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Abstract: Monitoring crop height during different growth stages provides farmers with valuable
information important for managing and improving expected yields. The use of synthetic aperture
radar Sentinel-1 (S-1) and Optical Sentinel-2 (S-2) satellites provides useful datasets that can assist in
monitoring crop development. However, studies exploring synergetic use of SAR S-1 and optical S-2
satellite data for monitoring crop biophysical parameters are limited. We utilized a time-series of
monthly S-1 satellite data independently and then used S-1 and S-2 satellite data synergistically to
model wheat-crop height in this study. The polarization backscatter bands, S-1 polarization indices,
and S-2 spectral indices were computed from the datasets. Optimized Random Forest Regression
(RFR), Support Vector Machine Regression (SVMR), Decision Tree Regression (DTR), and Neural
Network Regression (NNR) machine-learning algorithms were applied. The findings show that RFR
(R2 = 0.56, RMSE = 21.01 cm) and SVM (R2 = 0.58, RMSE = 20.41 cm) produce a low modeling accuracy
for crop height estimation with S-1 SAR data. The S-1 and S-2 satellite data fusion experiment had
an improvement in accuracy with the RFR (R2 = 0.93 and RMSE = 8.53 cm) model outperforming
the SVM (R2 = 0.91 and RMSE = 9.20 cm) and other models. Normalized polarization (Pol) and
the radar vegetation index (RVI_S1) were important predictor variables for crop height retrieval
compared to other variables with S-1 and S-2 data fusion as input features. The SAR ratio index (SAR
RI 2) had a strong positive and significant correlation (r = 0.94; p < 0.05) with crop height amongst
the predictor variables. The spatial distribution maps generated in this study show the viability
of data fusion to produce accurate crop height variability maps with machine-learning algorithms.
These results demonstrate that both RFR and SVM can be used to quantify crop height during
the growing stages. Furthermore, findings show that data fusion improves model performance
significantly. The framework from this study can be used as a tool to retrieve other wheat biophysical
variables and support decision making for different crops.

Keywords: wheat; crop height; Sentinel-1; Sentinel-2; random forest regression; support vector
machine regression

1. Introduction

In recent years, the Food and Agriculture Organization (FAO) reports show an increasing
demand for wheat production to meet the world’s current population’s consumption [1–3].
Wheat is the world’s largest cultivated cereal crop, covering approximately 220.62 ha (million
hectares) in 2022/23 [1,4]. Wheat products contribute significantly to eradicating hunger,
reducing poverty, and achieving global food security, which are central to the United Nations
Sustainable Development Goals (SDGs) number 1 and number 2 [5–8]. The SDG 1 pertains
to the eradication of poverty in all its manifestations worldwide, whereas SDG 2 focuses
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on ending hunger, attaining food security, enhancing nutrition, and fostering sustainable
agriculture. However, several factors have gradually reduced wheat production over the
years contributing to the increasing demands estimated at 70% for a population of 10 billion
by 2050 [9–12]. The declining trend in wheat production is due to socio-economic factors,
as well as abiotic and biotic stresses that have negative impacts on crop growth conditions
and food security [13–16]. Abiotic stress factors include extreme heat, drought, frost, salinity,
waterlogging, and nutrient deficits, while biotic stresses are due to crop diseases, weeds, and
pests [17–19]. Crop height is one of the important agronomic indicators related to production,
providing an indication of crop stress and essential information and alerts about intra-field
crop health conditions. Therefore, monitoring crop height throughout the growing season
is critical to understanding the anticipated yields as well as improving wheat production
forecasting.

The traditional methods such as Light Detection and Ranging (LiDAR) and Unmanned
Aerial Services (UAS) have high accuracy when monitoring crop height development [20–24].
Another accurate manual approach for crop height measurement is using a yardstick (ruler or
meter scale) [20,21]. However, these approaches are generally time-consuming, expensive, labor-
intensive, prone to human error, and unable to generate digital crop-height spatial distribution
maps for large-scale farms [22,25–27]. Remote sensing satellite data have shown great potential
to alleviate limitations of traditional measurements due to the satellites’ efficiency, digital
wide intra-field of view, and ability to revisit time characteristics, which are key for accurate
monitoring of crop biophysical parameters [28–32]. The S-1 and S-2 satellite sensors offer
high-resolution imagery and revisit time data for monitoring agricultural applications and
land use/land cover changes for free [33]. The S-1 and S-2 satellite sensors have better spatial
resolution compared to the moderate-resolution imaging spectroradiometer (MODIS) and
Landsat collections; as a result, these sensors are useful for farm-scale applications [34–36].
The improvement in the spatial and spectral resolutions of both S-1 and S-2 sensors makes
these satellites suitable for monitoring crop biophysical parameters such as height, among
others. Additionally, both the S-1 and S-2 satellite sensors increase the frequency of data
acquisition for field-scale crop monitoring. For example, the Copernicus Open Access Hub
provides S-1 and S-2 images at 5-day intervals, which is suitable for timely crop monitoring
and subsequent management and intervention [16]. The S-2 satellite data are affected by
cloudy atmospheric conditions and rain, which limit the acquisition of data during the crop
growing season [37]. However, S-2 images provide a red-edge band that is very sensitive to
crops changes as the plants grow, which can help time-series monitoring. The S-1 satellite can
provide data that are not obstructed by clouds and can complement S-2 satellite images [38,39].
Previous studies showed that there is a strong relationship between crop height and S-1 satellite
variables with 66%, 82%, and 92% precision for wheat-height estimation, respectively [40–42].
These S-1 satellite imagery variables include local incidence angle normalization, Alpha (α) and
dual-polarization VV (vertical transmits and vertical receive), and VH (vertical transmit and
horizontal receive). Furthermore, the application of S-1 satellite data has revealed 66% and 68%
sensitivity for wheat-crop height estimation with linear regression (LR) and exponential models,
respectively [43,44]. The Alpha (α) decomposition parameter has achieved a 67% wheat-crop
height sensitivity prediction based on the use of SAR data [42]. The use of S-1 satellite data
has produced 87% and 62% correlations with RFR and LR for wheat-crop height sensitivity
estimation [45]. Nevertheless, S-1 satellite data have not been investigated extensively for
agricultural applications because of the complex data structure, in comparison to S-2 satellite
data [35,46,47].

The synergistic use of SAR S-1 and optical S-2 sensors provides feasibility of capturing
both spectral and textural information [35,40,48,49]. Additionally, the fusion of both S-1
and S-2 satellite data has been reported to improve the estimation accuracy of different
biophysical parameters with the application of machine-learning algorithms [48–50]. For
example, RFR and particle filter (PF) models have achieved 92% and 95% correlation
coefficient precision for estimation of rice-plant height using S-1 satellite data, respec-
tively [41,51]. Furthermore, the LR model obtained 66% accuracy with SAR data for
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estimating wheat-crop height. Kaplan et al. [40] have found that the Enhanced Vegeta-
tion Index (EVI) and the local incidence angle normalization model attained 88% and
66% precision for estimating cotton crop height using SAR and optical data, respectively.
The local incidence angle normalization method has achieved accuracies of 86% and 87%
for wheat and cotton-crop height estimation using SAR imagery [52]. The crop coefficient
(Kc) model achieved more than 80% estimation accuracy for tomato-crop heights when
applied to the synergetic use of S-2 MSI and VENµS imagery [53]. Abdikan et al. [49]
and Xi et al. [54] also observed that the artificial neural network (ANN) model attained
91% of sunflower-crop height estimation, and the gradient boosting decision tree (GBDT)
model attained 72% of forest-canopy height estimation using a S-1 and S-2 satellite data
combination. In most studies, SAR and optical data are explored separately for crop height
and biophysical variable estimation [40,41,49,52,55]. Recently, studies have shown that
these data products display limitations when used independently, which are overcome
by using them synergistically [56–58]. Xi et al. [54] used ICESat-2, S-1, and S-2 satellite
imagery to develop a crop-height model of different forest types in China. The derived
matrices from S-1 and S-2 data showed that they played a critical role in modeling different
forest types. Narin et al. [45] use S-1 data to estimate the crop height of wheat in Turkey,
and they found that VH was more sensitive compared to VV polarization. Ndikumana
et al. [41] used multitemporal S-1 data to model rice-plant height and dry aboveground
biomass in southern France. They also reported that VH was more correlated with in
situ measurements compared to VV and that the RFR model yielded an accuracy of more
than 80% for both height and biomass models. Similar results were obtained by Sharifi
et al. [59]. Abdikan et al. [49] used both S-1 and S-2 satellite data to predict crop height
of sunflower crops in Turkey. The authors found that ANN and GBDT models produced
higher accuracies of more than 90% and that NDVI with a red-edge band was one of the most
important contributions. However, studies that have explored the feasibility of combining S-1
and S-2 satellite data to monitor intra-season and intra-field crop height variability for winter
wheat fields are limited.

This current study examines the sensitivity of VV, VH, VH–VV ratio, and S-1 polar-
ization indices’ data to monitor the time-series monthly intra-field crop-height growth
of a wheat farm. Secondly, the combined use of SAR S-1 and optical S-2 spectral indices’
time-series monthly data for monitoring intra-field crop height variability is investigated.
The RFR, SVMR, DTR, and NNR machine-learning algorithms (MLAs) are applied to both
experiments. Both RFR and SVMR have been shown to be effective models for estimat-
ing crop parameters in previous studies [41,60]. The selection criteria for RFR, SVMR,
DTR, and NNR MLA are associated with their reported capabilities to handle nonlinear
and noisy data with precision when monitoring crop biophysical variables [2,41,47,54,60].
This present study investigates the following detailed objectives: (1) assessing the rela-
tionship between intra-field crop height growth variation with S-1 VH, VV, VH–VV ratio
polarizations, and S-2 vegetation indices; (2) investigating the effectiveness of the selected
RFR, SVMR, DTR, and NNR algorithms in predicting crop height variations; (3) determin-
ing which input features are important for modeling crop height growth; (4) evaluating the
measurement method that is fundamental for estimating crop height variation; and finally,
(5) mapping the pattern of intra-field and intra-season crop height spatial distribution at
the wheat-farm level.

2. Materials and Methods
2.1. Location of the Study Site

The wheat farm in Clarens is found within South Africa in the north-east part of
the Free State province under the Thabo Mofutsanyane district (Figure 1). The Clarens
wheat farm area receives approximately 688 mm yearly mean rainfall and has 7.8 ◦C
and 20.7 ◦C minimum and maximum mean temperatures for both winter and summer
periods [61]. Rainfall occurs in the summer season with hot days above 20.7 ◦C as the
average temperature [61–64]. Sandy loam, Avalon, and Pinedene are dominant soil types in
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the Thabo Mofutsanyane district. These soil characteristics are moderately permeable [65].
Additionally, the district has rainfed winter wheat production within dryland areas [66–68].
The Thabo Mofutsanyane district experiences various climatic-related events including
winter frost occurrence in most low-lying areas, as well as prolonged periods of dry
spells and droughts [69–72]. These climatic events frequently affect agricultural crop
production and result in reduced yields. The high-risk dependence of crop production
such as wheat on rainwater within the Thabo Mofutsanyane district and surrounding
areas make crops vulnerable to inconsistent changing precipitation patterns, decreasing
precipitation quantity, which affects crop growth conditions [70–72]. The dryland wheat
farm considered in this study is approximately 30 ha in size. Table 1 details the wheat-crop
growth stages. The stages are divided into five-month periods, corresponding to the S-1 and
S-2 overpasses. The early germination stage is characterized by radicle, coleoptile, and early
leaf development. The early development stage involves tillering, head differentiation, stem
growth, and head growth. The late and mature stages involve head emergence, flowering,
kernel growth, and maturity. The last stage of senescence is characterized by wheat losing
its greenness and leaves starting to fall off the stem. The heights were measured using
measuring tape and were geolocated using a Global Positioning System (GPS) device by
following the systematic sampling method.
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Figure 2 shows the field and crop conditions throughout different wheat phenological
stages. The following observations of the wheat (A–H) were taken during the field visit
at the research farm. Subfigure (A) represents the germination stage, (B) shows the early
tillering stage, (C–E) show the development stages, (F) corresponds to the grain-filling
stage, and (G,H) signify the maturity stage.
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Figure 2. Illustrates the field and crop conditions throughout different wheat phenological stages with
(A) being the planting time, while (B–E) shows the development stage and (F–H) are the maturity
and production stages.

2.2. Image Data Collection, Preprocessing, and Analysis

The SAR S-1 GRD collection that was downloaded in the Interferometric Wide (IW)
mode covering the wheat growing period (August to November 2021) was utilized in this
study. The S-1 SAR toolbox within the Sentinel Application Platform (SNAP) environment
was utilized for preprocessing of S-1 imagery [73,74]. The preprocessing includes radio-
metric calibration, terrain correction, and removal of the border and thermal noise [75].
Applying the orbit file updates the metadata. Thermal noise removal masks artificially low
backscatter pixels within the margin of an image swath [76]. Radiometric calibration is per-
formed to generate the unitless backscatter intensity [77]. Terrain correction geo-codes the
images using a digital elevation model (DEM) from the Shuttle Radar Topography Mission
(SRTM) at 30 m spatial resolution [78–80]. Additional speckle filtering was performed on
the S-1 SAR GRD data using the Lee filter to decrease the coarse noise triggered by many
scatters [81]. The VV and VH S-1 polarization backscatter bands at 10 m spatial resolution
were utilized to calculate the S-1 polarization indices summarized in Table 2 below.

Table 2. List of Sentinel-1 polarization indices considered in this study.

Polarization Indices Equation Reference

Vertical transmit and vertical receive VV —
Vertical transmit and horizontal receive VH —

SAR simple difference index/(VH − VV) VH − VV [35,42,82]
Backscattering coefficient ratio (VH/VV) VH

VV [42,82]
SAR simple additive index (VH + VV) VH + VV [42,82]
SAR multiplication index (VH × VV) VH × VV [82]

SAR ratio index (SAR RI 1) VH
VH×VV [82]

SAR ratio index (SAR RI 2) VH−VV
VH×VV [82]

SAR square difference index (SAR SDI) VH × VH − VV × VV [82]
Radar vegetation index (RVI_S1) 4σO

VH
σO

VV+σO
VH

[42,51]

Normalized polarization (Pol) σO
VH−σO

VV
σO

VH+σO
VV

[42,83]
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The S-2 satellite mission consists of two polar orbiting satellites—S-2A launched in
June 2015 and S-2B commissioned in July 2017. The temporal resolution and combined
constellation of the S-2 MSI sensor are 10 days and 5 revisiting days, respectively. The S-2
Multispectral Instrument (MSI) sensor onboard S-2A and S-2B comprises thirteen spectral
bands. These spectral bands are characterized into four bands including blue (band 2),
green (band 3), red (band 4), and NIR (band 8) at 10 m resolution. Secondly, it includes
six bands incorporating red edge 1 (B5), red edge 2 (B6), red edge 3 (B7), red edge 4
(band 8A), SWIR (band 11), and SWIR (band 12) at 20 m resolution. Finally, there are
three bands involving coastal aerosol (band 1), water vapor (band 9), and cirrus (band 10)
at 60 m resolution. The S-2 optical data are available as a level 2A product from the
Copernicus Open Access Hub, where the per-pixel radiometric measurements are provided
in surface reflectance [35,84,85]. The atmospherically corrected images were acquired using
the Google Earth Engine (GEE) open access platform (https://earthengine.google.com/
accessed on: 19 March 2023). In this open-source platform, the L1C raw data are corrected
using the Sen2Cor algorithm [86]. A threshold of cloud coverage of not more than 20%
was applied, and a cloud musk layer generated by the Scene Classification Layer (SCL)
algorithm within the Sen2Cor was also applied. This algorithm allows to detect clouds,
their shadows and snow. The bands from S-2 MSI data were utilized to derive the following
spectral indices shown in Table 3.

Table 3. Summary of optical S-2 spectral indices selected in this study.

Optical Spectral Indices Equation Reference

Normalized Difference Vegetation Index (NDVI) NIR−Red
NIR+Red [82,87]

Normalized Difference Red Edge Index (NDRE 1) NIR−Red Edge 1
NIR+Red Edge 1

[54,88]

Normalized Difference Red Edge Index (NDRE 2) NIR−Red Edge 2
NIR+Red Edge 2

[54,88]

Normalized Difference Red Edge Index (NDRE 3) NIR−Red Edge 3
NIR+Red Edge 3

[54,88]
Difference Vegetation Index (DVI) NIR − Red [26,54]
Ratio Vegetation Index (RVI_S2) NIR

Red [26,54]
Chlorophyll Index Red Edge (CIRE) NIR

Red Edge − 1 [26,89]

Enhanced Vegetation Index (EVI) (2.5)×
(

NIR−Red
NIR+6×Red−7.5×Blue+1

)
[15,26]

Soil adjusted vegetation index (SAVI)
(

NIR−Red
NIR+Red+0.5

)
× 1.5 [15,82]

Figure 3 summarizes the research methods used in the current study. The bands from
SAR S-1 and optical S-2 imagery were utilized to calculate vegetation indices, respectively.
Furthermore, the sampled points were overlaid with a spectral vegetation index to generate
spectral index values in the ArcMap GIS environment. The spectral index value datasets
were split into a training set of 70% and 30% testing data. The in situ crop height mea-
surement was used as the response variable to predict the crop growth rate using SAR S-1
images separately and a SAR S-1 and optical S-2 data fusion.

2.3. Random Forest Regression

RFR is a robust ensemble learning algorithm and non-parametric method that is
commonly applied to classification and regression problems using large number of decision
trees [90]. RFR uses a bootstrapping technique from input data to forecast a continuous
outcome variable based on both classification and regression decision trees. All individual
decision tree models are applied rigorously to fit in the data with a root node, which
aggregates similar data values into subsets. Additionally, random subsets of parameters
contain each node for every tree data split. Randomization of the RFR model ensures its
robustness to outliers and overfitting [90]. The prediction results are based on aggregated
averages of all individual trees. The selected parameters and number of trees used at each
node split control the RFR model outcomes [91]. Also, optimizing the number of trees
and number of parameters helps to improve model performance during the estimation
process. The interactive MATLAB application products enable optimization of RFR [92].
The RFR model is applied in this study based on its superior capacity to distribute high-

https://earthengine.google.com/
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dimensional data and handle nonlinear noisy data at minimal overestimation [93]. RFR has
found applications in various domains, including agricultural crops and image recognition,
among others [94,95].
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2.4. Support Vector Machine Regression

SVMR consists of supervised learning and non-parametric approaches for solving clas-
sification and regression problems [89,96,97]. The SVMR algorithm utilizes a set of kernel
functions to convert datasets into usable formats [98]. Selection of kernel functions such as
polynomial, sigmoid, linear, radial basis, and nonlinear varies depending on user specification
when finding the optimal quadratic solution [99]. The kernels’ efficiency varies, and nonlinear
kernels frequently have better outcomes [49,100,101]. Optimal performance of the SVMR
model requires carefully chosen, tuned hyperparameters. Several studies have explored the
common efficiency of SVMR for different crop biophysical parameters [97,102]. The present
study executed the SVMR algorithm using interactive MATLAB application products.

2.5. Neural Network Regression

NNR is a learning algorithm technique that can use nonlinear data and is suitable for
modeling prediction. The multilayer feed-forward network procedure is used by NNR
to learn and train networks. NNR can learn complex relationships between multiple
input and output features through constant adjustments of connection neuron weights and
thresholds, based on backpropagated error difference of measurements and the predicted
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outcomes [103,104]. The minimization of errors during iterations of NNR model training
is referred to as supervised learning. The optimizable NNR model for this study was run
using a MATLAB application product. The NNR model properties included multilayer
feed-forward architecture composed of three connected layers: first layer, second layer,
and third layer with values of 4.44 and 2930, respectively. Furthermore, NNR employs the
mean squared error loss function.

2.6. Decision Tree Regression

DTR is a supervised algorithm that predicts regression and classification problems
using decision trees [105,106]. This non-parametric algorithm uses the tree node principle,
which creates binary decisions to isolate different categories into internal nodes and numer-
ous leaves contained in all datasets. DTR uses an interconnected parameter structure, which
breaks down large and complex datasets efficiently into simpler and exclusive decisions.
Decision tree regression frequently identifies the optimal algorithm and hyperparameters
to subdivide input datasets for better prediction outcomes. MATLAB enables unsupervised
selection of hyperparameters to identify the best model. The DTR model was constructed
using a MATLAB product for this study.

2.7. Experimental Setup

The first experimental setup utilized time-series values of S-1 polarizations and polar-
ization vegetation index data. The second experiment explored the time-series values ofs
synergy of S-1 and S-2 spectral indices’ datasets. In both experiments, the RFR, SVMR, NNR,
and DTR optimized regression models were applied. A total of 500 samples (100 samples
collected monthly during different growth stages) were used in this study. These sample
points were randomly selected and split into 350-sample training set (70%) and 150-sample
test set (30%) for all models. Cross validation was performed using a k-fold strategy, where
the number of folds for kk value is ten (k = 10) to evaluate the model accuracy. During the
model training iteration, the best point and minimum error hyperparameters were used
to evaluate the best performing optimized models. The optimized SVMR model in exper-
iment 1 had the following parameters: a box constraint value of 0.1959, epsilon value of
8.7468, and a quadratic kernel function. The optimized RFR model in experiment 2 had
6 trees. The implementation of the models was performed on MATLAB software (version
R2023b) [92]. The ranking of variable importance for each input feature was derived using
the fitensemble function on MATLAB following the predictor importance procedure [107].
Table 4 below summaries the data configurations for the experiments. Experiment 1 used
eleven S-1 variables, while experiment 2 used 20 variables of combined SAR S-1 and optical
S-2 datasets. Experiment 1 and experiment 2 variables were selected because of their
sensitivity to variation in crop height growth.

Table 4. Data configuration input for the RF, SVM, NN, and DT regression model experiments.

Experiment Data Configuration Input Data Number of Variables

1 Time-series values of SAR S-1
polarization bands and spectral indices

VV, VH, VH − VV, VH/VV,
VH + VV, VH × VV, SAR RI 1,

SAR RI 2, SAR SDI, RVI_S1,
and Pol

11

2 Time-series values of SAR S-1 and
optical S-2 data fusion

VV, VH, VH − VV, VH/VV,
VH + VV, VH × VV, SAR RI 1,

SAR RI 2, SAR SDI, RVI_S1,
Pol, NDVI, NDRE 1, NDRE 2,
NDRE 3, DVI, RVI_S2, CIRE,

EVI, and SAVI.

20



AgriEngineering 2024, 6 1101

2.8. Assessment of Model Performance

The model performance for RFR, SVMR, DTR, and NNR was assessed using the
10-cross validation (k = 10) method. The efficiency of the above models was evaluated
by comparing the retrieved wheat height with in situ crop measurements by using stan-
dard statistical metrics to measure the performance of the models, i.e., mean absolute
error (MAE), root mean square error (RMSE), and correlation coefficient (R2) according to
Equations (1)–(3) below.

MAE =
1
n

n

∑
i = 1

|yi − ŷi|. (1)

RMSE =

√
1
n

n

∑
i = 1

(Yi − Xi)
2, (2)

R2 =

n
∑

i = 1

[(
Yi − Yi

)(
Xi − Xi

)]
√

n
∑

i = i

(
Yi − Yi

)2 ×
√

n
∑

i = i

(
Xi − Xi

)2
. (3)

where n represents the number of observations, and Yi and Yi are the predicted features and
their averages (means). Xi and Xi represent the ground truth measurement variables and
their means. The correlation measures the fraction of the total sum of squares explained by
the regression. RMSE measures the standard deviation of the residuals. A well-performing
model would have a low RMSE and a higher R2 [41].

3. Results
3.1. Crop Height Descriptive Summary Statistics

The number of samples (N), mean (M), standard deviation (SD), minimum (Min) and
maximum (Max) descriptive statistics of wheat height as measured in the field during
different growth stages (early germination, early development, late development, maturity,
and senescence) are listed in Table 5. The lowest measured average height was 14.04 cm,
and the maximum average height was 89.40 cm for the early germination and senescence
stages, respectively. The maturity stage had the highest value of 103.5 cm, while the early
germination stage had the minimum value of 4.10 cm. The mean height of the wheat
increased as the crop phenological stages progressed (Figure 4). During the last two stages
of maturity and senescence, the crop height was constant.
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Table 5. Descriptive statistics of the measured wheat-crop height (cm) at different growth stages.

Phenological Stages N Mean Std. Dev Min Max

Early germination 100 14.04 2.54 4.10 26.50
Early development 100 26.19 5.35 8.00 42.90
Late development 100 54.63 9.13 20.90 80.00

Maturity stage 100 86.50 7.73 53.00 103.50
Senescence 100 89.40 7.26 45.5 100.00

3.2. Correlation Matrix and Statistical Summary from S-1 and S-2 Satellite Data

Figure 5 depicts the correlation matrix between the measured height and derived
features from SAR S-1 and optical S-2 imagery. Only SARRI2 had a strong positive corre-
lation and was significant at a 95% level (r = 0.94; p < 0.05) for crop height. Additionally,
the crop height had a positive correlation with VV, SAR RI 1, VH, and VH + VV, respec-
tively. NDRE1, NDRE2, NDVI, SAVI, DVI, EVI, and CIRE were strongly positive and
significantly correlated with each other. This implies a strong sensitivity of the above
vegetation indices to crop growth; the height increases with leaf development as the season
progresses. The negative and insignificant correlation observed between S-1 SAR and S-2
MSI features cannot be generalized but is attributed to the features’ capacity to detect crop
height changes as the wheat crop develops.
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Table A1 lists the statistics of the derived mean from S-1 polarization backscatter
bands, polarization backscatter, and S-2 spectral indices over time. As expected, for S-2
MSI vegetation indices such as NDVI, NDVRE 1, NDVRE 2, RVI_S 2, and CIRE, the mean
values increase as the growth stages advance but decrease during the senescence stage.
The coefficient of variation (CV) remained relatively low at an average of 25% during
the first four months. However, during the senescence stage, the CV increased to 64%.
This suggests that the greenness of wheat within the farm had very few variations during
the first four months, while the senescence stage was characterized by browning of the
leaves resulting in a high CV value. The mean values of backscatter polarization bands
and polarization indices varied in intensity during the crop growth stages. The standard
deviations also indicate similar variations.

3.3. Derived Crop Height Model Accuraccy

The SVMR and RFR model performance statistics for intra-field crop height calculated
using S-1 data (experiment 1) and the S-1 + S-2 data fusion (experiment 2) are summarized in
Tables 6 and 7. SVM yielded higher accuracies (R2 = 0.58, RMSE = 20.41 cm) in comparison
to RFR (R2 = 0.56, RMSE = 25.34 cm), DTR (R2 = 0.52, RMSE = 21.95 cm), and NNR
(R2 = 0.57, RMSE = 20.71 cm) for crop height estimation with a training set of S-1 data
(experiment 1). Inversely, the S-1 + S-2 (experiment 2) data fusion generated more precise
crop height estimation with RFR (R2 = 0.93 and RMSE = 8.53 cm) in comparison to SVMR
(R2 = 0.91 and RMSE = 9.20 cm), NNR (R2 = 0.84, RMSE = 12.48 cm), and DTR (R2 = 0.80,
RMSE = 14.02 cm) during the training sets of models. Experiment 1 test set data had higher
accuracies with minimal difference compared to the training set, which indicates that there
was no overfitting in all models. Additionally, the low average of 3.5 precision between
training-set and test-set accuracy in experiment 2 shows that enough data were generated
for all models to minimize overfitting.

Table 6. RFR, SVMR, DTR, and NNR model evaluation statistics for experiment 1.

Methods Training R2 RMSE (cm) MAE Testing R2 RMSE (cm) MAE

RFR 70% 0.56 21.01 15.57 30% 0.69 17.13 12.82
SVMR 70% 0.58 20.41 15.29 30% 0.67 17.69 13.82
DTR 70% 0.52 21.95 15.87 30% 0.66 17.82 12.69
NNR 70% 0.57 20.71 15.83 30% 0.61 19.03 14.51

Table 7. RFR, SVMR, DTR, and NNR model evaluation statistics for experiment 2.

Methods Training R2 RMSE (cm) MAE Testing R2 RMSE (cm) MAE

RFR 70% 0.93 8.53 5.87 30% 0.89 8.57 6.94
SVMR 70% 0.91 9.20 6.64 30% 0.91 9.39 6.86
DTR 70% 0.80 14.02 8.62 30% 0.81 13.47 8.81
NNR 70% 0.84 12.48 7.22 30% 0.93 8.57 5.99

The scatterplots were constructed based on the best performing training set of RFR and
SVMR models in both experiments to show the multicollinearity between predicted and
observed wheat-crop height (Figures 6 and 7). The clustered points along the regression
lines show a relationship between the predicted and observed wheat-crop height values
for RFR and SVMR machine learning regression models using S-1 SAR data separately
and the S-1 with S-2 satellite data fusion. RFR (R2 = 0.93 and RMSE = 8.43 cm) slightly
outperformed SVMR (R2 = 0.91 and RMSE = 9.20 cm) and other models at a 95% confidence
interval utilizing the S-1 SAR and S-2 MSI data fusion. However, there was contrariwise
performance of SVM (R2 = 0.58 and RMSE = 20.41 cm) performing better than the RFR
(R2 = 0.56 and RMSE = 21.01 cm) model with S-1 SAR data.
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3.4. Ranking of Feature Importance

The variable importance of each feature was investigated for the best performing
RFR and SVMR machine learning models in both experiments (Figures 8 and 9). Variable
predictor importance varied for both trained models. The training set of the RFR model
using S-1 data showed that the most important predictors were VV × VH and SAR RI 1,
while during the training set of the RFR model using the SAR S-1 and optical S-2 data fusion,
the most important predictors were RVI_S1 and Pol among others. However, the SVMR
model ranked VV × VH, SAR RI 1, and VV highly based on the S-1 satellite data training
set, whereas the highest rankings were RVI_S1, Pol, and SAR SDI from the combined data
from SAR S-1 and optical S-2 data training of the SVMR model. In general, RVI_S1 and
Pol were the most important input predictors for both the RFR and SVMR models during
data fusion and yielded higher model accuracies. The variable importance of S-2 data was
zero in all the experiments. This means that wheat-crop height can be accurately predicted
utilizing only S-1 SAR data and its indices. For example, Nasirzadehdizaji et al. [42] carried
out sensitive analysis of multitemporal S-1 parameters to crop height and canopy coverage.
The authors found that VV and VH produced a coefficient determination of about 80%
for maize, sunflower, and wheat. Khabbazan et al. [108], Vavlas et al., [109] and Yang
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et al. [51] showed that S-1 satellite data can be used successfully for crop height monitoring.
In contrast, Mercier et al. [110] and Abdikan et al. [49] reported that S-2 MSI data were one
of the most important types of data in accurately mapping crop height. Data integration
for crop height modeling should be further investigated.
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Figure 8. The ranking of variable importance of each feature for predicting crop height using the RFR
algorithm with S-1 satellite data (a) and S-1 + S-2 satellite data (b).
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3.5. Estimated and Measured Intra-Season Wheat-Height Variability

The in situ measurement and estimation of intra-season wheat-height growth were
compared to the RFR and SVMR machine learning models (Figure 10). An increasing trend
in crop height estimation is expected as the crop growth stages progress. The measured
wheat height and RFR estimation were similar at the early development stages, while
SVMR overestimated the crop height. During the late crop development stages, both RFR
and SVM overestimated crop height in comparison to measured height. However, both
RFR and SVMR underestimated the crop height growth at the maturity and senescence
stages. These findings can be attributed to the limitations in the models’ ability to capture
the complex dynamics of crop growth during later stages and insufficient training data
representing the full range of growth patterns and biases in the input data used for training
the models. Also, the sensitivity of the crop height decreases with increasing vegetation
cover growth [42]. The study suggests that the RFR model offers an alternative method
for crop height estimation in large-scale agricultural fields for crop management practices,
avoiding time-consuming in situ measurement.
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3.6. Mapping Intra-Season Crop Height Variability for the Wheat Farm

The intra-field and intra-season crop height variability is mapped in Figure 11. The RFR
(a–e) and SVMR (f–j) models in Figure 11 show differences in the spatial distribution maps
of wheat-crop height between August and November, respectively. During the first two
months of August and September, which represent the early months of the season, there
were variations in the performances of RFR (a), (b) and SVMR (f), (g). They both depict poor
spatial variability of the crop height. During the last two months of the season, October
and November, both models, as shown in Figures 11c–e and 11h–j, produced similar results
with higher accuracies in the estimation of crop height, respectively. Overall, SVMR, as
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seen in Figure 11j, had equal and higher distributions of crop height prediction compared
to the lower crop height estimation in central Figure 11e, which shows results from the RFR
wheat farm. These monthly spatial distribution maps provide a digital field overview of
wheat growth changes, which is useful for timely crop management practices. Therefore,
accurate maps may result in improvement of decision making during intra-field visits for
the nutrient fertilizer use efficiency required to increase crop productivity.
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4. Discussion

This study evaluated the feasibility of S-1 polarization backscatter bands, S-1 polariza-
tion indices, and data integration of S-1 and S-2 spectral indices for predicting intra-field
and intra-season crop height variation in the wheat farm of Free State Clarens. Crop
height was investigated for the different development stages. RFR, SVMR, NNR, and DTR
machine-learning algorithm performances for this purpose were evaluated using SAR S-1
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imagery separately and then utilizing a SAR S-1 and optical S-2 data fusion, respectively.
The correlation matrix was used for determination, and predictions had significant corre-
lation with actual crop height variation. The study also evaluated feature importance to
assess the influence of each input feature on the evaluated models. The optimal machine
learning regression algorithms’ estimation accuracies during the experiments were used
to generate spatial distribution of crop height variation maps for the entire growing pe-
riod. The findings revealed that the data integration of SAR S-1 and optical S-2 imagery
has superior performance for estimating the actual intra-season crop height variability in
comparison to S-1 satellite data only.

The crop height increase is expected because of wheat productivity over time. Fur-
thermore, the correlation matrix indicates that the SARRI2 polarization index has a strong
positive and significant correlation with the actual crop height variation in comparison to
other features. Other features such as VV, VH, VH + VV, and SARRI1 were positively corre-
lated with crop height at p > 0.05. Similar findings have demonstrated that VH backscatter
is strongly correlated to the estimation of crop height in rice, forest, and mangrove in
comparison to other polarizations [51,88,111]. Inversely, other studies revealed that maize,
rice, wheat, and sunflower crop height estimation is well correlated with VV polarization
over VH and VH/VV [41,42,112]. The contribution of each type of S-1 SAR polarization
cannot be generalized and was inconstant in this study and with every other estimated
crop height biophysical parameter. Overall, for the VV polarization, the higher attenuation
of the signal in vertical structure crop stems often decreases as the crop grows, while VH
backscatter increases as the crop grows [51,82,113,114]. This may suggest the superior
performance of the VH polarization scenario over VV in actual crop height estimation.

The evaluation of the four non-parametric RFR, SVMR, NNR, and DTR analytical
models for predicting the wheat-crop height showed that the RFR model outperformed
SVMR, NNR, and DTR models with data integration of S-1 and S-2 satellite data. The rea-
sonable performance of RFR for crop height estimation in the current study is consistent
with and similar to findings from previous studies, which focused on global vegetation
canopy-, rice-, and maize-crop height [24,41,82]. These results are frequently attributed
to the higher capacity of RFR in predicting crop biophysical variables [82]. In addition,
RFR can handle large datasets using regression tree average values, while preserving high
accuracy and minimizing model overfitting risk [115]. This study attained an accuracy
R2 of 0.93 and 8.43 cm RMSE with RFR as the superior model. These findings are similar
to those of Ndikumana et al. [41], which revealed an accuracy of R2 = 0.92 and 7.9 cm
RMSE during the prediction of rice-crop height using RFR with multitemporal S-1 SAR
data. Additionally, Han et al. [116] used UAV imagery for estimating wheat growth and
achieved R2 of 0.6 to 0.79 and 1.68 to 2.32 cm RMSE with RFR. Furthermore, RFR obtained
an R2 of 0.96 for estimation of plant height in eucalyptus using the traditional measurement
method (dendrometry) [117]. Contrary to the above results. SVMR performed better than
RFR, NNR, and DTR for wheat-crop height estimation using S-1 SAR data though with
unsatisfactory accuracy results. Ji et al. [118] found similar results that SVMR can enhance
the precision of crop height prediction. The better performance of SVMR is usually aligned
to the use of kernel functions that obtain optimal hyperparameter values and influence
SVMR model accuracy [119]. The hyperparameter tuning, feature selection, dataset volume,
and quality can also influence the performance of ML models. These alterations in model
performance precision are associated with differences in the input variables and may vary
across studies.

Variable importance ranking was conducted to show the contribution of each input
predictor feature for predicting wheat-crop height. The findings showed that RVI_S1 and
Pol have higher ranking in both RFR and SVMR when predicting crop height. How-
ever, other input variables were important during the training of the models, but their
rankings were low and varied. These results are in contrast to other studies that found the
VV backscatter band as more important than RVI and other S-1 SAR polarization indices
[46,76,82,112,120]. The contrasting findings and differences existing in variable importance
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assessments are related to crop parameters and variations within the input features for
model training in these studies. For instance, other studies focused on biomass of maize,
grassland, barley, and wheat [82,120], while this current study focuses on crop height
biophysical parameters for wheat growth.

The crop height estimations were compared using in situ measurement and RFR and
SVMR machine-learning models. The findings showed that in situ measured crop height
was similar to that measured using RFR at the early development stages. However, SVMR
overestimated the crop height during development stages except during the maturity
stage. The RFR model underestimated the crop height in the last two stages of crop
development. Generally, both RFR and SVMR models overestimated crop height at late
development stages. Our findings validate that RFR and SVMR can estimate plant height
using satellite imagery, which is consistent with other previous studies [41,49,59,121].
The increase in crop height estimation was expected as the crop grew, and it reached
maximum growth greater than 100 cm at the maturity stage before its decline at the
senescence stage. Our findings are similar to other studies, which observed that crop
height reaches up to 41.83, 53, 65, 75, 85, and greater than 90 cm for wheat at the maturity
stage [22,42,55,112,113]. In general, wheat crops could have similar and different height
observations at the maturity stage due to differences in growth conditions, which cause
variations within regular phenology [42,122,123].

The spatial distribution of intra-field and intra-season crop height variability was
mapped. In general, the crop height spatial distribution maps generated from RFR and
SVMR MLA were similar, except during the first and last growth stages. These results
demonstrated the feasibility of MLA to estimate intra-field and intra-season crop height
variation. The crop height maps produced in this study can be used as a practical guide to
identify real-time growth problems within the intra-field level and inform decision making
for management zones. Additionally, agricultural research institutions and extension
officers can also benefit from these crop height maps to make accurate recommendations
that help wheat farmers avoid yield losses and customize wheat-crop insurance. Monitoring
wheat-crop height throughout the growth cycle provides useful spatiotemporal information
for crop management and could enhance crop yields to meet increasing demands in
the global market [14,22]. The application of this study is the contribution to precision
agriculture farming management, sustainable agriculture, and realization of SDG number
2 (Zero Huger) interventions to improve food security [5,124]. Also, it contributes to
the SDG number 1 (No Poverty) initiative for eradicating hunger and reducing poverty.
The limitations of this study, because of high fieldwork costs, include one planting season
visited monthly for crop height measurements and the lack of yield data at the end of
the planting season to compare with wheat-crop growth productivity. Future research
may consider including seasonal crop growth datasets, meteorological data, identification
of crop disease, and other crop structural parameters including leaf chlorophyll content
(LCC), the leaf area index (LAI), and crop density for holistic understanding of crop growth
monitoring. Such datasets will be useful to famers when identfying appropriate windows
for early production assessment [64].

5. Conclusions

This study was aimed at investigating the sensitivity of S-1 polarization backscatter
bands, S-1 SAR polarization indices, and synergetic use of SAR S-1 and optical S-2 data
using monthly data for predicting intra-season wheat-crop height growth by applying MLA.
The RFR and SVMR machine learning models showed high capability to estimate crop
height with the combined use of SAR S-1 and optical S-2 datasets. The spatial distribution
maps of intra-season crop height produced in this study can be used to guide real time
intra-field crop management zones in affected areas to increase potential yield for wheat
producers. The methods applied in the current study should be explored with other
crop biophysical variables using high-resolution timely PlanetScope and UAV datasets to
advance future research directions and developments.
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Appendix A

Table A1. Statistical summary of the features as calculated from S-1 and S-2 satellite data.

Date Platform Mean Standard Deviation Coefficient of Variation
(%)

19 August 2021

VH −26.00 2.99 11.49
VV −15.05 2.43 16.16

VH − VV −10.84 3.17 29.25
VH/VV 1.77 0.35 19.75

VH + VV −40.84 4.42 10.83
VH × VV 389.85 85.84 22.02
SAR RI 1 −15.00 2.38 15.90
SAR RI 2 −0.03 0.01 43.25
SAR SDI 446.26 14.05 32.06
RVI_S1 2.53 0.16 6.29

Pol 0.27 0.08 29.89
NDVI 0.16 0.01 7.76

NDRE 1 0.10 0.02 16.17
NDRE 2 0.06 0.02 27.43
NDRE 3 0.02 0.01 60.03

DVI 0.07 0.01 14.01
RVI_S2 1.39 0.04 2.63
CIRE 0.22 0.04 18.29
EVI 0.09 0.01 11.33

SAVI 0.11 0.01 10.65

14 September 2021

VH −21.97 2.69 12.27
VV −13.82 2.28 16.52

VH − VV −8.21 3.09 37.69
VH/VV 1.63 0.29 18.05

VH + VV −35.60 3.92 11.02
VH × VV 301.39 71.59 23.75
SAR RI 1 −13.69 2.25 16.45
SAR RI 2 −0.03 0.01 43.94
SAR SDI 487.17 129.41 25.56
RVI_S1 2.46 0.17 6.90

Pol 0.23 0.09 36.69
NDVI 0.38 0.09 22.33

NDRE 1 0.27 0.07 23.77
NDRE 2 0.09 0.02 19.14
NDRE 3 0.03 0.01 47.96

DVI 0.18 0.04 25.04
RVI_S2 2.29 0.43 18.79
CIRE 0.78 0.24 31.36
EVI 0.27 0.07 25.91

SAVI 0.28 0.07 23.62
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Table A1. Cont.

Date Platform Mean Standard Deviation Coefficient of Variation
(%)

18 October 2021

VH −21.02 2.21 10.50
VV −14.78 2.20 14.87

VH − VV −6.13 3.21 52.31
VH/VV 1.46 0.30 20.46

VH + VV −35.58 3.24 20.46
VH × VV 307.23 60.21 19.60
SAR RI 1 −14.73 2.33 15.81
SAR RI 2 −0.02 0.01 65.74
SAR SDI 439.88 94.77 21.54
RVI_S1 2.35 0.19 8.11

Pol 0.17 0.10 54.67
NDVI 0.76 0.09 11.49

NDRE 1 0.61 0.08 13.21
NDRE 2 0.15 0.03 17.62
NDRE 3 0.02 0.01 89.37

DVI 0.40 0.06 14.10
RVI_S2 8.49 3.33 39.24
CIRE 3.29 1.05 32.03
EVI 0.68 0.11 15.64

SAVI 0.59 0.07 12.67

15 November 2021

VH −20.47 2.58 12.60
VV −15.16 1.97 13.01

VH − VV −5.20 3.18 61.11
VH/VV 1.37 0.25 18.49

VH + VV −35.48 3.18 8.97
VH × VV 308.00 55.84 18.13
SAR RI 1 −15.14 1.93 12.74
SAR RI 2 −0.02 0.01 62.89
SAR SDI 187.28 120.52 64.36
RVI_S1 2.29 0.17 7.61

Pol 0.15 0.09 59.81
NDVI 0.81 0.07 8.94

NDRE 1 0.64 0.07 10.30
NDRE 2 0.17 0.02 14.22
NDRE 3 0.01 0.01 82.23

DVI 0.33 0.03 9.72
RVI_S2 10.80 3.98 36.88
CIRE 3.78 1.01 26.79
EVI 0.59 0.07 11.62

SAVI 0.55 0.05 9.25

29 November 2021

VH −17.74 2.00 11.25
VV −13.03 1.93 14.84

VH − VV −4.66 2.85 61.09
VH/VV 1.39 0.26 18.57

VH + VV −30.95 2.78 8.98
VH × VV 233.98 41.73 17.83
SAR RI 1 −13.14 1.90 14.46
SAR RI 2 −0.02 0.01 63.45
SAR SDI 145.00 93.54 64.52
RVI_S1 2.30 0.18 7.83

Pol 0.15 0.09 59.60
NDVI 0.004 0.003 66.18

NDRE 1 −0.016 0.002 15.88
NDRE 2 0.001 0.003 4.07
NDRE 3 0.011 0.003 29.64

DVI 0.008 0.005 65.85
RVI_S2 1.008 0.005 0.51
CIRE −0.031 0.005 15.67
EVI 0.060 0.050 83.74

SAVI 0.005 0.003 66.11
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