this context, the problems at the edge devices levels, like
data storage and processing capabilities, are usually addressed by forwarding the data to
the next computational level, benefiting from better hardware equipment [16]. At the same
time, the applications can be offloaded toward the edge levels to increase responsiveness
and address latency and bandwidth problems.
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2.1. Edge Computing

Edge computing puts computing and data storage near where they are used, usually
at the network edge, as opposed to cloud computing, where computing and data storage
are done far away in distant data centers. Cao et al. [17] argue that all edge-computing
definitions focus on providing services and performing calculations at the network edge
closer to the data generation source to meet the critical needs of industry and real-time
applications. The edge devices such as IoT devices, smartphones, sensors, and other
equipment that generate or consume data often have limited processing and storage
capabilities; however, they form an edge infrastructure, which includes the hardware and
software resources deployed at the edge.

The architecture of an edge-computing network consists of the terminal layer, bound-
ary layer, and cloud layer [17,18]. End devices, such as sensors and actuators, are positioned
at the terminal layer of the computing structure. This front-end environment offers in-
creased interactivity and enhanced responsiveness for end users. Leveraging the available
computing capabilities through the numerous nearby end devices, edge computing can
deliver real-time services for certain applications. However, given the limited capabilities
of these end devices, most demands cannot be met within the terminal layer. Consequently,
in such instances, the end devices forward the resource requirements to the edge servers
located in the near-end (boundary) layer, where most of the data computation and storage
migrates. The edge servers have better computing and storage capabilities, but they are
also constrained compared to the cloud servers. This is why the computationally intensive
tasks are forwarded to the cloud servers and deployed in the far-end (cloud) layer, but this
can result in a significant latency penalty.

Edge devices feature a high degree of heterogeneity, leading to interoperability chal-
lenges, a significant obstacle in successful edge offloading. Additionally, network het-
erogeneity, caused by the diversity of communication technologies, affects edge service
delivery. Consequently, ensuring that all edge devices and servers can work together
seamlessly is crucial, pushing standardization and interoperability protocols importance
for the edge-computing ecosystem. The low latency and high bandwidth are the primary
motivations for edge offloading to reduce the delay in sending data to a remote cloud server
and receiving a response [18]. This is important for applications that require real-time or
near-real-time processing, like some of the time-critical energy management services of
the smart grid. Edge offloading aims to achieve bandwidth optimization by reducing the
amount of data that needs to be transmitted to central data centers or the cloud [19]. Thus,
relevant decision-making processes should be implemented on edge servers by consider-
ing local and contextual energy data. This becomes particularly important in scenarios
with limited data network capacity and stringent response time requirements, making it
unfeasible to send the data to the cloud [8].

Finally, additional trade-offs need to be addressed, such as energy efficiency, security,
and offloading overhead [20]. Given that many edge devices are battery-powered or
have limited power resources, energy consumption is significantly lower in edge-based
infrastructures than in cloud data centers. Furthermore, since data are processed closer to
the source, there is potential for improved data privacy and reduced exposure to security
threats [21].

2.2. Fog Computing

Fog computing distributes services and resources for data-processing, storage, and
communication throughout the entire path from the cloud to the connected devices [22].
The main difference compared to edge computing is the hierarchical nature, offering a
comprehensive range of computing, networking, storage, control, and services [23]. Conse-
quently, fog jointly works with the cloud and edge nodes, representing the intermediate
layer between the near-end and the far-end layers of the general edge architecture. A
fog node includes multiple physical devices that offer resources and services and link
the edge and cloud environments [24]. Fog nodes are responsible for processing, stor-
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ing, and transmitting data supporting the offloading towards the network edge [25]. Fog
nodes can be placed close to the data source to reduce the latency compared to traditional
cloud computing or can be closer to the cloud to provide higher computing power and
storage capabilities.

Fog nodes collaborate in a mesh fashion to offer load-balancing, resilience, fault
tolerance, data sharing, and reduced reliance on cloud communication [26]. Fog computing
systems typically comprise three internal tiers but can include more tiers for specialized
applications [22]. At the edge, fog nodes focus on data acquisition, normalization, and
sensor and actuator control. In higher tiers, they handle data filtering, compression, and
transformation, while nodes near the cloud aggregate data and generate further knowledge.
Architecturally, edge–fog nodes require less processing and storage but rely on substantial
I/O accelerators for sensor data intake. With more tiers, each level extracts valuable data
and executes more computationally intensive tasks.

Fog computing aims to establish a cohesive range of computing services extending
seamlessly from the cloud to edge devices, as opposed to the base principle of edge comput-
ing, which considers network edges as separate, isolated computing entities. Furthermore,
fog provides stronger computing and storage resources than edge does. Thus, a fog node
can aggregate data collected and processed by multiple edge nodes.

2.3. Smart Grid

The shift towards a renewable-based energy system impacts the electric power system
operation that needs to integrate new Information and Communications Technology (ICT)
paradigms, models, architectures, and services to support decentralization [27]. The smart-
grid concept is fully connected to the dynamically interactive real-time infrastructure
incorporating IoT and ICT-driven solutions everywhere, from electricity generation to
delivery and consumption [28] (see Figure 2). Moreover, in decentralized scenarios, digital
communication and technology are mandatory to enhance the efficiency, reliability, and
sustainability of electricity production, distribution, and consumption [29].
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Smart grids aim to solve traditional grid problems caused by the energy transition,
such as managing the uncertainty of renewable energy sources, managing demand, shifting
and shaving, managing congestion, reducing power losses, and offering secure, efficient,
and resilient services. Consequently, smart-grid development has added smart data-
processing capabilities to the electrical grid [30] to improve the reliability and efficiency
of the electric grid, optimize the grid operation and its resources, integrate distributed
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renewable energy sources (RES), and deploy new technologies for improved metering
and automation. On smart grids, data-driven services are implemented to enable real-
time management during normal and emergency conditions [31]. They allow for grid-
decentralized operation within their safe ranges and reduce the overall costs of energy [32].

The management tools built on top of smart grids require the integration of advanced
IoT devices, smart meters, data hubs, and storage systems, as well as AI-driven processes
and decentralized components and architectures [28]. The deployment of smart metering
devices and the integration of renewable sources may increase the adoption of edge AI [33].
However, new challenges emerge in terms of data-processing scalability and concerns
about data privacy and security [24]. By connecting millions of monitoring devices, big
data are fed into the distributed grid management systems. Thus, the trade-offs related
to latency, bandwidth, and response time need to be carefully considered. Managing and
controlling the distributed energy sources at the edge of the grid requires the large-scale
adoption and integration of IoT devices. The big data collected on smart-grid operation
needs to be managed and processed closer to real-time to ensure reliability in energy
distribution. As the complexity of grid operations increases, the volume of data grows, thus
making it challenging to ensure a low latency in data analysis and decision-making within
acceptable time frames. Processing workloads need to be moved as close as possible to the
data generation points to decrease the latency and reduce the amount of data moved to
the cloud. Moreover, the prompt processing of data requires high throughput capabilities
to handle the data streams generated by the monitoring devices. Additional challenges
related to data storage, processing power, and network bandwidth need to be addressed to
avoid bottlenecks in data ingestion and efficient AI-based data-processing.

3. Architectures Overview

Offloading in smart grids typically refers to the process of shifting computational tasks
or data-processing from local devices to remote servers or cloud platforms and back. In
this section, we start by analyzing the most relevant architecture for smart energy grids
and then various computational architectures that have been proposed and can eventually
facilitate the offloading of applications across the computational continuum.

3.1. Smart-Grid Architectures

There are two widely used smart-grid architectural frameworks providing a struc-
tured approach for designing applications architectures, future infrastructures, and refer-
ence scenarios: the European smart-grid architecture model (SGAM) proposed by CEN-
CENELEC [34] and the American smart-grid conceptual model proposed by NIST (National
Institute of Standards and Technology) [35].

SGAM is a layered model defining several interoperability layers [34] (see Figure 3).
The asset and component layer models the energy assets and resources installed in the
smart grid as well as the communication infrastructure for data exchange. The com-
munication layer facilitates the exchange of data among various components within the
smart-grid infrastructure. It integrates the communication protocols and interfaces that
enable interoperability among smart-grid components and data exchanges for monitoring
and control. The information layer defines the data flows and storage aspects of the energy
and computational infrastructure. The function layer addresses the functional capabilities
needed to meet business objectives, while the business layer models processes, stakehold-
ers, and objectives. The security layer spans across all layers, offering features for security
and privacy.
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It considers different electrical grid domains such as generation, transmission, distri-
bution, distributed energy resources (DER), customer premises, etc., and foresees different
aggregation zones. The data from the field devices and meters is usually aggregated or
concentrated in the station zone to reduce the amount of data to be communicated and
processed in the operational zone. At the same time, spatial aggregation can be done from
distinct locations to wider areas; for example, multiple decentralized energy resources for a
microgrid, smart meters in customer premises are aggregated in the neighborhood or com-
munity, etc. As it is a reference architecture, SGAM offers several advantages for designing
and implementing decentralized smart-grid scenarios, as it provides a common foundation,
facilitates comparative analysis, and includes a specific mapping methodology [37–39].

The SGAM framework has been used to model complex energy systems and create
high-level designs. The described architecture helps to understand the communication
infrastructure and to clarify the data and information exchange problems, etc. SGAM
has been adopted in interoperability scenarios where different heterogeneous components
interact, and data are integrated for analytics. It has become a best practice, especially for
research projects in the energy domain [34], where the model was used to enable ancillary
services for distributed energy sources, to test innovative smart-grid technologies, and to
evaluate smart-grid-level use cases [38] etc. Over the years, the SGAM framework has also
been used in other fields such as industry automation, automotive, legislation, smart cities,
maritime, and software development [34].

The smart-grid conceptual model proposed by NIST [35] offers a reference model to
guide the development and interoperability of the smart grid, addressing aspects related
to ICT models and architecture design and integration, paving the way for decentralized
management scenarios (see Figure 4). The conceptual model explains the roles and services
of the smart grid in different domains and sub-domains that feature various services,
interactions, and stakeholders who interact and communicate to achieve overall system
objectives. Examples of such services are demand management, distributed generation
aggregation, and outage control.
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The customer domain represents the end users of electricity, consumers, producers, or
prosumers that can consume, generate, and store or manage energy. As a classification, the
model considers three classes of customers, each with a different sub-domain: residential,
commercial, and industrial. The customers’ boundaries are the smart meters and the energy
services interface (ESI). The markets are economic mechanisms and facilitators that offer
functionalities for actions to optimize system operation, such as energy selling/buying,
storage, etc. The markets domain allows the balancing of supply with demand within
the smart grid and can use advanced peer-to-peer (P2P) trading mechanisms based on
modern technologies such as blockchain. The entities offering services to the involved
actors are marked in the service provider domain. These business activities include usual
utility services, like billing and customer accounts, and improved customer services, like
controlling energy use, demand response, and energy generation. Operations deal with the
administrators of electricity movement, such as smart-grid managers, and involve complex
energy management systems to analyze and efficiently operate the grid; transmission
refers to the carriers of electricity over long distances, such as Transmission Systems
Operators (TSOs), while distribution is the domain for distributors of electricity such as
Distribution System Operators (DSOs). Generation (updated with DER inclusion in version
4.0 of the model) refers exclusively to energy producers, including traditional generation
sources and DERs. This domain includes all required technologies and infrastructures for
generation/storage and participation in demand response programs.

The NIST smart-grid model has been adopted for different scenarios in the energy
management domain with specific use cases in residential energy efficiency, industrial
energy consumption optimization, electric vehicle (EV) integration in smart grids, energy
trading, and DER management. Its defined actors and components allow for customization
for any smart energy scenario that can be designed in present smart grids. Apart from
testing and validating various smart-grid designs, the NIST model has found applicability
in auditing cybersecurity strategies.

The two architectural frameworks discussed above have been influential in developing
smart-grid architectures for different cases and scenarios, including decentralization as-
pects [40]. The choice between the two frameworks depends on factors such as the specific
requirements of the project, the level of detail needed, and the area of interest, as well as on
their advantages and disadvantages (see Table 1).
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Table 1. Comparison of the two smart-grid architectures: (+) advantages and (−) disadvantages.

Structure Standardization Interoperability Cybersecurity Flexibility Level of Details Complexity

SGAM
(+)

Comprehensive,
based on layers

(+) Promotes
international

standards

(+) Interfaces for
components and

layers

(+) Dedicated
layer (−) Rigid (+)

Comprehensive
(−) High for
newcomers

NIST
(+) Modular,

based on
components

(−)
Standardization

challenges
(−) Limited (+) Core

components
(+) Flexible and

adaptable
(−) Lack of

details
(+/−) Additional

guidance

However, more specific architectures have been designed to address different chal-
lenges related to the computational continuum in more depth, such as data management
distribution latency and security [2,3,41]. It is worth noting that even though those archi-
tectures have benefits related to edge offloading, the implementation can be a complex
process and might need significant upfront investment for the initial setup [42,43]. The
integration of different smart-grid layers with computational ones, such as edge or fog, and
security management for unauthorized access are additional challenges that need to be con-
sidered [44]. Table 2 highlights important characteristics of relevant smart-grid architectures.

Table 2. Characteristics of more specific smart-grid architectures.

Smart-Grid
Architecture

Grid
Automation

Grid
Resilience Protocols Scalability Fault Tolerance Real-Time

Monitoring
Security

Measures

Cloud–edge [41] Yes Yes MQTT, IEC 61850 High Yes Yes Advanced
Encryption

Three-Tier [2] Yes Yes OPC UA, DNP3 Moderate Yes No SSL/TLS

Edge-based with AI [3] Yes Yes CoAP, IEC 60870 High Yes Yes Blockchain

Mehmood et al. [41] defined a smart-grid architecture consisting of four layers: the
device layer, edge-computing layer, cloud computing layer, and security layer, each layer
representing a specific purpose for data collection, preprocessing, storage, analysis, and
security management. The device layer consists of sensors, tags, actuators, and smart
meters that collect data from the smart grid. The edge-computing layer is located at the
network edge with the primary goal of filtering and preprocessing data from the device
layer before sending it to the cloud. The cloud computing layer is responsible for storage,
computational analysis, and providing different application services while receiving only
the summarized data sent from the edge nodes for global analysis. The security layer
is responsible for the security of the smart grid, and it should be considered from the
early stages of development, including network, computing, and memory management.
The framework aims to address challenges such as data management, latency, security,
and privacy for the smart grid system based on IoT, improving efficiency, reliability, and
integration of renewable energy sources.

Feng et al. have proposed a three-tier architecture for the implementation of electrical
engineering scenarios in smart grids [2]. The architecture foresees the thing, edge, and
cloud tiers. The thing tier is responsible for the electrical equipment and communication
access, executing specific operations in the smart grid, and implementing control orders.
The edge tier acts as an intermediary layer between the smart-grid control center and
the things, hosting resources for storage, communication, and computing. The energy
resources are categorized into sub-layers based on their locations. Although the low-power
and fine-performance resources are positioned in the proximity of the things, resources with
more robust computing capabilities are located closer to the control center. Additionally,
the cloud tier represents the cloud computing resources that empower the computational
and offer storage capabilities for the smart grid, offering monitoring solutions.

Molokomme et al. proposed an architecture involving multiple components such as
residential, commercial, and industrial devices, edge servers, power systems, IoT devices,
and the overall cloud infrastructure [3]. The architecture integrates with edge computing,
introducing intelligence for analysis, monitoring, and processing of data at the network’s
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edge. The edge servers offload the tasks that require significant computation from devices
with limited resources, improving the speed and processing capacity of the system. The
architecture extends the features with AI algorithms deployed at the edge to improve
communication, processing, and caching within the system. The objective is to raise
awareness about security threats, efficiently manage power resources, and detect potential
issues within smart-grid systems. The architecture may utilize advanced optimization
techniques such as federated learning, deep reinforcement learning, and peer-to-peer to
enhance the performance and resource usage of the entire system.

3.2. Edge-Offloading Architectures

The architecture addresses the design of systems that involve the distribution of
computational tasks between different computing resources, such as edge devices, cloud
servers, or other remote processing units.

Several architectures are based on combining different computing models, such as
edge and cloud, to enable distributed computing and task-offloading [19,45,46]. They focus
on distributing tasks efficiently and optimizing resource usage. However, these benefits
come with challenges, such as increased dependency within the network and the manage-
ment of tasks across multiple layers. Kaur et al. proposed the KEIDS scheduler [45] for
managing Kubernetes containers on edge–cloud nodes in the Industrial Internet of Things
(IIoT) environment. The edge nodes are responsible for collecting data from IIoT devices
and performing initial processing. The cloud nodes empower the processing and storage
capability for more complex tasks. The KEIDS controller acts as a central management
and scheduling component, with the main objective of improving the allocation of tasks
to the available nodes. The controller considers different factors, such as carbon footprint,
interference, and energy consumption, in the scheduling decision-making process. By
optimizing energy utilization and minimizing interference, the scheduler aims to provide
optimal performance to end users in terms of application execution time and utilization.
The architecture processes data in real time and offers more flexibility and scalability in
the ecosystem of edge–cloud for IIoT. The proposed scheduler faces limitations such as
performance degradation and scheduling bottlenecks due to the complexity of the edge en-
vironment. The management of containers in dynamic and heterogeneous environments is
complex, posing challenges to organizations concerning application configuration. Finally,
ensuring data consistency across distributed environments can be challenging, particularly
for edge devices that might experience unreliable network conditions. Kovacevic et al. [19]
demonstrate the utilization of multi-access edge-computing servers closer to mobile net-
works, transferring computation and storage from mobile and IoT devices. The edge
servers are distributed across the radio access network and contain modest computational
capabilities compared with cloud services. The offloading decision aims to minimize the
usage of resources while concurrently maximizing the number of accepted requests that
are time-critical. The architecture stresses computing power and transmission with latency
constraints for computation offloading requests. The objective is to optimize resource
allocation to reduce the network traffic and service latency while enhancing the resource
utilization and acceptance rate. Limitations still need to be addressed in terms of energy
and computational capacity availability towards the edge. The computational offloading
solutions can become impractical in the case of applications with strident time execution
requirements. The edge servers can reduce the communication delay, but they are limited
in size and computational capacity and not only cost-effective solutions. Nguyen et al.
present a resource adaptive proxy [46] in an edge-computing environment consisting of
multiple components, including the controller manager, scheduler, master server, cloud
controller manager, and cloud–edge client. The resource adaptive proxy component is
implemented in each worker node of the Kubernetes cluster and is integrated into every
worker node within the cluster. The adaptive proxy algorithm consistently gathers resource
availability, including central processing unit (CPU) and Random Access Memory (RAM),
along with network delays between edge nodes to inform optimal load-balancing decisions.
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When making load-balancing decisions, the adaptive proxy considers the application re-
sources available on each edge node. Although local nodes are given priority for handling
requests, in cases of local node overload, requests are directed to the most suitable edge
node to minimize delay. The architecture is designed to reduce request latency and enhance
overall throughput within the edge-computing environment. However, if the request is
sent to a worker node that is already overloaded, the throughput of the cluster is decreased.
Increased request delays are experienced if the worker node has a high network latency,
which can lead to increased request delays. Thus, the high latency is a result of network
connection delays and bottleneck limitations.

Several architectural designs leverage a hierarchical distribution to achieve optimal
task placement and enhanced QoS (Quality of Service) [47–50]. Pallewatta et al. proposed a
distributed architecture for IoT applications, utilizing microservices architecture and fog
computing [47]. This framework facilitates the transition from monolithic application to
distributed architecture for cloud deployment and task distribution to fog computing. It
optimizes high-quality service delivery by strategic placement of microservices. Fog com-
puting, in combination with resource-efficient deployment at the network edge, addresses
the latency and bandwidth challenges of IoT applications. Moreover, the architecture allows
for the dynamic composition of scalable microservices for achieving optimal performance
in fog-based environments. Nevertheless, coordinating tasks across multiple layers can
be a challenge due to the complexity of management processes, accurate modeling of mi-
croservice architecture, development of microservices placement policy, and microservice
composition. Firouzi et al. proposed an edge layer design responsible for communication
between sensors and nodes, as well as dedicated interconnections between fog nodes and
the cloud [48]. The support for wireless connectivity in nodes relies on several factors,
like geographical location, data throughput, mobility, coverage, environmental conditions,
spectrum licensing, and energy sources. The architectural viewpoint concerning control
and management encompasses life cycle management, registration, provisioning, auto-
mated discovery, offloading, load-balancing, task placement, task migration, and resource
allocation. This hierarchical structure facilitates the dissemination of intelligence and com-
putation, encompassing AI/machine learning (ML) and big data analytics, to attain optimal
solutions within specified constraints. Challenges and limitations arise from the conver-
gence of IoT and cloud computing, such as bandwidth limitations, latency issues, and
connectivity concerns. Also, adapting the architecture for multi-layer computing poses chal-
lenges. Dupont et al. [49] introduced the concept of IoT offloading, wherein containers are
instantiated either at the edge or in the cloud, diverging from deployment on the gateway
itself. The realization of this architectural model leverages OpenStack as a virtual machine
(VM) manager and Kubernetes as a container manager. Within the OpenStack environment,
three controller nodes and two compute nodes are configured, with Kubernetes installed
within the latter. The Kubernetes cluster encompasses cloud nodes, edge nodes, and two
IoT gateways as distinct nodes. These IoT gateways are constructed using a Raspberry Pi
version 3 along with an extension shield capable of supporting diverse wireless communi-
cation modules. The gateways deploy Advanced RISC Machine (ARM) versions of Docker
and specific editions of IoT function containers tailored for both ARM and i386 architectures.
The central orchestrator, utilizing Kubernetes labels, ensures the deployment of the correct
container based on the target architecture. The discovery container initiates communica-
tion through Bluetooth Low Energy (BLE) hardware devices accessible on the gateway.
An event notice is communicated to the orchestrator upon device detection, triggering
subsequent processes. The solution does not address aspects related to edge-offloading
privacy and security in IoT environments, as well as the potential hardware limitations
of the gateway devices. Taherizadeh et al. proposed an architecture to optimize smart
IoT applications, focusing on achieving elevated QoS, flexibility, and dependability [50].
This framework introduces the concept of microservices, where each business capability
is encapsulated as a self-contained service with a clearly defined programmable interface.
Employing lightweight container technologies like Docker, the architecture virtualizes and
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implements the necessary microservices. Components include a container orchestrator,
an edge–fog–cloud monitoring system, and infrastructure elements. This edge–fog–cloud
architecture ensures that data-processing and computation occur at the most suitable level,
enhancing performance, reducing latency, and elevating QoS for IoT applications. The
framework facilitates the orchestration of microservices, seamlessly transitioning from
edge-computing nodes to fog and cloud servers within the geographical vicinity of mobile
IoT devices. In comparison to fixed centralized cloud providers, this distributed computing
architecture delivers swifter service response times and enhanced QoS. The limitations of
the approach are related to the consideration of the runtime variations in the performance
of edge and fog infrastructures, such as processing delays or CPU availability.

Relevant edge orchestration architectures have a primary focus on the organization
and scheduling of tasks across both cloud and edge nodes [51,52]. These approaches offer
advantages such as resource optimization, but the creation of efficient orchestration strate-
gies can be a complex task. Böhm et al. define an architecture based on a container registry
that contains the images of applications and is used to design the nodes within the cloud
infrastructure [51]. The autonomic controller distributes responsibilities to various nodes.
The distribution is based on a defined strategy, algorithm, or policy. Diverse provisioning
models are used to distribute the applications across both cloud and edge layers. Orches-
tration across both cloud and edge layers ensures a strategic distribution of applications in
edge, cloud, and IoT components. The distribution is based on a set of objectives, adopt-
ing a multi-objective approach to support optimal efficiency. Complex optimization and
scheduling models are required to offer this framework, with the capability of dynamically
allocating applications based on resource demand and supply. The main limitation of the
proposed solutions is the lack of in-depth consideration of their requirements, like real-time
processing or fault tolerance for the offloading of containers. Pérez et al. define intelligent
container schedulers for different interfaces within cloud–fog–IoT networks [52]. The
schema consists of three primary interfaces: cloud-to-fog, fog-to-IoT, and cloud-to-IoT, each
with distinct responsibilities and functionalities. It emphasizes the importance of designing
and implementing microservice schedulers for these interfaces, offering several benefits, in-
cluding the optimization of runtime, adherence to latency restrictions, power consumption
reduction, and load-balancing. The schema visually demonstrates the complexity of the
network architecture and the need for tailored scheduling strategies for each interface. The
authors discuss the existing limitations, such as the need for expert strategies and learning
systems for optimizing container scheduling with expert strategies and learning systems to
holistically consider QoS requirements like latency, power consumption, and load balance.

Finally, serverless edge-computing architecture [53] emphasizes the integration of
serverless functionality to manage event processing to reduce the need for extensive
adjustments for IoT devices. However, it is worth mentioning that serverless functions may
encounter delays when starting up, which can affect their ability to respond promptly when
initially required. Moreover, the restricted duration of execution for serverless functions
may function as a limitation for specific applications. From the edge perspective, IoT
devices connect to edge nodes with serverless functionality for efficient event processing,
while IoT devices require minimal adaptation, following function-based principles. In the
cloud, serverless integrates with its edge counterpart.

Table 3 presents an overview of relevant computational offloading architectures and
their characteristics.
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Table 3. Characteristics of Offloading Architectures.

Category Architecture Application
Orchestration Technology Serverless

Computing
Dynamic

Offloading
Multi-Layer

Coordination
Cost-Efficient

Scaling
Optimization
Algorithms

Edge–Cloud
Integration

KEIDS [45] Yes Docker,
Kubernetes No Yes Yes Yes Yes

Multi-access
Edge

Computing [19]
Yes Docker,

Kubernetes No Yes Yes Yes No

RAP [46] Yes Docker,
Kubernetes No Yes Yes Yes Yes

Edge–Fog–
Cloud

Integration

Hierarchical
Edge–Fog–
Cloud [48]

Yes Docker,
Kubernetes Yes Yes Yes Yes Yes

IoT
Offloading [49] Yes Docker,

Kubernetes No Yes Yes Yes No

Edge–Fog–
Cloud for
IoT [50]

Yes Docker,
Kubernetes Yes Yes Yes Yes Yes

Fog Computing
with Microser-

vices [47]
Yes

Docker,
Kubernetes,
KubeEdge

No Yes Yes Yes No

Edge
Orchestration

Autonomic
Controller [51] Yes Docker,

Kubernetes Yes Yes Yes Yes No

Intelligent
Container

Schedulers [52]
Yes Docker,

Kubernetes Yes Yes Yes Yes Yes

Serverless
Integration

Serverless Edge
Computing [53] Yes

AWS Lambda,
Azure

Functions
Yes Yes Yes Yes No

4. Offloading Criteria in Smart Grid

In this section, we explore key factors and variables that serve as guiding principles in
making informed decisions to determine whether a task or process should be offloaded
from a cloud environment to a local edge device or on-premises system (see Figure 5).
When discussing offloading in the context of smart grids, the decision-making process
is crucial for optimizing resource utilization, improving performance, and minimizing
costs across the computing continuum. The process is affected by several variables or
factors, such as network performance, data and AI processes, computational requirements,
application-specific factors, and energy efficiency.
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The key factors and variables involved in the offloading process have been chosen
deliberately, with careful consideration given to the operational requirements of smart grids.
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Network performance is a key factor for considering edge offloading in smart grids, as
they usually feature heterogeneous communication technologies with different bandwidth
and latency features. Data network performance affects data transmission among sensors,
control systems, and energy grid operators. Low latency and high bandwidth are necessary
to ensure that critical data, such as energy demand, grid voltage, and equipment status, is
transmitted promptly to enable timely decision-making and control actions. By offloading
the processing tasks closer to the edge, the issue of transmitting the big data volumes
produced by IoT devices toward the cloud can be mitigated, enabling the process and
decision-making closer to the data origin. Reliable data network performance facilitates
the data transfer among edge–fog–cloud. However, the data connection among the edge
nodes is not always reliable and can expose the offloading process to uncertainty.

AI-powered smart grids require that the data be processed locally and quickly, thus
aligning with edge computing and federated learning principles. Modern smart grids can
generate vast amounts of data that can be analyzed to improve grid operations, optimize as-
set performance, and enable predictive maintenance. At the same time, they pose stringent
privacy and security constraints that can be mitigated using federated AI. However, edge
devices in the energy grid may have limited computing and storage resources; thus, train-
ing AI models locally is challenging. At the same time, sending all data to the cloud server
may cause considerable delay and expose the data to potential breaches and risks. Edge AI
mitigates some of these challenges, enabling timely data-processing and decision-making
closer to the edge by offloading the AI task on the edge.

Computational requirements of offloaded activities play an important role in selecting
the edge node in the grid. Offloaded tasks with higher needs should orchestrate edge
nodes to secure the computational resources required, and this process is challenging.
Algorithms need to predominantly consider the computational requirements and the real-
time constraints of smart-grid operation.

Application-specific factors, such as the type (e.g., data-intensive, CPU-intensive, real-
time, delay tolerant), Service-Level Agreement (SLA), and containerization requirements,
need to be considered. The cost of migration to the edge affects and edge node heterogeneity
affects the choice. Thus, the software requirements raise the complexity of the offloading
process. The distance and bandwidth need to be considered while maintaining an optimized
resource utilization at the edge.

Finally, energy consumption is important for offloading in smart grids. Edge and
mobile cloud computing should consider energy efficiency and the integration of renewable
sources. The energy consumption at the edge–fog needs to be monitored to avoid raising
the grid operation costs.

4.1. Network Performance

Latency, available bandwidth, and response time of a distributed task are important
performance metrics in the context of edge offloading for the energy sector [54]. These
metrics help to identify the efficiency and effectiveness of making edge-offloading decisions
and to assess the performance of applications. In the current literature, several papers
proposed solutions applicable to smart-grid scenarios addressing aspects such as the high
latency that may limit the ability to react in smart-grid real-time control of assets [55–57].

Wang et al. [55] proposed a holistic approach to assess the requirements of different
energy services in smart grids. Metrics, such as latency, bandwidth, and response time,
are used to create schemes for allocating resources and establishing priorities. They help
in making offloading decisions and reducing costs related to task execution delays. The
results highlight the efficiency of offloading strategies based on multi-attribute preferences,
emphasizing how performance metrics enhance business outcomes in smart power services.
Smart-grid components and their performance models influence task execution time, show-
ing the importance of considering energy and latency trade-offs [56]. Network performance
metric quantitative measures can be used to optimize the smart-grid performance and
energy efficiency. Their assessment can be used to determine optimal offloading strategies
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based on specific smart-grid requirements, considering factors like energy consumption,
response time, and availability [57].

The fog computing infrastructures are used as an intelligent gateway within an IoT
framework and offer an effective solution to reduce the latency of applications in edge com-
puting [7]. A multi-period deep deterministic policy gradient algorithm can find an optimal
offloading policy to reduce computation, transmission delay, and energy consumption for
a collaborative cloud network [58]. Longer communication latency can lead to delays in
data transfer, impacting the response of time-critical applications in smart grid. Markos
et al. investigate different communication strategies for edge offloading and their impact
on energy use and response time [59], concentrating on offloading decisions of the com-
putational tasks for a mobile cloud environment. A multi-objective service provisioning
scheme is defined to enhance the overall performance of both network and computation
infrastructure while maximizing the usage of the battery lifespan of mobile devices.

Huaming et al. [57] propose the energy-response time-weighted sum and energy-
response time product metrics to provide a balanced approach while assessing the trade-off
between energy consumption and response time. The metrics combine additive and
product factors, prioritizing both aspects without being influenced by different operational
scales. Kovacevic et al. [19] emphasize the relevance of performance metrics for assessing
applications with critical delays and decision-making related to offloading to improve
collaborative resource sharing among cloudlets and mobile cloud providers. Decision-
makers can use metrics such as latency, resource utilization, acceptance rate, and resource
sharing for efficient cloud offloading in smart grids. Jyothi et al. [60] proposed a dynamic
programming solution to offloading using the Hamming Distance Termination. They
showcase a strategy for efficiently offloading specific tasks to the cloud, therefore improving
execution time and optimizing energy usage. Bandwidth is crucial for proper utilization
and efficient data transfer in the cloud. Insufficient bandwidth can lead to performance
issues and hinder the overall system’s performance [61].

Huaming et al. [62] use Lyapunov optimization to minimize energy consumption
while ensuring that response time meets a given constraint. The prolonged latency of cloud
offloading is not suitable for real-time requirements, while direct edge offloading relies on
powerful edge servers, which may not be practical for prosumer households in smart-grid
scenarios [63]. User-centric perspectives and quality-of-experience-based cost functions
have also been considered to optimize the energy-latency trade-off [64]. The shift towards
cloud computing has led to the definition of architectures susceptible to latency at different
levels [65]. A delayed offloading model has been devised to harness the capabilities
of Wi-Fi and mobile networks, considering energy efficiency, performance metrics, and
intermittently available access links [57]. Finally, various offloading techniques are defined
by Akram et al. [66], including round robin, odds algorithm, and ant colony optimization.
These techniques can enhance overall smart-grid system performance, addressing network
performance, reliability, stability, and energy efficiency.

4.2. Data and Edge AI

Cloud offloading in the energy sector involves considering the location (physical
or logical) and data characteristics such as volume, velocity, and variety. Decisions re-
garding offloading can be determined by considering the contextual aspects of the data,
encompassing requirements like low response time and various other performance char-
acteristics [7]. The adoption of renewable energy sources at the edge of the grid and the
integration of IoT sensors and actuators in smart grids require real-time processing [2] and
the definition of new AI and data-driven energy services. Edge AI is emerging as a new
paradigm for the efficient management of smart grids due to machine and deep learning
model improvements [8]. Also, it is facilitated by the recent advancements in computing
infrastructure towards edge data-processing and the adoption of IoT devices in the smart
grid that generate big data that need to be processed and considered by AI [15].
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The distribution of AI models towards the edge aims to reduce latency and integrate
with AI-driven management services. In some scenarios, location information can be post-
processed in the cloud using raw Global Positioning System (GPS) signal data, resulting
in lower energy consumption for location tagging [67]. The objective of computational
offloading for traffic in mobile cloud computing is to enhance the performance of both
network and computational infrastructure, all while adhering to latency constraints [59].
Offloading strategies within mobile cloud computing strive to optimize effectiveness
by transferring workloads either to adjacent cloudlets or to distant cloud computing
resources [68]. Energy-aware offloading protocols and architectures are being explored
to cope with the increasing number of mobile applications and limitations of battery
technologies, with a focus on cloud resource management and green computing [69].

Federated frameworks offer promising models for processing data using ML algo-
rithms at the edge nodes and orchestrating a global model in the cloud [11]. However,
their applications in smart-grid scenarios and integration with new real-time context-aware
energy asset-management services are limited. Computation offloading frameworks can
meet the performance requirements of IoT-enabled services by considering context-based
offloading [70]. The offloading decision should consider contextual information to improve
accuracy and performance [71]. The dynamic nature of the edge mobile computing environ-
ment poses challenges, but a context-sensitive offloading system using machine-learning
reasoning techniques can provide accurate offloading decisions [72]. In adaptive offloading
systems, energy optimization can be achieved by including context-specific optimization on
mobile devices and offloading computational components to a high-performance remote
server or the cloud [73]. Current research is focused on improving offloading protocols
and architecture to be more energy and contextual-aware. It also enhances scheduling
and balancing algorithms to achieve intelligent solutions in the context of edge–cloud
offloading in the energy sector [74].

The federated learning distributed the AI process by breaking data silos and limiting
the data exchanges between the edge devices and the cloud for model training and updating.
Computation offloading of AI processes towards the edge may involve centralized training
of the models on the cloud infrastructure and then dynamic relocation of the process
towards the edge, considering stringent smart-grid operational or reliability requirements.
Each approach has its own set of advantages and disadvantages. Implementing these
solutions in smart grids requires careful consideration of the infrastructure, application
nature, and the specific trade-offs summarized in Table 4.

Table 4. Feature and trade-offs of federated learning and edge AI solutions in smart grid.

Feature Federated Learning Edge AI Trade-Offs Between

Model training Decentralized Centralized and offloaded Privacy and AI
model management

Communication Data Local models updates Amount of data and AI model
complexity in large-scale

deploymentsAI model management Many versions of
the model

A single version of
the model

Model convergence Challenging due to
non-IID data

More efficient due to
data integration

Heterogeneity of data
distributions and overhead for

centralized model training

Latency Real-time features Training time lag due to
data movement

Robustness to device failures and
consideration of computational

limitations on the edge

Bandwidth Lower during training;
higher after awards

Higher during training;
lower after offloading

Federated AI model update
synchronization and AI process

offloading overhead

From a training perspective, the edge AI solutions are easier to manage and may
exploit the potential unlimited resources of the cloud compared to the federated learning
solutions. In federated learning, the models are trained on edge devices, increasing the
privacy of the solution as only the model weights are communicated with the centralized
cloud. However, it increases the overhead in managing the AI models as multiple versions
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of the model may exist across different devices, making it more difficult to consider the
heterogeneity of edge devices and servers.

Federated learning must consider the heterogeneity of data distributions across dif-
ferent edge devices, making the model convergence more challenging. The data can be
non-independently and identically distributed (non-IID), raising statistical challenges for
model convergence. Centralized AI model training and its offloading towards the edge
may offer advantages in generalization, but it is typically more complex to be containerized,
relocated on the edge, and eventually orchestrated. Federated learning may face challenges
in scenarios with many smart-grid devices, as coordinating the model updates can be com-
plex and resource-intensive. However, it features better real-time features as the training is
decentralized closer to the point of data generation, but the process needs to consider the
potential dropout of devices during training rounds.

4.3. Computational Requirements

In IoT-based applications, the node processing capabilities can influence the decision
to offload specific tasks from the cloud to the edge and back. These factors are crucial for
determining the feasibility and efficiency of the offloaded tasks from edge devices to the
cloud infrastructure. The selection of the processing node across the computing continuum
depends on several factors: CPU information, memory information, network state informa-
tion, and average network delays [75]. The challenge is to take optimal edge computational
orchestration decisions under uncertain and dynamic conditions [76] impacted by the need
for resources in terms of bandwidth and memory, potential failures such as data network
issues, network speed, energy consumption, and the lifespan of applications.

The decision to offload specific models is made based on the characteristics and
execution patterns of tasks, considering the limitations of the resources for the edge devices
and the communication cost between the device and the cloud [77]. The offloading decision
algorithm can integrate multiple parameters to reduce application response time, reduce
energy consumption, and extend the battery lifetime for the devices [78]. The offloading
decisions can be improved by setting threshold values for processing time and employing
adaptive algorithms that can dynamically adjust and ascertain the optimal threshold value,
ensuring a balanced load on resource-limited devices and edge nodes. Limited resources
and energy of edge devices require delegated tasks to the fog and cloud. The presence of
augmented computing power and extensive storage capacity can manage the workload
more effectively.

Automation is essential in managing cloud–edge platforms in smart grids requiring
application virtualization, semantic integration, and data connectivity. Comprehensive
orchestration techniques are needed to coordinate, schedule, and run applications across
the edge-to-cloud network [4,51]. This will help to deliver real-time energy services at
the edge of the smart grid. The dynamic nature of resources in IoT computing farms
needs a more robust control mechanism to ensure efficient operation [79]. The offloading
architecture aims to minimize the delay while considering energy consumption limitations,
and algorithms have been suggested to optimize the delay [80]. Performance improvement
can be achieved by offloading computation in cloud robotics due to various factors such as
parallel processing capabilities, the availability of resources in the cloud, and communi-
cation delays [81]. Based on these factors, decisions regarding offloading are influenced
by an assessment of energy consumption, task processing power requirements, and the
balance between local execution and offloading tasks.

4.4. Application-Specific Factors

The impact of application type and application migration overhead on the cloud
offloading decision is significant. However, the offloading decision process can introduce
overhead when implemented on the mobile device. Shifting the offloading decision pro-
cess to the cloud can reduce this overhead and improve energy savings and execution
time [82]. Moreover, a decision-making system that considers the client’s hardware and
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software resources, location, context, and security capabilities can support dynamic mi-
gration and improve the offloading procedure [83]. Different types of applications require
cloud resources and services [84]. Selection of the most suitable cloudlet for offloading an
application is crucial for reducing energy consumption and latency in application execu-
tion [85]. The migration of applications to the cloud introduces overhead and adaptation
needs at each layer [86]. The challenges and solutions for migrating different parts of the
application to the cloud should be considered, including considerations that apply across
various aspects and possible trade-offs before migration to a new environment [87].

In the context of smart grids, cloud offloading decisions are influenced by the appli-
cation type and associated migration overhead, optimizing resource utilization, reducing
costs, and meeting SLA [88]. Atta et al. [84] emphasize the importance of application type
in determining the most suitable cloudlet for offloading tasks. Cloudlets demonstrate
efficiency in processing diverse application types, impacting load-balancing demands and
requiring distinct algorithms [89,90]. To facilitate offloading based on application type, an
approach for strategic cloudlet selection is introduced [91], aiming to minimize mobile ter-
minal consumption and latency. This strategy also assists in load-balancing by distributing
processing tasks across multiple cloudlets, preventing overload on a single cloudlet.

In smart grids, pivotal roles are played by cloud migration technologies [92]. These
technologies strategically place applications across geographically distributed cloud data
centers, aiming to reduce costs and adhere to service-level agreements. Considering
application migration overhead, including factors such as execution time and energy
consumption, is crucial in making informed offloading decisions [93]. Huijun et al. [94]
monitor the performance of streaming applications, automatically adjusting the flow of the
application graph by offloading computationally intensive operators to virtual machines
in the cloud. The primary objectives are to optimize resource utilization and enhance the
efficiency of smart-grid applications. The research underscores considerations in cloud
offloading decisions for smart grids. Finally, Seyedeh et al. [95] address problems related to
application migration and service discontinuity to reduce application delay in hybrid cloud–
fog systems. Additionally, factors such as application types, cloudlet selection strategies,
migration overhead, and dynamic performance monitoring contribute to the intelligent
optimization of smart-grid operations, ensuring efficient resource utilization and overall
system efficiency improvements.

4.5. Energy Consumption

Energy consumption plays a pivotal role in making informed decisions to offload
specific tasks. Offloading is shifting computation from mobile devices to remote cloud
servers, which can help enhance efficiency and minimize battery consumption [96]. The
distributed energy-efficient computational offloading reduces data transmission size and
energy consumption cost [70]. In fog computing, dual-energy sources, such as solar power
and grid power, can support fog nodes and reduce the carbon footprint in IoT systems [97].
Pramod et al. [98] measure the file size and execution time to decide whether to execute the
file locally or send it to the core cloud, considering both time and energy savings. Cloud-
based software architectures are also being studied to achieve energy-efficient solutions,
considering the complexity and investments required for migration and maintenance [99].
Overall, energy efficiency and power consumption play a crucial role in determining the
most suitable offloading strategy [100]. Gu et al. [101] propose techniques for energy-
efficient computation offloading in the context of 5G networks. Others use energy-efficient
frameworks for cloud architectures, which can save up to 25% of the electrical consumption
of cloud nodes [102].

Literature reviews on energy-efficient software architectures within cloud environ-
ments highlighted the crucial role of energy efficiency in provisioning cloud
services [99,103]. Han et al. [104] discuss the definition, principles, and challenges of
implementing high energy efficiency in cloud environments. Mobile cloud computing
empowers mobile devices to transfer their workloads to distant cloud servers, leveraging



Smart Cities 2024, 7 698

the abundant resources of the cloud to optimize efficiency [105]. Fog computing solutions
are proposed to alleviate cloud computing’s constraints in terms of latency and high band-
width requirements by bringing resources closer to users [106]. Power management plays
a crucial role in achieving power savings, and changes in architecture, topology, average
load/server, and scheduling algorithms can significantly improve energy efficiency [107].
Table 5 shows a comparative analysis of the factors that should be considered when making
offloading decisions.

Table 5. Decision variables in offloading.

Decision Variable Aspects Approaches Impact on Cloud Offloading

Network performance Latency, Bandwidth,
Response Time

FC in IoT architecture [7], MP-DDPG
algorithm [58], Communication strategies and
delayed offloading [57], multi-objective service

provisioning [59], DPH algorithm [60], Lyapunov
optimization [62], User-centric QoE [64]

Efficient offloading decisions are based on
minimizing computation, transmission

delay, and energy consumption. Optimizing
network and computation infrastructure
while maximizing battery lifetime [59].

Location and Data Characteristics Location, Data volume,
velocity, variety

Context-based offloading [70], CSOS with ML [72],
Energy-aware protocols [73], Adaptive

offloading [74], EMCO, MobiCOP-IoT, Autonomic
Management [70], Contextual information

utilization [71], Green computing [74]

Context-specific optimization by
considering the context of data, reducing

energy consumption, and achieving
accurate offloading decisions [74].

Computational Requirements
CPU, Memory, HDD,
Devices, Processing

Capabilities

Processing node selection [75], models based on
task nature [77], C-RAN architecture, adaptive

algorithms, edge devices offloading [78], control
mechanisms [79], offloading architecture [80],
computation offloading in cloud robotics [81]

Influencing feasibility and efficiency of
offloading tasks, dynamic adjustment, and

trade-offs between local execution and
cloud offloading [80].

Application-specific Factors Application Type,
Migration Overhead

Decision support system [83], cloud resources for
different app types [84], Suitable cloudlet

selection [85], Challenges in migration [86],
Overhead and adaptation needs [87]

Significant impact based on computational,
storage, and bandwidth requirements.

Overhead considerations for application
migration and service selection [87].

Energy Consumption Power Consumption,
Energy Efficiency

EECOF [70], Dual-energy sources in fog
computing [97], Measuring file size and execution
time [98], Energy-efficient architectures [99], MEC

energy-efficient computation offloading [101],
Energy-efficient framework [102], Power

management [107]

Crucial role in determining the offloading
strategy based on distributed frameworks,

file size, execution time, and efficient
architectures [48]. Power savings through

various approaches and technologies [107].

5. Decision-Making Techniques

Several decision-making techniques can be employed in the context of cloud offloading
to determine when and what to offload. The choice of technique depends on factors such
as the application’s characteristics, the dynamic nature of workloads, and the specific
goals of offloading. We have classified the techniques based on their type into heuristic
optimization-based ones and reinforcement learning-based ones.

Figure 6 summarizes from a macro perspective how to determine when and what to
offload in a smart grid. The first step is to analyze the smart-grid energy state to determine
if the offloading process could be beneficial. This usually involves using analytics over the
data collected on smart-grid operation at low or medium voltage levels as well as specific
application factors such as stringent constraints on the response time.

The second steps deal with the assessment of the data and computational infrastructure
to determine where to offload specific tasks. It involves analyzing the network performance,
the computational resources’ availability, data availability, and locality. The first two steps
should deal with cost–benefit analysis using the criteria described in Section 4 to assess
the potential advantages and drawbacks of offloading. Then, the metaheuristics should be
used to address the offloading problem and identify offloading strategies. Even though
they offer a near-optimal solution, they are usually fast and relatively easy to adapt to
different smart-grid scenarios. As the smart-grid and the cloud–fog–edge infrastructure
are dynamic and subject to change over time, the offloading strategies should be flexible
and adaptable to accommodate fluctuations in workload, resource availability, and other
external factors. Thus, reinforcement learning algorithms should be employed to optimize
offloading decisions adaptively over time and continuously improve the strategies. Finally,
the performance of offloading decisions should be monitored to address potential problems
and inefficient situations.
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5.1. Metaheuristic Optimization

Metaheuristic algorithms are iterative, designed to find approximate solutions to opti-
mization problems without relying on mathematical models or properties of the problem
at hand. These algorithms are often used when the search space is large, complex, and may
contain multiple local optima, which is usually the case in edge offloading. Metaheuristic
algorithms are employed to efficiently distribute and manage computational tasks among
edge devices based on various criteria such as resource availability, latency, and response
time. The integration of heuristic algorithms in the edge-offloading decision process aims
not only to address the complexity of the decision space that tends to be large but also to
enhance the overall performance and efficiency of edge–cloud systems.

In the context of smart-grid decentralization and local energy systems, they are good
choices for optimization problems such as energy and computation resources allocation
and scheduling as they may find close to the optimal solutions in large solution spaces
where traditional methods may struggle. The metaheuristic is versatile and can be adapted
to various scenarios and use cases in smart grids that usually tend to be very heterogeneous
where factors like resource availability change and flexibility are required. Finally, they
are scalable, considering decision time and computational resource usage, and can handle
edge-offloading optimization problems with many variables and constraints. Materwala
et al. [108] optimize demand energy by redirecting requests and data from electric ve-
hicles to both edge and cloud servers. It employs an evolutionary genetic algorithm to
optimize the energy consumption of edge–cloud integrated computing platforms. An
adaptive penalty function is defined to integrate optimization constraints into the genetic
algorithm, ensuring that the offloading process meets SLA. The selection of the optimal
solution is made using an adaptive fitness function that assesses the proximity to the goal.
The algorithm includes stages such as initialization of offloading solutions, evaluation of
solutions, selection of fittest solutions, crossover to produce offspring, and mutation of
server allocations. The solution archives significant energy savings compared to random
and no edge-offloading approaches, with an SLA violation rate of only 0.3%. A solution
for collaborative offloading among cloud, edge, and terminal IoT devices, incorporating
enhancements to a genetic algorithm, is introduced in [109]. The offloading problem is
modeled as a non-linear problem in combinatorial optimization, striving to reduce the
overall workload task energy consumption while ensuring compliance with computational
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delay constraints. The authors consider various types of computational tasks, diverse mo-
bile devices, multiple small-cell base stations, numerous micro base stations, and a cloud
server. The solution undergoes theoretical analysis and verification in simulation trials, the
results indicating superior performance, particularly when considering diverse quantities
and capabilities of mobile devices and servers at the network edge. Shahidinejad et al. [110]
proposed an offloading mechanism that adopts a metaheuristic-based approach, utilizing
the non-dominated sorting genetic algorithm (NSGA-II) within edge/cloud networks for
serving mobile applications. The mechanism is centered on relocating computationally
intensive tasks from mobile devices to edge servers by addressing task-offloading as an
NP-hard problem. Enhancements to the crossover and mutation operators facilitate faster
convergence, setting it apart from other evolutionary algorithms. Employing NSGA-II as
a population-based metaheuristic, the mechanism efficiently determines task-offloading
decisions within a reasonable timeframe. Numerical evaluation with simulated workloads
shows the cost-effectiveness of the proposed mechanism. It can enhance the average uti-
lization of edge servers and reduce energy consumption and execution time compared to
alternative task-offloading approaches.

Chen et al. [111] proposed a simulated annealing-binary particle swarm optimization
algorithm (SA-BPSO) algorithm which breaks down the edge-offloading optimization
problem into three distinct sub-problems: the allocation of computing resources, the
allocation of uplink power, and task-offloading. Convex optimization techniques are
employed to optimize computing resource allocation, while the bisection method is applied
for uplink power allocation. The SA-BPSO algorithm maps the velocity of the particles
to the interval [0, 1] using the Sigmoid function and encodes their position in binary.
The algorithm effectively reduces the total user overhead compared to other schemes
while ensuring the quality of service. Kirana et al. [112] address the optimization of
energy consumption of virtual machines in distributed edge–cloud environments using
an enhanced particle swarm optimization solution (E-PSO). The primary objective is to
minimize energy consumption using the strategic placement of virtual machines in a
specific location closer to data sources. It introduces a locally aware fitness function focused
on energy considerations and formulates a coding scheme for relocating virtual machines.
The E-PSO algorithm identifies an optimal VM replacement strategy, achieving a 22%
reduction in overall energy consumption.

A recursive version of the ant colony algorithm is introduced in [113], with the primary
objective of addressing potential service-level agreement violations and reducing energy
consumption. The workload tasks are modeled as ants. In the monitoring pheromone
step, the algorithm keeps track of the pheromone levels and updates the ant’s movement
toward the optimal solution. The ants representing tasks select the next city to move
based on the pheromone levels and the distance between cities. The outcomes indicate a
substantial reduction of approximately 40–42% in energy consumption. Danial et al. [114]
proposed an Efficient Ant Colony Cloud Offloading Algorithm (EACO) to reduce energy
consumption while considering task completion time constraints. The algorithm divides
mobile applications into fine-grained tasks with sequential and parallel topology. It focuses
on task scheduling between execution on the mobile device and offloading to the cloud to
limit the completion time. It achieves an average energy consumption reduction of 24–59%,
with a corresponding increase in completion time of 3.6–28%. Similarly, Tabrizchi et al. [115]
use ant colony optimization to minimize energy usage and environmental impact when
allocating resources to virtual machines. The use of pheromones by the ants guides their
decision-making process as they deposit them along their paths. The algorithm experiences
iterative updates of pheromone levels until the quality of solutions discovered by the ants
is optimal. The ant colony algorithm achieved an average energy reduction of 24–59%
compared with other works.

Samoilenko et al. [116] introduced the whale optimization approach to address chal-
lenges in task-offloading within a cloud–fog ecosystem. The runtime dynamic offloading
decisions are made using the whale optimization algorithm to enhance the quality of
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various service metrics, such as execution delay and energy consumption. It employs a pop-
ulation of solutions, represented as whales, to find the optimal solution to the multi-criteria
task-offloading problem. Similarly, Anoop et al. [117] combine differential evaluation and
whale optimization algorithms to find the optimal solution for edge offloading. By com-
bining the exploration capabilities of whale optimization and the exploitation capabilities
of differential equations, the algorithm solves the limitations of conventional heuristic
algorithms, such as convergence time, lower exploration and exploitation ability, and im-
plementation difficulties. The spiral bubble-net hunting behavior observed in humpback
whales helps to identify the optimization offloading strategies, reducing energy consump-
tion and response time in the process. Finally, Yuan et al. [118] define a hybrid metaheuristic
algorithm for the concurrent optimization of computational offloading and resource al-
location in mobile edge to reduce total energy consumption. The optimization considers
offloading ratio, CPU speeds, allocated bandwidth, and transmission power. It sets a parti-
cle swarm optimization framework, defining a fitness function based on penalties using
the model constraints. Metropolis acceptance rule inspired by simulated annealing (SA)
updates the particle’s velocity and position. It requires reaching the maximum allowable
iterations or having a specified percentage of particles attain uniform fitness values. The
final solution converts the globally optimal position into task-offloading decision variables.

5.2. Reinforcement Learning

The model-based optimization solutions for edge offloading in smart grids are static
in structure, making it complicated to capture dynamic relations and constraints among
energy and computational components. The reinforcement learning solutions are model-
free alternatives that are a good option for decision-making in a dynamic and changing
environment, such as the smart grid. The reinforcement learning algorithms can adapt to
these changes and optimize edge-offloading decisions accordingly. They can learn to drive
decisions that optimize the utilization of energy and computational resources in the smart
grid by learning from previous experiences or existing data, allowing for more adaptive
decision-making considering factors such as the energy efficiency of devices, available
computational resources, and communication network conditions.

Reinforcement learning solutions can learn optimal edge-offloading policies that yield
good results when operating in complex and uncertain environments or with frequent
changes. This makes them suitable for decentralized smart-grid scenarios where they can
learn to make offloading decisions that minimize energy consumption, reduce latency, and
enhance overall grid reliability. Finally, reinforcement learning algorithms do not require
prior knowledge and can dynamically adapt to different edge-offloading scenarios without
predefined models and structures.

The application of reinforcement learning algorithms to edge-offloading problems
faces several challenges that require further research. Learning the optimal strategy for
edge offloading requires many data samples, episodes, and action simulations. The design
of rewards and penalty functions used in the learning process is complex and affects the
overall algorithm convergence and number of episodes. Moreover, in many cases, achieving
a good balance between exploration and exploitation is challenging as the decision state
and action spaces can be high-dimensional and complex, making it difficult to learn the
optimal edge-offloading strategy.

The DDPG (Deep Deterministic Policy Gradient) algorithm, as described in refer-
ence [119], represents a model-free, off-policy reinforcement learning approach that em-
phasizes the advantages of deep neural networks and deterministic policy gradients. The
algorithm combines computation offloading, service caching, and resource allocation to
reduce energy consumption for a collaborative Mobile Edge-Computing (MEC) system.
It includes a Mixed-Integer Non-Linear Programming (MINLP) framework. The DPPG
algorithm uses a deep neural network to identify the optimal policy of each decision
variable. The critic network assesses the quality of the chosen actions, while the actor net-
work selects the action (i.e., resource allocation, service caching, and offloading decisions)
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based on the current state. The critic network performs training to approximate the value
function, representing the anticipated long-term reward for a specific combination of a
state and action. The actor network performs training to maximize the foreseen long-term
reward. The training process involves iteratively updating the actor and critic networks
using the DDPG algorithm’s update rules, which involve gradient descent and target
network updates to stabilize the learning process. During the iterative training process,
the DDPG algorithm acquires optimal approaches for offloading computations, caching
services, and allocating resources. These findings reduce long-term energy consumption in
the collaborative MEC system.

Weichao et al. [120] propose an adaptive strategy for task distribution to address the
challenge of environment adaptation. It optimizes objectives related to task latency and
device energy consumption. The meta-reinforcement learning algorithm continuously
explores and adjusts the edge environment. A task management network, structured
on Seq2Seq neural network architecture, is constructed to handle diverse facets of task
sequences. Introducing a first-order approximation method accelerates the computation of
meta-strategy training for the Seq2Seq network. The algorithm reduces task processing
delay and device energy consumption while adapting to needs. Results illustrate the algo-
rithm’s performance over existing methods across various tasks and network landscapes.
Antoine et al. [121] define the deep reinforcement learning algorithm for task-offloading
to solve the problem of computation offloading with task dependency represented as a
directed acyclic graph within the collaborative scenario involving cloud, edge, and end
systems, including multi-user environments, multi-core edge servers, and a dedicated
cloud server. The Markov decision process supports task-offloading, while deep reinforce-
ment learning incorporates action masking based on task priority. This algorithm uses the
computational capabilities of both cloud and edge servers to derive optimal policies for
computation offloading. It improves the average energy consumption and time delay expe-
rienced by IoT devices. Xin et al. [122] formulate the optimization challenge of collaborative
computation offloading between the cloud and edge as a dynamic problem represented
using a Markov decision process. It concurrently refines average delay, energy efficiency,
and revenue per unit time metrics and combines exploration and exploitation to identify the
offloading strategy. The simulation results show the efficiency of the proposed algorithm,
especially as the number of tasks offloaded for computation increases. Jie et al. [123] con-
sists of a decomposition of the (offline) value iteration and (online) reinforcement learning,
which allows for learning in a batch manner and improves learning convergence speed
and runtime performance. The algorithm learns the optimal policy of dynamic workload
offloading and edge server provisioning to minimize the long-term system cost, including
service delay and operational cost. It uses a post-decision state-based learning approach,
exploiting the structure of state transitions in the energy harvesting of the edge–cloud
system. Also, the algorithm enables the edge system to determine the optimal offloading
and autoscaling policies and solves the “curse of dimensionality” problem associated with
large state spaces in Markov Decision Processes. The simulation demonstrates significant
improvements in how edge computing performs compared to fixed or short-term optimiza-
tion methods and traditional reinforcement learning algorithms. Mashael et al. [124] utilize
a set of deep neural networks in a distributed manner to find near-optimal computational
offloading decisions, aiming to reduce overall energy consumption in cloud offloading
scenarios. The algorithm treats the problem as a binary optimization task. Due to the
computational complexity of solving this NP-hard problem, an equivalent reinforcement
learning form is generated. The distributed deep learning algorithm leverages parallel deep
neural networks to find the near-optimal offloading decisions. Results from simulations
illustrate that the suggested algorithm rapidly reaches convergence and significantly lowers
the system’s total consumption when contrasted with established benchmark solutions.
Yongsheng et al. [125] introduce an offloading algorithm based on a deep learning network
to calculate the most efficient offloading strategy, considering energy and performance
constraints. The algorithm formulates energy and performance considerations into a cost
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function, and a deep learning network is trained to determine the optimal solution for the
offloading scheme. It identifies the best set of components to offload to a nearby server,
enhancing the computational capabilities of user equipment for running resource-intensive
applications. Important findings illustrate the superior performance of the proposed ap-
proach compared to existing methods concerning energy and performance constraints.
Sellami et al. [126] introduce a combination of blockchain technology with deep reinforce-
ment learning. The main objective is to raise awareness of energy operations in a classical
IoT framework using software-defined networking. Utilizing policies, the approach opti-
mizes various aspects while enhancing reliability, reducing latency, and optimizing energy
efficiency. The proposed method prioritizes consumable energy and elevates the QoS
in operations. Experimental results show improvements in network latency and energy
efficiency compared with traditional algorithms.

The deep reinforcement learning algorithm minimizes power consumption by making
informed decisions during each time slot based on content request details and current
network conditions [127]. Addressing the issue as a power minimization model allows
aggregation of requests and extensive in-network caching deployment. Leveraging past
slot data and the present network state, the reinforcement learning algorithm enhances
power efficiency in the cloud–edge–terminal collaboration networks. Results highlight the
performance of the proposed content task-offloading model in power efficiency compared
to current alternatives, demonstrating rapid convergence to a stable state.

Table 6 presents a comparative analysis of the main decision-making techniques used
for cloud offloading.

Table 6. Offloading decision-making alternatives.

Type Algorithm Approach Optimization Target Performance Metrics Efficiency Improvement

Metaheuristics

Genetic
Algorithms [108]

Offloading from vehicles
to servers

Energy consumption,
SLA compliance

Energy savings, low
violation rate

Minimize energy
consumption, meet SLAs

Genetic Algorithm
(IGA) [109]

Cloud–edge–terminal
collaboration offloading

Task consumption,
delay constraints

Superior performance and
task completion

within constraints

Minimize overall task
consumption, meet delay

constraints

NSGA-II [110] Task-offloading in
edge/cloud networks

Task-offloading
decisions

Faster convergence,
cost-effective solution,

energy reduction

Cost-effective task-offloading,
reduce energy consumption

SA-BPSO [111]
Task-offloading,

resource allocation,
power allocation

Total user overhead Effective reduction in total
user overhead, ensure QoS

Optimize task-offloading,
resource allocation, and

power allocation

E-PSO [112] Energy-efficient VM
consolidation in cloud Energy consumption Reduction of 22% in

energy consumption
Minimize energy

consumption

Recursive ACO
(RACO) [113]

Cloud computing
energy reduction

Energy consumption,
SLA violations

Reduction of EC by 40–42%
compared to traditional ACO

Minimize EC and
SLA violations

Efficient ACO
(EACO) [114]

Cloud offloading with
completion

time constraints

Energy consumption,
completion time

Average energy reduction of
24–59%, limited increase in

completion time

Reduce energy consumption,
limit completion

time increase

ACO for VM
Allocation [115]

VM allocation for
energy optimization Energy consumption

Average reduction of 24–59%
in energy consumption

compared to previous work

Minimize energy
consumption

Whale
Optimization [116]

Task-offloading in a
cloud–fog environment

QoS metrics (delay,
energy consumption)

Improved QoS metrics,
mimics social behavior of

humpback whales

Improve QoS metrics, make
runtime offloading decisions

Exploitation WOA
(EWOA) [117]

Offloading in mobile ad
hoc cloud environment

Energy consumption,
response time

Minimized energy
consumption and

response time

Minimize energy
consumption, optimal

offloading process

GSP [118] Joint optimization in
mobile edge computing

Total energy consumed
by devices and servers

Joint optimization,
considering factors like

offloading ratio, CPU speeds

Minimize total
energy consumption
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Table 6. Cont.

Type Algorithm Approach Optimization Target Performance Metrics Efficiency Improvement

Model-Free

DDPG [119] Collaborative MEC
system with multi-users

Long-term energy
consumption

Reduction in long-term
energy consumption,

optimization offloading,
caching, resource allocation

Minimize long-term energy
consumption, optimize

resource allocation

Meta-Reinforcement
Learning [120]

Adaptive
task-offloading strategy

Task processing delay,
device energy
consumption

Reduction in task processing
delay outperforms
existing methods

Adapt to edge environment,
reduce task processing delay

TPDRTO [121]

Offloading
computations

considering task
dependencies

Average energy
consumption, time delay

Efficiently lowering energy
consumption and

minimizing time delays for
IoT devices

Optimize computation
offloading, reduce

energy consumption

DQN [122]
Joint optimization in

cloud–edge
computation offloading

Average delay,
average energy

consumption, revenue

Comprehensive optimality
on key indicators

outperforms baselines

Joint optimization of delay,
energy consumption,

and revenue

Post-Decision State
(PDS) Learning [123]

Offline value
iteration and

reinforcement learning
Long-term system cost

Improved edge-computing
performance, address energy

harvesting challenges

Incorporate renewable
energy, optimize offloading

and autoscaling

Hybrid

Distributed Deep
Learning [124]

Near-optimal
computational

offloading decisions

Overall energy
consumption

Fast convergence, significant
reduction in overall energy

consumption

Find near-optimal offloading
decisions, reduce overall

energy consumption

Deep Learning-based
Offloading [125]

Optimal offloading
scheme based on energy

and performance

Energy consumption,
performance constraints

Outperforms current
approaches in meeting

both energy and
performance constraints

Compute optimal offloading
scheme based on energy

and performance

Blockchain and
DRL [126]

Energy-aware task
scheduling and

offloading

Consumable energy,
QoS

50% better energy efficiency,
improved QoS

Enable energy-aware task
scheduling, improve

reliability

DRL Algorithm [127]
Power minimization in
cloud–edge–terminal

collaboration
Power consumption

Superior power efficiency,
quick convergence to a

stable state

Minimize power
consumption, optimize

task-offloading

6. Conclusions

In this paper, we analyzed the architecture, variables, and decision-making algorithms
involved in application offloading in IoT-based edge–cloud environments focused on smart-
energy-grid decentralization. Our study results show the urgent need to enhance the energy
efficiency of cloud offloading and edge computing, especially concerning the specific prob-
lems of the smart grid and the transition towards renewable energy. The consideration of
application virtualization and microservice organization tailored to the IoT energy metering
devices is a practical and forward-looking approach. The computing continuum organi-
zation from edge to fog and cloud can improve the service quality and significantly save
bandwidth latency in the complex world of IoT-based energy management applications.

Although current decentralized systems and offloading processes show potential,
we also highlight their drawbacks, including complexity, high initial costs, and ongoing
challenges with integration and security. The integration of smart-grid architectures, known
for their layered approach, with an edge–fog–cloud computational resource organization
presents promising solutions; however, their use requires careful consideration of smart-
grid functional, operational, and organizational requirements to ensure optimal usage.

There is a strong need for an in-depth examination of the cloud–fog–edge architecture
in the context of smart-grid decentralization to maximize benefits and effectively address
the challenges of renewable energy integration. As the amount of data generated by the
smart-grid IoT devices significantly grows, edge offloading and edge AI will be critical for
enabling real-time response in emergencies that may affect the grid resilience and, at the
same time, will help in addressing challenges related to limited network bandwidth and
increased latency which affects decision-making. In this context, we have analyzed and
compared decision-making algorithms based on metaheuristics and model-free optimiza-
tion techniques like reinforcement learning and distributed deep learning for offloading.

These algorithms are fundamental to the improvement of the overall performance of
workload offloading in smart-grid scenarios, requiring careful consideration of various
decision-making criteria from energy and non-energy fields. In future work, researchers in
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computer science and the smart grid should focus on validating these algorithms through
practical experiments in smart-grid pilots, considering different deployment configurations,
various computing resources, and distributed energy assets.

Table 7 presents a SWOT analysis for incorporating cloud offloading into smart grids.
Task-offloading enhances overall efficiency by leveraging remote servers for computational
tasks, thus allowing for real-time data-processing while reducing latency and improving
response time. Edge AI techniques can be used to achieve optimal performance and
decentralized energy services delivery in the smart grid. These strengths also lead to the
improvement of grid resilience and ensuring energy security. Regarding energy efficiency
goals, offloading architectures can meet carbon-saving targets due to better and more
reliable management of renewable resources at the far edge of the grid.

Table 7. SWOT analysis of edge–cloud offloading for smart grids.

Strengths Weaknesses Opportunities Threats

Overall resource efficiency
optimization

Configuration, integration,
and deployment issues with

smart grid

Technological trends in
distributed energy, IoT, and AI Security and privacy

Closer to real-time
data-processing

High initial design and
deployment costs

AI-based optimization of
offloading strategies

Bandwidth and edge device
resource limitations

Grid resilience and energy
security improvements

Energy application’s stringent
requirements and constraints

Increasing the IoT
devices adoption Network stability/uncertainty

Low-latency decentralized
energy services integration

Complex coordination and
orchestration processes

Cost-effective
hardware solutions

Data interoperability and
non-IID data distribution

Integration of renewable on
the far edge of the grid

Suitability for hierarchical
architectures

Customized solutions
considering edge–fog–cloud

distribution

Lack of validation in
grid pilots

The weaknesses of offloading architectures are the complex deployment and integra-
tion processes, operation under uncertain network connection or computational resources
availability, and interoperability issues over the IoT devices in the smart grid. Some compu-
tational architectures lack hierarchical distribution, challenging smart-grid integration. At
the same time, some energy applications have requirements or constraints that make them
unsuitable for offloading. Distributing tasks across different smart-grid layers will affect
coordination and edge-based orchestration, leading to complex management and config-
uration scenarios. Also, initial costs for designing and deploying edge–cloud offloading
solutions in smart grids can be high.

The technological trends in energy, IoT, and AI offer opportunities to improve of-
floading capabilities in smart grids. Modern AI optimization algorithms can improve
edge–cloud offloading strategies, while IoT adoption in smart grids enables the creation of
new energy management applications. The smart-grid architecture provides opportuni-
ties for customized solutions considering edge–fog–cloud distribution and cost-effective
hardware solutions for these solutions, which can increase the adoption of edge–cloud
offloading. Solutions such as federated learning or edge AI bring benefits, but careful
consideration of implementation trade-offs in smart grids needs to be considered.

Threats for AI task-offloading towards the edge refer to security and privacy, re-
quiring robust measures to prevent unauthorized access. Bandwidth and edge device
limitations may affect the effectiveness of offloading, while network stability and non-IID
data distribution can impact the performance and reliability of federated learning solutions.
Challenges in edge-offloading deployments and data interoperability issues are amplified
by the lack of validation in smart-grid pilots to demonstrate their effectiveness. They
represent threats that need to be considered when conducting a cost–benefit analysis of
offloading decision-making.
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In our opinion, future research should focus on more exploration and innovation to
tackle the weaknesses and threats, addressing relevant challenges of smart-grid decentral-
ization and IoT adoption while considering emerging resource decentralization trends and
AI advancement to continuously improve decision-making strategies. Synergic efforts from
energy, IoT, and AI domains are important for the smart grid to increase efficiency through
integrating decentralized renewable energy sources and creating sustainable and resilient
future energy systems that meet the demands of customers, delivering personalized and
context-aware energy services.
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