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Abstract: Scales are widely used in many agricultural applications, ranging from weighing crops at
harvest to determine crop yields to regularly weighing animals to determine growth rate. In agricul-
tural research applications, there is a long history of measuring crop water use (evapotranspiration
[ET]) using a particular type of scale called weighing lysimeters. Typically, weighing lysimeters
require very accurate data logging systems that tend to be expensive. Recent developments in open-
source technologies, such as micro-controllers and Internet of Things (IoT) platforms, have created
opportunities for developing effective and affordable ways to monitor crop water use and transmit
the data to the Internet in near real-time. Therefore, this study aimed to create an affordable Internet
of Things (IoT) scale system to measure crop ET. A scale system to monitor crop ET was developed
using an Arduino-compatible microcontroller with cell phone communication, electronic load cells,
an Inter-Integrated Circuit (I2C) multiplexer, and analog-to-digital converters (ADCs). The system
was powered by a LiPo battery, charged by a small (6 W) solar panel. The IoT scale system was
programmed to collect data from the load cells at regular time intervals and send the data to the
ThingSpeak IoT platform. The system performed successfully during indoor and outdoor experi-
ments conducted in 2023 at the Clemson University Edisto Research and Education Center, Blackville,
SC. Calibrations relating the measured output of the scale load cells to changes in mass resulted
in excellent linear relationships during the indoor (r2 = 1.0) and outdoor experiments (r2 = 0.9994).
The results of the outdoor experiments showed that the IoT scale system could accurately measure
changes in lysimeter mass during several months (Feb to Jun) without failure in data collection or
transmission. The changes in lysimeter mass measured during that period reflected the same trend as
concurrent soil moisture data measured at a nearby weather station. The changes in lysimeter mass
measured with the IoT scale system during the outdoor experiment were accurate enough to derive
daily and hourly crop ET and even detect what appeared to be dew formation during the morning
hours. The IoT scale system can be built using open-source, off-the-shelf electronic components
which can be purchased online and easily replaced or substituted. The system can also be developed
at a fraction of the cost of data logging, communication, and visualization systems typically used for
lysimeter and scale applications.
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1. Introduction

Different scales are used in agricultural applications for measuring crop yield, animal
weight gain, crop inputs (i.e., fertilizer applications), etc. Weighing lysimeters, a particular
type of scale system, are widely used in agricultural and hydrological research to measure
crop evapotranspiration (ET). ET is the combined process of water evaporation from the soil
surface and transpiration from plants, which is an essential component of the water cycle and
plays a crucial role in the overall water balance of an ecosystem. There are many other ways
to measure or estimate ET [1–9], but weighing lysimeters has long been considered the most
accurate method [10] since lysimeters can accurately measure the changes in the total water
mass of a fixed soil volume during a given time. A weighing lysimeter typically consists of a
container with a known area equipped with electronic load cells or other weighing devices
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to measure changes in the lysimeter mass over time [11]. The container is typically buried
in the ground, maintaining the soil and vegetation inside the container to simulate natural
conditions as closely as possible. Weighing lysimeters are utilized under the working principle
that changes in the lysimeter mass predominantly reflect the amount of water lost through ET.
The water loss and ET rate during a given time can be obtained by continuously monitoring
the total lysimeter mass. This method provides a direct and accurate measurement of ET,
considering both the soil evaporation and plant transpiration processes.

Over the years, many lysimeters have been installed worldwide using various designs
and installation systems [12–23]. ET data derived from lysimeter experiments have been
used for many applications, such as studying the water requirements of different crops,
evaluating the effectiveness of irrigation strategies, assessing the impact of climate change
on ET patterns, and calibrating other methods and techniques for measuring and estimating
ET [10,24]. However, one of the primary purposes of utilizing weighing lysimeters in
agriculture has been to derive the crop coefficient (Kc) curves needed to estimate daily ET
from weather data [2,25,26].

Although there is a long history of using weighing lysimeters for measuring ET,
typically, the electronics for reading the lysimeter load cells include a data logger [21]
that collects and stores the data onsite, requiring researchers to visit the site regularly
to download and visualize the data stored in the data logger. However, data loggers
that are accurate enough to collect lysimeter data tend to be expensive, and equipping
them with data communication capabilities adds additional initial and ongoing costs.
New developments in open-source microelectronics (i.e., Arduino, Raspberry Pi) and
data communication systems (i.e., radio, cellular, Wi-Fi) provide new opportunities for
enhancing data collection and data communication for lysimeters and other scale systems
used in agricultural applications [27,28]. The availability of Internet-connected devices via
developing and applying Internet of Things (IoT) systems can make weighing lysimeters
more affordable and convenient [29,30]. IoT systems enable the collection and transmission
of real-time information accessible from anywhere in the world via the Internet using a
computer or smartphone.

The International Telecommunication Union (ITU) [31] regarded the IoT as a global
infrastructure for the information society, enabling advanced services by interconnecting
(physical and virtual) things based on existing and evolving interoperable information and
communication technologies. The ITU also defined a device as a piece of equipment with
the mandatory capabilities of communication and the optional capabilities of sensing, actu-
ation, data capture, data storage, and data processing. In addition, other researchers [32]
have suggested that in its simplest form, an IoT device is built around a microcontroller,
a radio transceiver located above ground and with a more or less high communication
range, a power source eventually recharged by a solar panel, and one or several connected
sensors. Also, an additional component of an IoT system is the need for an Internet service
to receive, store, organize, and display collected data. Initially, the IoT concept referred
to devices and data transmission occurring above ground. The idea, however, has been
expanded, and many researchers have been investigating applications with buried devices,
giving rise to the Internet of Underground Things (IoUT) and wireless underground sensor
network (WUSN) applications [32–34].

Interest is growing in technologies based on the Internet of Things (IoT) that pro-
vide means for researchers and farmers to find solutions for the better management of
crop inputs (e.g., reducing the quantity and rate of fertilizers without sacrificing food
production) [35]. A bibliometric review of the number of scientific publications relating
IoT technologies and irrigation [36] found a steady increase in the number of publications
on this subject from 2010 to 2016. This steady increase was followed by a rapid (i.e., expo-
nential) increase in publications from 2016 to 2020. For example, a group of researchers in
Portugal [35] developed an IoT system to monitor soil nutrients in horticulture, and another
group [37] developed an IoT system to combine digital phenotyping with crop growth
models. Their digital phenotyping included collecting data from a small lysimeter using
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an IoT system. Researchers in Brazil [38] developed an IoT system to monitor reference
evapotranspiration (ETo) using a weighing lysimeter. Researchers in Pakistan [39] used
derived reference evapotranspiration (ETo), combining machine learning with weather
data collected with an IoT system. Researchers in India [30] developed an IoT system for
monitoring a micro-lysimeter for a greenhouse application. Similarly, a group of researchers
in Australia [40] developed an IoT system for monitoring Nitrate in water, and another
group [41] developed an IoT system for automating irrigation using real-time weather and
soil moisture data.

Although many researchers worldwide have used open-source electronics and the IoT
for various applications in agriculture, including lysimetry, most of these applications have
been developed utilizing Wi-Fi communication. However, the lack of Wi-Fi communication
is an essential problem in many rural agricultural areas, which would limit the widespread
application of IoT technologies in agriculture. In previous studies, our research team in
the USA used open-source electronics to develop IoT systems for monitoring properties
relevant to agricultural soil and water management and making the data available online
in real-time using cell phone communication. For example, we designed three IoT systems
for soil moisture monitoring [42–44] to assist growers in making more accurate and timely
irrigation scheduling decisions based on real-time sensor data. Similarly, our team devel-
oped another IoT system to monitor agricultural runoff and collect water-quality samples
from an agricultural field [45]. Therefore, building on our previous experience, this study
aimed to create an affordable Internet of Things (IoT) scale system to measure crop ET.
This study focused on building, testing, and describing the electronics needed for data
collection and transmission. Although the IoT system was developed to measure crop ET
in agriculture, the system could also be used for other types of scales used in domestic,
agriculture, industry, and many other applications.

2. Materials and Methods
2.1. Design Requirements and General Functionality of the IoT Scale System

The basic design requirements for the IoT scale system were defined to (a) be relatively
low cost (i.e., <USD 500); (b) be accurate (i.e., 24-bit resolution); (c) have low power require-
ments to continuously operate with a small LiPo battery (i.e., ≤2500 mAh), recharged by a
small (i.e., ≤6 Watts) solar panel; (d) use cell-phone communication that could transmit
data to the Internet even when deployed in remote locations; (e) use open-source electronics
and off-the-shelf components that would be easy to obtain and substitute; (f) use an existing
open-source IoT Internet platform to receive, store, and display the data in real time; and
(g) be robust and reliable for long-term operation in outdoor applications.

The general functionality of the IoT scale system is outlined in the diagram illustrated
in Figure 1. It shows that the IoT scale system consisted of (A) an electronic scale, (B) a
datalogger with cell phone communication, (C) an IoT Cloud server, and (D) user data
access and visualization. The electronic scale was used to measure the mass of interest
automatically. In the case of a lysimeter system, the scale would measure the changes
in soil mass at regular time intervals. Changes in soil mass predominantly represented
changes in soil water content, which could be used to calculate crop water use. Electronic
scales typically use electronic load cells to measure mass. Electronic load cells produce a
voltage output proportional to changes in the force or mass supported by the load cells,
either in tension or compression. The datalogger was used to read the electronic scale at
regular intervals (i.e., every 10 min), analyze and process the data, and send the data to
an IoT Cloud server using cell phone communication. The IoT Cloud server was needed
to receive, organize, timestamp, and store the data in a database. The user can access the
data stored in the IoT server, which can be downloaded in “.CSV” format and visualized in
graphical format.
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ments. The essential components for the IoT scale system consisted of four electronic load 
cells, a microcontroller, an Inter-Integrated Circuit (I2C) multiplexer, four analog-to-digi-
tal converters (ADCs), a terminal block breakout, a solar panel, a LiPo battery, and an 
instrument enclosure (Figure 2). 

 
Figure 2. Diagram showing the layout of the different components of the IoT scale system. 

  

Figure 1. General diagram of the IoT scale system, which includes (A) an electronic scale, (B) a datalogger
with cell phone communication, (C) an IoT Cloud server, and (D) user data access and visualization.

2.2. Electronic Components

An IoT scale system was designed, constructed, and tested to meet the above require-
ments. The essential components for the IoT scale system consisted of four electronic
load cells, a microcontroller, an Inter-Integrated Circuit (I2C) multiplexer, four analog-to-
digital converters (ADCs), a terminal block breakout, a solar panel, a LiPo battery, and an
instrument enclosure (Figure 2).
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A Particle Boron LTE CAT-M1 (BRN404X) (Particle, San Francisco, CA, USA) device
was used as the microcontroller to collect and transmit the data from the load cells to
the Internet. The Particle Boron device combines a microcontroller (ARM Cortex-M4F
32-bit processor @ 64 MHz) with embedded cellular (LTE) and Bluetooth communication
capabilities. The Particle Boron device also features, among other specifications, 20 mixed-
signal GPIO pins (6 x Analog, 8 x PWM), UART, I2C, SPI, and an integrated LiPo battery
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charging circuity and connector. The Particle Boron device was mounted on an Adafruit
terminal block breakout (Adafruit.com, Assembled Terminal Block Breakout FeatherWing
for all Feathers, accessed on 20 October 2023) to facilitate connection to the GPIO, power,
and data communication pins.

Four 100 kg capacity S-type load cells (Phidgets.com, accessed on 15 August 2023) with
the technical specifications shown in Table 1 were used to measure changes in the mass of
the scale system. Load cells convert changes in the mass of the scale into an analog voltage
signal using a bridge circuit. There is usually an excellent linear relationship between the
mass and the combined voltage output of the load cells [17]. Free-standing scale systems
are typically designed using several load cells to account for imbalances and differences in
load cell outputs resulting from differences in mass placement within the scale system.

Table 1. Technical specifications for the load cells.

Sensor Properties Type/Value

Sensor Type Compression/Tension Load Cell
Controlled By Bridge Input
Weight Capacity Max 100 kg
Maximum Overload 120 kg

Electrical Properties
Output Impedance 350 Ω
Supply Voltage Min 5 V DC
Supply Voltage Max 18 V DC

Physical Properties
Compensated Temperature Min −10 ◦C
Compensated Temperature Max 40 ◦C
Operating Temperature Min −20 ◦C
Operating Temperature Max 55 ◦C
Cable Length 3 m
Cable Gauge 20 AWG
Material Alloy Steel
Screw Thread Size M6

Source: https://www.phidgets.com/?tier=3&catid=9&pcid=7&prodid=229#Tab_Specifications (accessed 12 August 2023).

An Adafruit NAU7802 24-Bit ADC-STEMMA QT/Qwiic was used for each load cell
(www.adafruit.com, accessed on 10 January 2024) to provide regulated voltage excitation
to the load cell and accurately convert the analog voltage output of the load cell into a
digital output. STEMMA QT/Qwiic refers to a particular type of connector the ADC and
other electronics use to facilitate connecting to external devices, like a microcontroller.
The accuracy of conversion from the analog to digital signal is greatly affected by the
number of bits of the ADC; the higher the number of bits, the higher the accuracy. The
24-bit ADC used here can divide the analog signal into 224 = 16,777,216 divisions. The
digital output is transmitted to the microcontroller using an I2C serial communication
protocol. The I2C protocol allows multiple slave devices (i.e., the NAU7802 24-Bit ADC)
to be connected to a single master device (i.e., a microcontroller), and multiple masters
can control a single or multiple slave devices. Connecting multiple slaves to a single
master depends on each slave having a unique address. However, all the NAU7802
ADCs were manufactured with the same default I2C address (0x2A), which could not be
changed, and the Boron device had only one I2C channel. This setup would only allow
one NAU7802 ADC to be connected to the single I2C channel of the Particle Boron device.
Therefore, an I2C multiplexer was used to expand the number of I2C channels on the
Particle Boron device from one to eight (Adafruit PCA9548 8-Channel STEMMA QT/Qwiic
I2C Multiplexer–TCA9548A Compatible). This arrangement allowed up to eight ADCs to
be read sequentially with the same I2C address.

Power to the electronic components was supplied using a 3.7 V and 2500 mAh Lithium-
ion polymer (LiPo) battery (Adafruit.com, accessed on 10 January 2024). The battery was
charged using a monocrystalline mini solar panel (5 volts, 6 Watts). All the electronic

Adafruit.com
Phidgets.com
https://www.phidgets.com/?tier=3&catid=9&pcid=7&prodid=229#Tab_Specifications
www.adafruit.com
Adafruit.com
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components, except for the load cells and the solar panel, were housed in a plastic IP65
waterproof enclosure with dimensions of 200 × 100 × 70 mm (LMioEtool ABS). Images of
the different components of the IoT scale system are shown in Figure 3.
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Figures 4 and 5 show the connections of the various electronic components and a view
of the field installation of the IoT scale system, respectively. The I2C multiplexer was con-
nected to the Particle Boron device via the terminal block breakout using a STEMMA cable.
The STEMMA cable had a 4-pin connector at one end connected to the I2C multiplexer.
The other end of the STEMMA cable had four wires with male headers connected to the
Particle Boron device. Two wires were connected to the power supply (3V and GND) of the
Particle Boron, and the other two were connected to the I2C pins (SCL and SDA). STEMMA
cables with 4-pin connectors at both ends connected the four ADCs to channels 0 to 4 of
the I2C multiplexer. Each of the load cells was connected directly to one of the ADCs.
The LiPo battery was connected to the battery port, and the solar panel was connected to
the micro-USB port of the Particle Boron (Figures 4 and 5).
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Web links to additional information and details regarding each element of the IoT
scale system are shown in Table 2. The quantities required and the cost of the components,
based on the current list prices and excluding taxes and shipping and handling, are shown
in Table 3.

Table 2. Web link to information about each component.

Components Web Link (accessed on 20 October 2023)

Microcontroller https://docs.particle.io/reference/datasheets/b-series/brn404x-datasheet/
Terminal block https://www.adafruit.com/product/2926
Multiplexer https://www.adafruit.com/product/5626
ADC https://www.adafruit.com/product/4538
Load cells https://www.phidgets.com/?tier=3&catid=9&pcid=7&prodid=229
Li-Po battery https://www.adafruit.com/product/328
Solar panel https://www.amazon.com/gp/product/B099RSLNZ4/
Instrument enclosure https://www.amazon.com/gp/product/B07YBXSG1J/
STEMMA cable https://www.adafruit.com/product/4210
STEMMA male header cable https://www.adafruit.com/product/4209
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Table 3. Cost of components for the IoT scale system.

Components Quantity Unit Price
(USD) Total % Total Cost

Microcontroller 1 USD 65.31 USD 65.31 19.0%
Terminal block 1 USD 14.95 USD 14.95 4.4%
Multiplexer 1 USD 6.95 USD 6.95 2.0%
ADC 4 USD 5.95 USD 23.80 6.9%
Load cells 4 USD 45.00 USD 180.00 52.4%
Li-Po battery 1 USD 14.95 USD 14.95 4.4%
Solar panel 1 USD 13.99 USD 13.99 4.1%
Instrument enclosure 1 USD 18.62 USD 18.62 5.4%
STEMMA cable 4 USD 0.95 USD 3.80 1.1%
STEMMA male headers cable 1 USD 0.95 USD 0.95 0.3%

Total USD 343.32

2.3. Internet of Things (IoT) System

The Particle Boron device was programmed to sample the four load cells at regular
time intervals, make a few calculations, and send the data to the Cloud. The data were sent
to the IoT Cloud server, ThingSpeak.com. ThingSpeak.com is an IoT analytics platform
service that allows users to aggregate, visualize, and analyze live data streams in the
Cloud. We selected ThingSpeak.com because we had already used this service for previous
applications [42–45], we were familiar with it, and it offered all the needed features. Other
researchers, such as [30,40], also used ThingsSpeak.com. However, other IoT services are
available, and other researchers have used other services for similar projects. For example,
ref. [38] used Google-sheet as the IoT Cloud service. Similarly, ref. [35] reported using
the Kotlin Multiplatform Framework (KMM) and refs. [37,41] reported using the IoT
application Node-RED.

The Particle Boron device was programmed using Particle Workbench, a professional
tool built into Visual Studio Code to facilitate IoT development (https://www.particle.
io/blog/particle-workbench-ga/, accessed on 15 October 2023). The code for the Par-
ticle Boron device included several external library files such as “Particle.h”, “Wire.h”,
“Adafruit_NAU7802.h”, and “ThingSpeak.h.” The first three library files were needed
for the Particle Boron device to communicate with and control the I2C multiplexer and
the ADCs. The “ThingSpeak.h” library was needed to send the data to ThingSpeak™
(ThingSpeak.com). The Particle Boron was programmed to sample the four load cells and
send the data to ThingSpeak.com every minute during the indoor part of the experiment
and every 10 min during the outdoor experiment.

2.4. Indoor and Outdoor Experiments

The performance of the IoT scale system was initially tested during an indoor exper-
iment by placing the four load cells in each corner underneath a flowerpot (Figure 6A).
The IoT system was used to measure the mass of the flowerpot every minute for two
days. The indoor experiment was conducted to test the hardware, software, and data
communication. Another purpose of this experiment was to evaluate if the scale system
responded adequately to changes in mass by performing a calibration experiment and
collecting data from the flowerpot.

Once the indoor experiment proved successful, a scale system was built to be deployed
outdoors (Figure 6B) to continuously monitor soil water evaporation, simulating a weighing
lysimeter’s operation. The system consisted of a steel frame supported by four load cells
(one underneath each corner) containing a soil-filled plastic storage bin. The outdoor
experiment was installed on 21 January 2023 in a grassy area at the edge of an agricultural
field at the Clemson University Edisto Research and Education Center, Blackville, South
Carolina. The IoT scale system was programmed to collect data every 10 min and send the
data to ThingSpeak.com. The collected data included the output of each load cell, the total
output (summing the output of the four load cells), and the total mass of the soil container

https://www.particle.io/blog/particle-workbench-ga/
https://www.particle.io/blog/particle-workbench-ga/
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(kg). The soil in the container was initially bare (Figure 6B), but weeds were allowed to
grow inside the container (Figure 6C).
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bration was conducted during the indoor experiment phase on 15 January 2023. A similar 
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Figure 6. Experimental setup for the indoor and outdoor experiments. (A) Flowerpot with four load
cells underneath. (B) Soil container with four load cells underneath. (C) Soil container with weeds.

2.5. System Calibration

Load cells produce a very small voltage output that the ADC converts into an integer
value. In this application, this integer had no intrinsic meaning and needed to be converted
into mass (kg) to be useful. A calibration was conducted to convert the output of the ADC
to mass (kg). The calibration consisted of sequentially adding objects of known mass (kg) to
the scale system and recording the corresponding ADC output. The aim was to empirically
develop an equation to convert the output into mass (kg). The initial calibration was
conducted during the indoor experiment phase on 15 January 2023. A similar calibration
was also performed during the outdoor experiment on 24 February 2023 (Figure 7). For the
indoor calibration, the objects of known mass were books previously weighed using an
electronic kitchen scale (Model EK9710, 5 kg capacity). For the outdoor calibration, sealed
plastic containers were filled with dry sand and weighed using an electronic compact
bench scale (Ohaus, Model Ranger 3000, 30 kg capacity). Each container was filled to
weigh around 5 kg. The linear regression equation resulting from the calibration was
used to convert the load cell output to mass (kg). The lysimeter mass was converted into
its equivalent depth of evapotranspiration water (mm) based on the surface area of the
lysimeter container (Figure 7) (mm of water = kg of water/m2).
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2.6. Weather and Soil Moisture Data

Daily weather and soil moisture data for the research site were obtained from a
weather station at the Edisto Research and Education Center. The station is part of the
National Oceanic and Atmospheric Administration (NOAA) National Weather Service.
It is located at a linear distance of around 800 m from where the outdoor experiment was
conducted. The data obtained from the weather station for this study included precipitation,
air temperature (maximum and minimum), mean relative humidity, solar radiation, and
soil moisture at three soil depths (5, 10, and 20 cm).

3. Results and Discussion
3.1. Calibration Results

The results of the indoor calibration are shown in Figure 8. Figure 8A shows the changes
in the total load cell output over time resulting from adding three masses to the scale system.
The output collected every minute for each mass indicates that the signal was very stable, with
no noticeable noise. The regression analysis (Figure 8B) yielded a perfect correlation (r2 = 1.0)
between the total load cell output and the mass. Figure 8B shows a negative relationship,
which could result from the type of load cell used in this study, which can operate in tension
or compression modes. The negative relationship also depends on how the two signal wires
of the load cell are connected to the ADC positive and negative pins, which will result in
either a positive or negative output. Similarly, the outdoor calibration (Figure 9) resulted in an
excellent negative linear correlation (r2 = 0.9994).
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3.2. Weather and Soil Moisture

Information on daily precipitation, maximum (Max) and minimum (Min) air tem-
perature, soil moisture at three soil depths, solar radiation, and relative humidity from
February to June 2023 at the study site are shown in Figure 10. The daily precipitation data
(Figure 10A) show frequent precipitation events typical of the study area during spring.
The soil moisture data in Figure 10E reflect various wetting and drying cycles in response
to the recurring rainfall events.
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Figure 10. Daily (A) precipitation, (B) maximum (Max) and minimum (Min) air temperature, (C) solar
radiation, (D) relative humidity, and (E) soil moisture at three soil depths (5, 10, and 20 cm) from
February to June 2023 at the study site.

3.3. Results of the Outdoor Experiment

Figure 11 shows an example of the output of one of the load cells displayed in ThingSpeak.com
from 22 May to 19 June 2023 during the outdoor experiment. The ThingSpeak.com tool allows
one to display up to eight charts per channel, and the data can be visualized using a computer.
The data on ThinkSpeak.com can be private, shared with specific people, or made public for
anyone to see. The data sent to ThingSpeak.com is given a timestamp when received, is stored
in a database, and can be downloaded as a CSV file. Although the data in ThingSpeak.com is
meant to be visualized using a computer, several cell phone Apps (i.e., ThingView, ThingShow
for ThingSpeak) are available for iOS and Android that can be used to visualize ThingSpeak data
using a cell phone and other mobile devices.
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Figure 11. Data from one of the load cells as shown in ThingSpeak between 22 May and 19 June 2023.

The data collected every 10 min during the outdoor experiment are shown in Figure 12
for the entire study period from February to June 2023. The data collection and communica-
tion system did not fail during this period, indicating that the IoT scale system was reliable.
However, the reliability of the communication system depends on cell phone coverage and
quality of coverage, which vary by site and local conditions. It should be noted that the
lysimeter mass data shown in Figure 12 followed the same pattern as the soil moisture data
previously shown in Figure 10E, indicating that the IoT scale system accurately responded
to the local changes in soil wetting and drying cycles.

AgriEngineering 2024, 6, FOR PEER REVIEW  13 
 

 

 
Figure 11. Data from one of the load cells as shown in ThingSpeak between 22 May and 19 June 
2023. 

The data collected every 10 min during the outdoor experiment are shown in Figure 
12 for the entire study period from February to June 2023. The data collection and com-
munication system did not fail during this period, indicating that the IoT scale system was 
reliable. However, the reliability of the communication system depends on cell phone cov-
erage and quality of coverage, which vary by site and local conditions. It should be noted 
that the lysimeter mass data shown in Figure 12 followed the same pattern as the soil 
moisture data previously shown in Figure 10E, indicating that the IoT scale system accu-
rately responded to the local changes in soil wetting and drying cycles. 

 
Figure 12. Lysimeter field data measured every ten minutes from February to June 2023. 

The 10 min data in Figure 12 were filtered to retain only the values measured at mid-
night each day. The midnight lysimeter mass values were used to calculate the daily evap-
otranspiration by subtracting the midnight value for the current day from that of the pre-
vious day. Since rainy days would result in negative ET values, the negative values were 
removed. The resulting daily and cumulative ET values for the study period are shown in 
Figure 13. As expected, the daily ET values were variable, reflecting the normal day-to-
day variability in weather and soil moisture conditions. The daily ET rate depends on 
several weather variables, such as solar radiation, temperature, relative humidity, and 
wind speed. For a cropped surface, crop type, crop development stage, percent crop cover, 

Figure 12. Lysimeter field data measured every ten minutes from February to June 2023.

The 10 min data in Figure 12 were filtered to retain only the values measured at
midnight each day. The midnight lysimeter mass values were used to calculate the daily
evapotranspiration by subtracting the midnight value for the current day from that of the
previous day. Since rainy days would result in negative ET values, the negative values were
removed. The resulting daily and cumulative ET values for the study period are shown in
Figure 13. As expected, the daily ET values were variable, reflecting the normal day-to-day
variability in weather and soil moisture conditions. The daily ET rate depends on several
weather variables, such as solar radiation, temperature, relative humidity, and wind speed.
For a cropped surface, crop type, crop development stage, percent crop cover, and level of
water stress also play an essential role. Despite the variability in daily ET, the tendency was
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for the daily ET values to increase with time as the weather got warmer as spring moved
towards summer.

AgriEngineering 2024, 6, FOR PEER REVIEW  14 
 

 

and level of water stress also play an essential role. Despite the variability in daily ET, the 
tendency was for the daily ET values to increase with time as the weather got warmer as 
spring moved towards summer. 

 
Figure 13. Daily and cumulative evapotranspiration (ET) derived from lysimeter measurements 
from February to June 2023. The bars represent daily ET, and the solid line represents cumulative 
ET. 

Figure 14 shows the lysimeter mass and ET measured every 10 min during 2–3 June 
and 8–10 June 2023, which provides a closer look to appreciate the accuracy of the IoT 
scale system. It shows the daily pattern of crop water use, with the rate of water use in-
creasing during the daytime compared to nighttime hours. In general, more noise in the 
signal is observed during the day compared to nighttime. During the daytime, more noise 
could result from the effect of clouds on solar radiation and the usual tendency of wind 
speed to increase during the day [46]. It is possible that our field experiment setup, with 
the soil container above ground, could have been more severely impacted by changes in 
wind speed than a normal lysimeter, which is typically buried. 

An interesting observation from Figure 14A is that there was a mass increase during 
the morning hours for June 2 and 3 instead of the expected decrease, since no rain occurred 
during those days. Natural water inputs to the soil coming from sources other than rain 
(such as dew) are often not considered in ecohydrological studies since they are typically 
believed to be small and, therefore, difficult to measure. However, some researchers have 
recognized that these water inputs could form under different environmental conditions 
and be a relevant source for plants and ecosystems, especially during summer drought. 
For example, Ref. [11] reported that non-rainfall water inputs occurred frequently in Swit-
zerland, and they measured 127 non-rainfall water input events over 12 months using 
micro lysimeters. 

Similarly, researchers in Spain [47] used a precision weighing lysimeter to measure 
ET from a dune belt in a coastal environment. They found that during periods without 
rainfall, the daily pattern of the lysimeter readings showed increasing mass from sunset 
to morning hours and a subsequent decrease. However, they observed that the increasing 
mass concurred with hours of zero or only minor temperature differences to the dewpoint, 
which led them to attribute the increase in mass to vapor adsorption rather than dew. At 
our study site, dew accumulation during the early morning hours is a common occurrence 
based on visual observations of wet plant leaves during non-rainy periods. Therefore, we 
speculate that the increase observed in the lysimeter mass during the daytime could be 
due to dew accumulation. 
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February to June 2023. The bars represent daily ET, and the solid line represents cumulative ET.

Figure 14 shows the lysimeter mass and ET measured every 10 min during 2–3 June
and 8–10 June 2023, which provides a closer look to appreciate the accuracy of the IoT scale
system. It shows the daily pattern of crop water use, with the rate of water use increasing
during the daytime compared to nighttime hours. In general, more noise in the signal is
observed during the day compared to nighttime. During the daytime, more noise could
result from the effect of clouds on solar radiation and the usual tendency of wind speed to
increase during the day [46]. It is possible that our field experiment setup, with the soil
container above ground, could have been more severely impacted by changes in wind
speed than a normal lysimeter, which is typically buried.

An interesting observation from Figure 14A is that there was a mass increase during
the morning hours for June 2 and 3 instead of the expected decrease, since no rain occurred
during those days. Natural water inputs to the soil coming from sources other than rain (such
as dew) are often not considered in ecohydrological studies since they are typically believed to
be small and, therefore, difficult to measure. However, some researchers have recognized that
these water inputs could form under different environmental conditions and be a relevant
source for plants and ecosystems, especially during summer drought. For example, ref. [11]
reported that non-rainfall water inputs occurred frequently in Switzerland, and they measured
127 non-rainfall water input events over 12 months using micro lysimeters.

Similarly, researchers in Spain [47] used a precision weighing lysimeter to measure
ET from a dune belt in a coastal environment. They found that during periods without
rainfall, the daily pattern of the lysimeter readings showed increasing mass from sunset to
morning hours and a subsequent decrease. However, they observed that the increasing
mass concurred with hours of zero or only minor temperature differences to the dewpoint,
which led them to attribute the increase in mass to vapor adsorption rather than dew. At our
study site, dew accumulation during the early morning hours is a common occurrence
based on visual observations of wet plant leaves during non-rainy periods. Therefore, we
speculate that the increase observed in the lysimeter mass during the daytime could be due
to dew accumulation.
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and calculated hourly evapotranspiration rate (B,D). The vertical lines indicate the end of each day.

Figure 14C shows that considerable nighttime ET occurred from June 8 to June 9, but
ET was minimal during the night from June 9 to June 10. These results show that the IoT
scale system was accurate enough to detect the daily ET and even ET rates during shorter
periods (i.e., 10 min). However, it would be advisable to remove noise for periods shorter
than daily by smoothing the data before calculating ET. Other researchers have observed
that the noise visible in lysimeter data originated mainly from fluctuations in electrical
noise, wind speed, and atmospheric pressure [11].

Some of the short-term noise could be removed by programming the microcontroller
to oversample and time-average during data collection. Additional smoothing can be
applied in post-processing using various data-smoothing techniques that can be applied
to time series (i.e., moving average, lowess). Researchers in Switzerland [11] described
a procedure to remove noise from load cell data using low-pass filtering. The data in
Figure 14A,C were first smoothed using the lowess () function in R (using f = 0.05) before
the ET values in Figure 14B,D were calculated. As indicated earlier, Figure 14B,D show
that negative ET values resulted during the morning hours in most of the five days shown,
probably due to dew formation.

3.4. Cost of the IoT Scale System

Electronic supplies to build the IoT scale system (Table 3) cost USD 343.32, excluding
taxes and shipping and handling. But the four load cells represented 52.4% (USD 180.00) of
the total cost, and all the other supplies were purchased for USD 163.32. However, this work
focused on building and testing the electronics for the scale or lysimeter system. The cost
of building a field lysimeter for actual evapotranspiration monitoring can be significant.
Under their current pricing policy, non-commercial users have no ongoing monthly cost or
data plan for using the Particle Boron to transmit data using the cellular network. Also,
there is no cost for non-commercial users to use the ThingSpeak.com IoT platform.
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3.5. Advantages and Disadvantages of the IoT Scale System

The IoT scale system has many advantages. For example, it can be built using open-
source electronics and an existing IoT platform. The system has low power requirements
and can operate with a small battery and solar panel, which is especially important in
remote agricultural locations. Lysimeters are typically installed in the middle of an agri-
cultural field; therefore, a bulky solar panel and battery system often obstruct farming
operations. The system offers connectivity to the Internet, allowing users to see the data
in real time. Internet connectivity enables users to monitor the system remotely to ensure
that the lysimeter is working correctly without needing to visit the site to download and
visualize the data manually. The system has a 24-bit ADC, which is the same accuracy as
the flagship Campbell Scientific data loggers (i.e., models CR1000X or CR6), commonly
used for lysimeter applications in agriculture, but at a small fraction of the cost.

On the other hand, one of the main disadvantages of the IoT scale system is that it is
not equipped to timestamp and save the data locally. It relies on timestamping and saving
the data in the Cloud, which depends on the availability and reliability of the cellular
network. Our field experiment did not have problems with the cellular network. Still, our
experience with other applications is that cellular communication could fail, depending
on the site and weather conditions. Therefore, the IoT system presented here could still
be improved by adding the capability of saving the collected data locally, such as using a
micro-SD card, which can be accomplished in various ways.

4. Conclusions

The IoT scale system was designed and constructed to be relatively low cost; be
accurate; have low power requirements to continuously operate with a small battery; be
recharged by a small solar panel; use cell phone communication that could be deployed in
remote locations; use open-source electronics and off-the-shelf components that would be
easy to obtain and substitute; use an existing open-source IoT Internet platform to receive,
store, and display the data in real time; and be robust and reliable for long-term operation
in outdoor applications.

Although the IoT system was explicitly designed for a scale application by measuring
the output of four load cells, the Particle Boron device also has 20 mixed-signal GPIO pins
(6 x Analog, 8 x PWM), UART, I2C, and SPI. Only the I2C connection to the Particle Boron
was utilized in this application, and all its other connections and capabilities were still
available for other applications. Other applications could include reading other analog sen-
sors (i.e., temperature sensors, soil moisture sensors), activating relays, powering devices
(i.e., turning LEDs on and off), communicating with other digital devices (i.e., Arduino,
micro-SD card breakout, GPS, radio transceiver), etc. A logical next application would
be to utilize the available resources in the microcontroller to integrate sensors to measure
soil moisture and the weather variables needed to determine reference evapotranspiration
(ETo). Concurrent soil moisture, ETo, and ETc data would enable the calculation of crop
coefficients to understand the soil–plant–atmosphere dynamic processes in real time.

Also, in this application, the system was designed to measure one scale or lysimeter,
which requires only four load cells to be read. However, the I2C multiplexer has eight
channels for four additional ADCs and four additional load cells. The availability of
four additional channels means this IoT scale system can easily be expanded to read two
scales or two lysimeters if they are not too far apart. The technical specifications of the
I2C multiplexer indicate that the multiplexer comes with an address of 0x70. Still, this
address can be adjusted from 0x70 to 0x77 (using jumpers on the back of the device), which,
in theory, would enable having eight of these multiplexers on each of the 0x70 to 0x77
addresses. This arrangement would allow 64 ADCs (or other I2C devices) to be controlled,
which could be used to read 64 load cells.

Once constructed, the IoT scale system was tested during indoor and outdoor experi-
ments, showing excellent results. Although the indoor experiment lasted only a few days,
the outdoor experiment lasted for around five months (from February to June). The field
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experiment to measure ET using an aboveground lysimeter exposed the IoT scale system
to the changes in environmental conditions prevalent in the humid Southeast USA. The
system proved to be robust and dependable for data collection and data communication
under the conditions of the study. It also accurately measured changes in the lysimeter
mass at a 24-bit ADC resolution, which enabled the determination of ET during daily and
shorter periods.

The results of the outdoor experiment showed that the changes in the lysimeter mass
during five months (Feb to Jun) had the same tendency as the changes in soil moisture
measured concurrently at a nearby weather station. Both the lysimeter and soil moisture
measurements reflected the expected changes in soil conditions due to wetting and drying
soil cycles driven by local weather conditions. The results of the outdoor experiment also
showed that the system could detect a considerable gain in lysimeter mass, rather than
the expected loss in mass, during the morning hours. We speculated that this gain in mass
could be due to dew formation. However, the process of dew formation, its magnitude,
and its importance in agricultural water management still need further investigation.

Although the IoT scale system performed without fail in data collection and transmis-
sion during the field experiment, it is recognized that it would be important to improve the
system by adding the capability of recording the collected data locally before sending them
to the Internet. In future work, a new version of the system will be created to address this
shortcoming, making the system more reliable and valuable, especially in places without
stable cellular service.

One of the main advantages of the IoT scale system is that it can be built for a frac-
tion of the cost of popular data logging systems commonly used for lysimeter and scale
applications in agriculture, which typically require an investment of several thousand USD
for data logging and data communication. Also, the IoT scale system can be built using
open-source, off-the-shelf components that are easy to purchase online and can be easily
replaced or substituted, providing freedom from proprietary systems. In fact, most, if not
all, of the components of the IoT scale system described here could be replaced or substi-
tuted. The possibility of replacing or substituting components applies to the electronic
components, enclosure, battery, solar panel, and even the ThingSpeak.com IoT platform.
Also, the fact that the system is connected to the Internet via the cellular network not only
enables users to download and visualize the data using the ThingSpeak.com IoT platform,
but the user can also remotely change the program in the microcontroller by flashing code
via the Cloud Flash option provided by the Particle Workbench tool.
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