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Abstract: Chrysanthemums, a significant genus within the Asteraceae, hold a paramount position
in the global floricultural industry, second only to roses in market demand. The proliferation
of diverse chrysanthemum cultivars presents a formidable challenge for accurate identification,
exacerbated by the abundance of varieties, intricate floral structures, diverse floret types, and complex
genetic profiles. Precise recognition of chrysanthemum phenotypes is indispensable to navigating
these complexities. Traditional methods, including morphology studies, statistical analyses, and
molecular markers, have fallen short due to their manual nature and time-intensive processes.
This study presents an innovative solution employing deep learning techniques for image-based
chrysanthemum phenotype recognition. Leveraging machine learning, our system autonomously
extracts key features from chrysanthemum images, converting morphological data into accessible two-
dimensional representations. We utilized Support Vector Machine (SVM) and Multilayer Perceptron
(MLP) algorithms to construct frameworks for processing image data and classifying chrysanthemum
cultivars based on color, shape, and texture. Experimental results, encompassing 10 cultivars,
10 flower colors, and five flower shapes, consistently demonstrated recognition accuracy ranging
from 79.29% up to 97.86%. This tool promises streamlined identification of flower traits, and we
anticipate its potential for real-time identification enhancements in future iterations, promising
advances in chrysanthemum cultivation and exportation processes. Our approach offers a novel and
efficient means to address the challenges posed by the vast diversity within chrysanthemum species,
facilitating improved management, breeding, and marketing strategies in the floricultural industry.

Keywords: chrysanthemum image; clustering; flower recognition; image processing; leaf recognition

1. Introduction

The Asteraceae boasts a presentative floricultural genus, chrysanthemum, which has
a significant rate in terms of economic value and ranks second behind roses in the floral
market worldwide [1]. The proliferation of diverse breeding cultivars of chrysanthemums
worldwide has made their identification increasingly challenging, even for experienced
researchers, due to the complexities inherent in chrysanthemum cultivars, which pose sig-
nificant challenges in their management and authorized protection. Several complications
have emerged as unforeseen obstacles in cultivar recognition, including the vast number
of cultivars, complex floral structure, diverse floret types, and the highly heterozygous
genetic capacity [2]. Thus, there is an urgent requirement for the creation of efficient devel-
opment methods for rapid and accurate phenotypic recognition characteristics. Previous
approaches, such as traditional morphology studies, comprehensive statistical analyses,
and molecular marker studies, have been employed to address the challenges of identifying
diverse chrysanthemum cultivars [3,4]. While these methods have provided valuable
insights, they often involve laborious and time-consuming manual assessments. Molec-
ular markers, though promising, have limitations in identifying cultivars with similar
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morphological characteristics and require significant time for testing [5,6]. The rapid
and comprehensive identification of various chrysanthemum cultivars and their flowers
presents a significant challenge, highlighting the need for alternative approaches.

The deep learning method for image-based studies has been progressively produced
as a convenience tool for plant identification with highly rapid machine learning develop-
ments that use self-learning based on huge image materials to determine the key setting
features [7]. Based on the comparison with previous manual measuring methods, image
capture could rapidly transform morphologic data of plants into two-dimensional figure
information; thus, these processes of data collection can be substantially interpreted in
morphologic phenotypes of plants [1]. Machine learning (ML) algorithms serve as a cru-
cial tool for training computers to recognize various features from images and perform
tasks robustly.

The challenges associated with identifying chrysanthemum cultivars and the need for
efficient methods of phenotypic recognition should become a significant and innovative tool
in chrysanthemum research. With the proliferation of diverse breeding cultivars worldwide,
traditional approaches such as morphological studies and molecular marker analysis have
proven laborious and time-consuming. The emergence of deep learning methods, however,
offers a promising alternative by leveraging rapid machine learning developments to
identify key features from images. This approach enables the swift transformation of
morphological data into interpretable two-dimensional figures, revolutionizing the data
collection process for plant phenotypes.

Our strategy to overcome the phenotype problems utilized visual recognition as the
essential tool. Heretofore, applying and modifying ML algorithms [8] using Support Vector
Machine (SVM) [1,9], Multilayer Perceptron (MLP) [10], and spectral vegetation [9] con-
tributed to the creation of automatically gigantic recognized systems. Two frameworks
were applied to process the imaging identifying methods and ML to classify chrysanthe-
mum cultivars. Our study tested 10 chrysanthemum cultivars, as well as flower colors
from 10 different ones and five different flower shapes, to provide the proper model based
on color, shape, and texture. By employing machine learning algorithms, researchers can
train computers to recognize various features from images, thereby facilitating rapid and
comprehensive identification of chrysanthemum cultivars and their flowers.

We anticipate that our tool will facilitate efficient to recognize flower color, flower
shape, and characteristics in leaves, with potential applications in the cultivation and
exportation of chrysanthemums. This innovative approach addresses the pressing need
for efficient and accurate methods of cultivar recognition in floricultural studies, marking
a significant advancement in the field of plant identification and characterization. Future
iterations may focus on enhancing real-time identification capabilities and individual
cultivar recognition to further improve floral exportation systems.

2. Materials and Methods
2.1. Plant-Consuming Materials and Input Process

In this study, we collected 10 chrysanthemum cultivars (Chrysanthemum × morifolium),
the names of which are ’Abbey Yellow’, ’Anncey White’, ’Calafuria’, ‘Cheeks’, ‘Civetta’,
’Estrella’, ’Explore’, ’Panama White’, ’Radost Cream’, and ’Saffina’ (Table 1 and Figure 1).
Consuming data were acquired by shooting in convenient house using a handling operation
on an LG Q52 smartphone, which has a main quad camera installed with 48 MP, f/1.8,
(wide camera), 1/2.0”, 0.8 µm, PDAF; 5 MP, f/2.2, 115◦ (ultrawide camera), 1/5.0”, 1.12 µm;
2 MP, f/2.4, (macro-camera); and 2 MP, f/2.4, (depth camera). Using the consuming data, a
total of 7330 pictures were observed in the shooting conditions at 09:00 am in a convenient
house at the Chrysanthemum Research Institute of Sejong University, Korea.
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Table 1. Description of flower colors, flower types, petal types, and leaves in this study.

Cultivar Flower Color Flower Type

Abbey Yellow Yellow Double

Anncey White White Spider Anemonae

Calafuria Orange Spider Double

Cheeks Pink Pompon

Civetta Green Double

Estrella White Double

Explore Red Single

Panama White White Double

Radost Cream Cream Anemonae

Saffina Yellow + Orange Spider Double
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2.2. Data Processing

Figure 2 illustrates the five procedures of the flower and leaf dataset, which contain
(1) input, (2) feature maps, (3) extracted features, (4) SVM input vector and MLP input
vector, and (5) training and prediction model.
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A total of 7330 pictures of 10 types of colors and leaves are accumulated at the end of
the data collection process. The information on the dataset is introduced in Table 2. The
original data, which is composed of 4798 pictures that present 10 cultivated chrysanthe-
mums, are divided into two sets: a training set and validation set. Each cultivar database
was separated into two parts: flower data and leaf data. In each part (flower or leaf data),
total pictures were divided randomly for training set (80% of total pictures) and validation
set (20% of total pictures) (Table 2). Finally, the testing set is constructed to evaluate model
performance based on an additional 2532 pictures.

Table 2. Total dataset with training set and validation set.

Cultivar Part Training Set Validation Set Total

Abbey Yellow Flower 180 46 226
Leaf 192 48 240

Anncey White Flower 214 54 268
Leaf 181 46 227

Calafuria
Flower 192 46 238

Leaf 206 52 258

Cheeks
Flower 184 47 231

Leaf 188 48 236

Civetta
Flower 223 56 279

Leaf 196 49 245

Estrella
Flower 186 47 233

Leaf 176 45 221

Explore Flower 186 47 233
Leaf 184 46 230

Panama White
Flower 194 49 243

Leaf 186 47 233

Radost Cream
Flower 188 47 235

Leaf 196 50 246

Saffina
Flower 197 50 247

Leaf 183 46 229

Total
Flower 1944 489 2433

Leaf 1888 477 2365

2.3. Extracted Features

Prior to proceeding with the extracted feature process, several preliminary steps are im-
plemented to diminish noise and improve feature extraction quality. Firstly, Gaussian blur
is applied to the raw datasets to smoothen the images. Subsequently, Otsu’s method [11] is
employed for adaptive thresholding on the blurred images [9]. A morphological operation
is then executed to fill small-scale holes that may appear after thresholding. Subsequently,
the shape contour is extracted from the curves.

Upon examination of the dataset, it was determined that color identification and leaf
classification could be achieved solely through image analysis, as some leaf types and
colors may initially appear indistinguishable to the human eyes. Therefore, additional
features, such as color, shape, and texture, are extracted from the raw images to support
the classification process.

2.3.1. Color Feature

Color is one of the important features that can categorize objects with regard to geo-
metric properties in vice composition and various colors. Accordingly, this section divides
various feature colors from the most common RGB color scopes that include some compo-
nents, such as red, green, and blue colors, in which there is a range of dimension values
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from 0 to 255. Originally, individual colors, such as red, blue, and green component colors,
were divided from the original pictures. The standard deviation and each component’s
meaning are inputted into calculation and estimation as the color features. At the final
step of this process, six color features are analyzed (mean blue, mean green, and mean red)
along with standard deviation for each of feature colors.

2.3.2. Shape Feature

The important indicator that can be analyzed for differentiating between different
cultivars is shape feature. The shape features were extracted to acquire the rectangularity,
circularity, width, length, area, aspect ratio, and perimeter from the extracted contours.

2.3.3. Texture Feature

Using the initial extraction features derived from Zernike and Haralick features [12],
the texture feature utilized the Mahota image processing library to calculate the texture
features. Texture features, which support the surface characteristics and the presentation of
one objective area asserted in an image, are imperative for many computer vision topics.

Texture features can be analyzed by using many approach methods, including statisti-
cal, structural, and model-based techniques [13]. One of the most common methods is the
Gray Level Cooccurrence Matrix (GLCM), which provides 13 statistical metrics of spatial
relationship information among pixels present in one image [14]. Many significant textural
features can be crucial computing based on the GLCM to provide detailed image contents.
Orientations were configured to [0◦, 30◦, 60◦, 90◦, 120◦, 150◦], while the standard devia-
tion was set to 1 for rotationally symmetric filters (Gaussian and Laplacian of Gaussian
filter). For each type of texture feature, calculations were performed for the mean, median,
standard deviation, kurtosis, and 5th and 95th percentiles.

2.4. SVM Input Vector and MLP Input Vector

Machine learning implicates predicting and classifying data, and we tried to apply
various machine learning algorithms based on dataset. In this section, we use the SVM
input vector and MLP input vector to concern all dataset features.

2.4.1. SVM Input Vector

The SVM classifier is a supervised learning algorithm that employs a linear or hy-
perplane to effectively discriminate between distinct classes in sequenced data [15,16]. It
accomplishes this by fitting the training data optimally and achieving precise classification
of unseen datasets [17]. SVM excels at maximizing the separation margin between training
samples across different classes, a key advantage stemming from its robust performance
in high-dimensional spaces [1,18]. Moreover, SVM can yield superior results in scenarios
where the dimensionality of the data exceeds the number of samples, depending on the
choice of kernel functions tailored to specific analytical objectives [18]. In the context of
two-dimensional data, the hyperplane reduces to a simple line. Commonly employed
kernel functions in various applications include the Gaussian radial basis function kernel
(both linear and nonlinear), the sigmoid kernel, and the polynomial kernel [19]. These
kernels enable SVM to adapt to diverse data structures, making it a versatile tool in machine
learning and pattern recognition tasks [16].

We stand on the basic equations and keep following the notations method by Schölkopf
et al. [17]. The input vectors (xi for 1 ≤ i ≤ Nx) combine with corresponding binary labels
yi ∈ {−1;1}.

The Gaussian radial basis function is described by localized and responded finite
along the x-axis and is supplied below:

F
(

Ni, Nj
)
= exp

(
−γ

∥∥Ni − Nj
∥∥2

)
(1)
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where
∥∥Ni − Nj

∥∥2 is the Euclidean distance between Ni and Nj, and γ represents the
Gamma parameter that illustrates how far the single training influence reaches (either ‘far’
(low values) or ‘close’ (high values)). The Gamma parameters can be recognized as the
inverse of the radius of influence of selected samples by the model as support vectors.

2.4.2. MLP Input Vector

The MLP network stands as a widely utilized learning algorithm within the neural net-
work domain due to its capacity to align the network’s desired output with the calculated
output through the adjustment of weight coefficients. This process aims to minimize the
disparity between the calculated output and the target output. The MLP network is accom-
panied by several other recognized types of neural networks, collectively contributing to
the extensive repertoire of neural network architectures employed in various applications
and domains [10].

The MLP network indicates that the learning process is constructed from the data
samples composing the N-dimensional input vector x, and the M-dimensional mentions
output vector d, which is called destination. In the processing steps of input vector
x, the MLP network gives the output signal vector y(x,w), in which w is the adapted
weights vector.

The mathematical representation of a single hidden layer multilayer perceptron is
as follows:

f : RD → RL (2)

where D represents the length of the input vector x, and L denotes the size of output vector
f (x). This can be expressed in matrix notation as follows:

f (x) = G(b(2) + W(2)(s(b(1) + W(1)x))) (3)

including bias vectors b(1), b(2); weight matrices W(1), W(2); and activation functions G and s.
These models are termed feed-forward because data progresses through the function

being evaluated, starting from the input x, passing through the intermediate functions and
computations used defining f, and finally reaching the output y.

2.5. Training and Prediction Model

Typically, in a predictive maintenance-focused binary classification problem using real
operational machinery data, there is a significant imbalance in class distribution among the
samples. Failures are infrequent events within the dataset, with less than 1% of original
data belonging to class “1” and over 99% to class “0”.

True positives (TPs) and true negatives (TNs) represent outcomes of the positive class
and negative classes, respectively, correctly classified by the model. Conversely, false
positives (FPs) and false negatives (FNs) indicate incorrectly classified outcomes. All scores
are determined by the equation provided below:

Overall Accuracy = (TP + TN)/(TP + FP + TN + FN) (4)

Precision = TP/(TP + FP) (5)

Recall = TP/(TP + FN) (6)

F1 score = 2 × (Precision × Recall)/(Precision + Recall) (7)

Additional significant parameters that have been incorporated include Cohen’s Kappa
and area under the curve (AUC) of the ROC (receiver operating characteristic) curve.

2.6. AI Support Tools for Manuscript Construction

We use AI support tools, such as ChatGPT, to detect and correct vocabulary and gram-
mar errors. We also use iThenticate support tool for plagiarism detection in this manuscript.
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3. Results and Discussion
3.1. Training Results

In total, six color features, seven shape features, and two texture features are extracted
during these training steps. In Figure 3, the training and validation scores of the SVM
model are displayed for various values of the kernel hyperparameter γ. When γ is set to
low values (10−6, 10−5), both the training and validation scores remain notably low at
around 0.24, suggesting that the model is underfitted. However, as γ increases, the training
and validation scores gradually improve, peaking at 0.955.
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Basically, the final model at iteration 150 is considered an overfitted model, as depicted
by the large difference between training and validation errors. The training and validation
scores exhibit a gradual γ increase, reaching a peak at 0.953.

3.2. Testing Results

In this section, the model performance is assessed through manual testing using a
collecting set that was not applied during the training step.

Figure 5 presents the confusion matrix illustrating the comparison between the pre-
dicted and the true labels for each cultivar. Overall, the model demonstrated a high
classification accuracy rate, surpassing 97% for Abbey Yellow and Anncey White. The
second highest rates of classification accuracy are over 92% for Cheeks, Calafuria, Estrella,
and Panama White. The third highest rates of classification accuracy are over 89% for
Radost Cream, Saffina, and Civetta. However, it displayed provisional performance for
Explore, with an accuracy of 79%.

AgriEngineering 2024, 6, FOR PEER REVIEW  9 
 

 

In this section, the model performance is assessed through manual testing using a 

collecting set that was not applied during the training step. 

Figure 5 presents the confusion matrix illustrating the comparison between the pre-

dicted and the true labels for each cultivar. Overall, the model demonstrated a high clas-

sification accuracy rate, surpassing 97% for Abbey Yellow and Anncey White. The sec-

ond highest rates of classification accuracy are over 92% for Cheeks, Calafuria, Estrella, 

and Panama White. The third highest rates of classification accuracy are over 89% for 

Radost Cream, Saffina, and Civetta. However, it displayed provisional performance for 

Explore, with an accuracy of 79%. 

 

 

Figure 5. Confusion matrix from the testing dataset using the trained model. 

We evaluated the performance of our model for two different parts, such as the leaf 

and flower of individual cultivars. 

In the case of the Calafuria cultivar (Figure 6), flower classification yielded satisfac-

tory results, while leaf classification was less accurate, likely due to the similarity of leaf 

shapes between Calafuria and Explore cultivars. 

 

 

 

 

 

123 

125 

131 

129 

137 

130 

137 

129 

127 

111 

Figure 5. Confusion matrix from the testing dataset using the trained model.

We evaluated the performance of our model for two different parts, such as the leaf
and flower of individual cultivars.

In the case of the Calafuria cultivar (Figure 6), flower classification yielded satisfactory
results, while leaf classification was less accurate, likely due to the similarity of leaf shapes
between Calafuria and Explore cultivars.

In the absence of recognition, the Explore cultivar was exclusively noted within the
leaves database of the Calafuria classification. It is noteworthy that the level of confiden-
tiality in leaf identification is higher than the original class (Calafuria), with a subsequent
confidence deficit of 99.81%, 92.67%, and 59.66%. These discrepancies may suggest similar-
ities in leaf shape, curvature, and certain leaf segments within the Explore cultivar leaves.
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Figure 6. Test results of Calafuria.

During flower recognition, missing identification is attributed to the Explore flower,
with a confidence level of 60.85%. This omission underscores a subtle difference in color:
Calafuria flowers are classified as orange, whereas Explore flowers are categorized as red.
While there is a minor discrepancy between orange and red hues, this disparity in color
does not significantly impact the recognition process for Calafuria.

For the Estrella cultivar (Figure 7), both leaf and flower classifications exhibited high
confidence, with only minor misclassifications observed for the Civetta leaf (confidence:
61.19%) and Panama White flower (confidence: 62.45%).

The minor missing classifications were recorded in the leaf cultivar ‘Civetta’ with a
confidence level of 61.19% and in the flower type ‘Panama White’ with a confidence level
of 62.45%. The reduced confidence in these missing classifications suggests that either the
flower or leaf characteristics of the Estrella cultivar differ from those of the Panama White
cultivar. Nonetheless, despite the distinction, both Estrella and Panama White cultivars
share similarities such as white color and a double type. These similarities underscore that
the results do not significantly impact the precise recognition of the Estrella cultivar based
on the findings.

The Saffina cultivar (Figure 8) demonstrated excellent classification results for both
flower and leaf (over 93%), with occasional misclassifications, such as a Calafuria flower
with a low confidence score of 32%.
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Figure 7. Test results of Estrella.

Automated recognition accurately identifies the leaf shape. However, a slight discrep-
ancy occurs in the identification of the flower of the Calafuria cultivar, with a confidence
level of 32.35%. The low confidence associated with this misidentification suggests that
despite variations in flower color, the flower type remains consistent, specifically in the
spider double type. This observation enhances the recognition quality by highlighting the
distinctiveness of the spider double type across different color variations.
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Similarly, the Explore cultivar (Figure 9) achieved high accuracy rates exceeding 96%,
with occasional misclassifications having minimal impact on overall performance.
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Figure 9. Test results of Explore folder.

The differentiation between the Explore and Calafuria cultivars is their flower types:
Calafuria exhibits a spider double type, while Explore features a single type. This point
is supported by a confidence level exceeding 96% during flower recognition. However,
in the context of missing recognition within the leaf database, the confidence level drops
to 48.30% for the Calafuria cultivar. This confidence level is lower than that observed for
the missing Explore cultivar in the Calafuria database. These observations suggest that
the leaves of the Calafuria cultivar may share similar shapes and curves with those of the
Explore cultivar, whereas the leaves of the Explore cultivar may exhibit slight variations in
shape and curvature when compared to the Calafuria cultivar.

Radost Cream (Figure 10) exhibited high confidence in classification despite antici-
pated variations in leaf shape and flower recognition across cultivars.
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For Panama White (Figure 11), consistent high-confidence classification was observed,
particularly for leaf shape and flower recognition, with an accuracy rate surpassing 60%.

Identifying Radost Cream and Panama White accurately based on both flower and
leaf shapes proves to be challenging. This is evident in the notably high confidence levels
associated with both flowers and leaves.
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Figure 11. Test results of Panama White.

In the case of the Civetta cultivar (Figure 12), the classification results instill a com-
mendable level of confidence in accurately categorizing the majority of flowers and leaves,
achieving an accuracy rate exceeding 62%. Notably, there were two instances of missed
flower classifications, one in Abbey Yellow with a confidence score of 93% and another in
Estrella with a confidence score of 44%. Nevertheless, these occasional discrepancies in
flower classification did not impact the overall effectiveness of the cultivar classification
process, which exhibited similarly robust performance as observed in the Saffina cultivar.
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strong sense of confidence in accurately categorizing the majority of flowers and leaves, 
achieving an impressive accuracy rate exceeding 92%. Notably, there was a singular 
misclassification event involving a Calafuria flower with the lowest confidence score of 
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Figure 12. Test results of Civetta.

For the Anncey White cultivar (Figure 13), the classification results consistently demon-
strate a high level of confidence in accurately categorizing both flowers and leaves, achiev-
ing an accuracy rate surpassing 79%. Notably, these classification tasks are anticipated to
exhibit the most significant variations in leaf shape and flower recognition among all the
sampled instances.

In the case of the Abbey Yellow cultivar (Figure 14), the classification results instill a
strong sense of confidence in accurately categorizing the majority of flowers and leaves,
achieving an impressive accuracy rate exceeding 92%. Notably, there was a singular
misclassification event involving a Calafuria flower with the lowest confidence score of
25%. It is worth noting that these exceptional results parallel those observed with the
Saffina cultivar, and the occasional misclassification does not impact the overall efficacy of
the cultivar classification process.
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Figure 14. Test results of Abbey Yellow. Figure 14. Test results of Abbey Yellow.

Within the Abbey Yellow database, leaf recognition achieves a high level of success,
with confidence levels surpassing 92%. However, there is a slight misrecognition in the
flower form, erroneously associating it with the Calafuria cultivar, with a confidence level
of 25.31%. This discrepancy arises from the color disparity between Abbey Yellow, which
is yellow, and Calafuria, which exhibits an orange color. Despite this observation, these
discrepancies do not significantly impact the overall results, as the confidence level for the
misidentification remains relatively low.

For the Cheeks cultivar (Figure 15), the classification results consistently exhibit a
high level of confidence in accurately categorizing both flowers and leaves, surpassing a
50% accuracy rate. These classification tasks are anticipated to exhibit the most significant
variations in leaf shape and flower recognition across all.
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both flowers and leaves. The testing results indicate a high degree of classification accuracy
for most cultivars, with only a few exceptions. We discuss the testing results based on the
key recognizing application of the models (Table 3).

Table 3. Achieving the best classification accuracy of flowers and leaves within 10 cultivars studies.

Cultivar
Classification Accuracy Rate

Only Leaves Leaves and Flowers

Abbey Yellow 99.91% 97.86%

Anncey White 99.89% 97.86%

Calafuria 90.51% 92.14%

Cheeks 88.02% 93.57%

Civetta 91.36% 90.71%

Estrella 95.76% 92.86%

Explore 71.18% 79.29%

Panama White 91.84% 92.81%

Radost Cream 90.12% 87.86%

Saffina 97.31% 89.29%

• Abbey Yellow and Anncey White: The model displayed outstanding performance
with classification accuracy exceeding 97% for both Abbey Yellow and Anncey White
cultivars in both leaf and flower recognition. Additionally, it demonstrated a high
accuracy rate of 99% in identification only, underscoring its robustness in effectively
discerning between the flower and leaf characteristics associated with these cultivars.

• Cheeks, Calafuria, Estrella, and Panama White: These cultivars also showed strong
classification accuracy, with rates over 92% in the recognition of leaves and flow-
ers. However, slight decreases in classification accuracy rates were noted up to 5%
in the cultivars Calafuria (only leaves—decreasing 1.63%), Cheeks cultivar (only
leaves—decreasing 5.55%), and Panama White (only leaves—decreasing 0.97%). No-
tably, in the case of Estrella, the accuracy rate for leaf identification in the leaves-only
dataset is higher than both leaf and flower identification. This suggests that the model
is proficient in discerning the distinctive traits of these cultivars, encompassing both
leaf and flower characteristics.

• Civetta, Radost Cream, and Saffina: These cultivars displayed encouraging perfor-
mance, with a classification accuracy of over 87% in leaves and flower identification.
Especially when using only leaves for identification, these cultivars have high classi-
fication accuracy, followed by Civetta (increasing 0.65%), Radost Cream (increasing
2.26%), and Saffina (increasing 8.02%). While not as high as the top-performing
cultivars, the model was still successful in distinguishing their features.

• Explore: The Explore cultivar yielded an acceptable rate with a classification accu-
racy of 71.18% within only leaves, and the accuracy classification increased up to
79.29% with both leaves and flowers recognition, indicating the model’s proficiency in
acceptably categorizing both flowers and leaves.

The model’s performance in classifying ten cultivars’ flowers and leaves generally
demonstrates its ability to accurately distinguish between them. While a few cultivars
exhibited slightly lower accuracy rates and occasional misclassifications, these discrepancies
did not substantially affect the overall efficacy of the cultivar classification process. This
analysis provides valuable insights into the model’s strengths and areas where further
refinement may be necessary for more consistent results across a diverse range of cultivars.

Chrysanthemums are extraordinary because they have high value in ornamental crops
and gigantic diversity deposits. Chrysanthemum recognition is a necessary tool to construct
exactly detected and classified into individual species. Some previous studies on chrysan-
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themum identification used methods such as molecular techniques [20–22], adjustment
in morphological traits and secondary compounds [23–26], self-incompatibility [27], and
deep learning identification [28–32]. Chrysanthemum petal classification, which integrates
genomic sequencing, is crucial for studying the phenotypic taxonomy of these flowers. A
new automated pipeline has been established for this purpose. A random forest algorithm
for classifying chrysanthemum petal types, addressing label imbalances through oversam-
pling techniques with the collection of phenotypic data from chrysanthemum flowers. The
impact of different feature combinations on classification results in effectively classified
chrysanthemum petal types [33]. According to wild chrysanthemum leaf identification, the
SVM model is the property of the complex leaf backgrounds [1]. In this study, we have
applied SVM and MLP deep learning techniques to classify colors, shapes, and textures
belonging to chrysanthemum leaves and flowers. Ten cultivars, including flower and leaf
characteristics, such as five flower shapes and ten colors, regularly confirmed classification
accuracy ranging from over 79.29% up to 97.86%. For the confirmed classification, we try
to compare our models with other models, which will be illustrated in the next part.

3.3. Comparison with Other Models

In this section, Table 4 presents the comparative analysis of recognition outcomes for
three distinct models in relation to the performance of the proposed model. Collectively,
these models attained an impressive accuracy rate exceeding 87%. Notably, MLP exhibited
the highest levels of accuracy, precision, and recall, exceeding 96%. In terms of accuracy,
SVM demonstrated the second-highest performance, registering at 95%, while Pyramid
Vision Transformer (PVT) and Re-parameterization of Visual Geometry Group (RepVGG)
achieved slightly lower accuracy rates of 87% and 90%, respectively. Consequently, MLP
and SVM emerge as the most suitable models for leaf and flower recognition tasks.

Table 4. Evaluation of the performance of the proposed model in contrast to alternative methodologies.

Model Accuracy Precision Recall

ANN [34] 89.8% 89.3% 93.5%
PVT [35] 87.5% 85.2% 89.6%

EfficientNet v2 [36] 90.5% 91.4% 92.3%
GoogLeNet [37] 91.4% 92.6% 92.2%
RepVGG [38,39] 90.3% 94.5% 91.8%

SVM [1] 92.1% 94.2% 93.5%
MLP [10] 93.9% 95.3% 94.5%

In this research investigation, we leveraged MLP and SVM models for the auto-
mated recognition of chrysanthemum leaves and flowers. Our experimental framework
involved the assessment of seven distinct deep learning models to ascertain the most
suitable candidate for our dataset. Among the models considered, MLP demonstrated
exceptional proficiency in the accurate identification of both chrysanthemum leaves and
flowers, leading to its selection as the preferred model following meticulous model com-
parison methodologies. In comprehensive finer detail, the selected model for classification
excelled in distinguishing between various leaf shapes, flower colors, and flower morpholo-
gies, exhibiting superior performance compared to its counterparts. Further evaluation
through rigorous comparative analysis, we confirmed that the MLP model outperformed
the SVM model, achieving a classification accuracy exceeding that of the latter by 1.8%.
These findings underscore the robustness and efficacy of the MLP model in chrysanthe-
mum leaf and flower recognition, with the potential to significantly reduce processing
times and agricultural costs when applied in practical contexts. It is important to construct
models, however, and while MLP excels in accuracy, it is not without certain limitations,
including its dependence on high-performance computational resources and prolonged
training durations.
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4. Conclusions

This article documents a tool based on the convolution of intelligent neural networks
for the classification of leaves and flowers in chrysanthemums, defined in a leaf and
flower database with statistical performance. In the training phase, seven models were
investigated. The results indicate that the MLP and SVM models outperformed the other
models in terms of accuracy, precision, and recall. To further enhance the efficacy of this
tool, we recommend two critical areas of future development:

(i) The establishment of a well-defined criterion for constructing the repetitive system
allows for network refinement until saturation is achieved, thus minimizing diminish-
ing returns in performance gains. Additionally, strategies for effective training across
a diverse spectrum of flower colors should be explored;

(ii) The implementation of an expanded data collection approach to encompass the
recognition of over twenty distinct cultivars. This extension of the dataset would
facilitate more robust and comprehensive disease identification capabilities.

In summation, this research paves the tools for advanced leaf and flower recognition in
chrysanthemums, offering promising avenues for refinement and expansion. By addressing
the aforementioned recommendations, the tool can be further optimized to achieve even
greater accuracy and versatility in agricultural applications, thereby contributing to the
improvement of both domestic and international chains of import and export.
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