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Abstract: Marine geohazards in the Bay of Naples, an eruptive region during the late Quaternary,
have been assessed based on both morpho-bathymetric and seismic data. Previously identified areas
of high marine hazard with slide potential (northern Ischia slope, Naples canyons, and Sorrento
Peninsula–Capri slope) have been confirmed and integrated through the seismo-stratigraphic analysis
of selected seismic sections. We evaluated the occurrence of important fossil submarine landslides
in the stratigraphic record. Several kinds of submarine landslides have been individuated through
morpho-bathymetric and seismic interpretation, including creeping, debris avalanches, and debris
flows, among others, often controlled by volcanic eruptions. Submarine landslides of Naples Bay
are primary geohazards in the marine and coastal areas, which has been ascertained with significant
volcanic and tsunami hazards involving the gulf. Despite previous studies on these topics, much
work is still needed to compile a systematic database of the submarine landslides of the Bay of Naples,
representing a future step of this research.

Keywords: submarine landslides; morpho-bathymetry; seismic stratigraphy; marine geohazards; Bay
of Naples; Southern Tyrrhenian Sea

1. Introduction

Marine geohazards are a group of underwater phenomena that can pose a threat to
humans and the marine environment, with implications for coastal communities and the
Blue Economy [1,2]. Forecasting is difficult because the appearance of a marine hazard can
be unexpected and infrequent. These hazards are controlled by earthquakes, volcanoes,
tsunamis, and submarine mass movements [1,2].

The seabed of the Mediterranean Sea displays evidence of mass movements [1,2].
Rivers from mountains streams cause unstable seabeds. The submarine canyons trigger
submarine landslides over the bottom of the Mediterranean Sea [3–9]. Geological processes
associated with plate boundaries and active faulting cause marine hazardous events in
the Mediterranean [3]. Steep and unstable continental slopes on the continental margins
of the Mediterranean have been controlled by the subduction of the African plate below
the Eurasian Plate. Urgeles and Camerlenghi [4] have shown that major deltaic wedges
host wide submarine landslides, while tectonically active margins display small failures.
Moreover, the available data highlight that submarine landslides are concentrated in the
lowstand periods. Ceramicola et al. [5] have shown that the Ionian margins of Calabria
and Apulia display four types of mass movements, including the mass transport com-
plexes within intraslope basins, the isolated slide scars along open slopes, the sediment
undulations genetically related to fluid migrations, and the headwalls and the sidewall
scarps in the submarine canyons. These features represent important geohazards of the
Calabria region. Camargo et al. [6] have proposed a review of marine geohazards based
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on bibliometric searching. The obtained categories include slope failures, fluid seepages,
earthquakes, tsunamis, volcanism, subsidence, bedforms, positive reliefs, negative reliefs,
diapirs, faulting, and erosion. Wang and others [8] suggested using offshore bottom pres-
sure gauges (OBPGs) around Crete Island to warn people about tsunamis early by using
data assimilation. Heidarzadeh et al. [9] identified the submarine landslide as the trigger of
a tsunami observed on February 2023 in the Eastern Mediterranean Sea.

The Bay of Naples, a late Quaternary eruptive region, displays marine geohazards due
to volcanism, earthquakes, submarine mass movements, fluid seepages, and anthropogenic
impacts. Quaternary volcanism has significantly impacted the sea, controlling the formation
of submarine volcanoes, tephra deposits [10–14] (among others), and submarine mass
movements [15–18] (among others). Tephra deposits have been detected in southern
Naples Bay and northern Salerno Bay, represented in particular by the proximal deposits of
the 79 A.D. eruption, along with those of the interplinian activity at 2.7 ka B.P. [12]. These
tephra correspond to stratigraphic markers interlayered within the late Holocene marine
deposits. Submarine mass movements include creep, debris flows, and debris avalanches.
The creeping of Holocene deposits has been recognized at the sea bottom offshore the Sarno
pro delta system [10], while debris avalanche deposits have been detected offshore on the
southern, northern, and western sides of Ischia [15,16].

Tsunamis in the Bay of Naples have been suggested based on previous results [19–22].
Tinti et al. [19] simulated the tsunami triggered in the Bay of Naples by the pyroclastic flows
of the Vesuvius, which entered into the sea and produced an intense pressure pulse. The
tsunami was small, but it moved a significant amount of the inside of the bay near Naples
and Castellammare [19]. Tinti et al. [20] simulated the tsunami occurring at Ischia Island, as
triggered by the Ischia debris avalanche (IDA) [13]. These calculations determined that the
eventual tsunami, which was triggered by a debris avalanche having the IDA dimensions,
significantly involved the whole Bay of Naples, with the highest waves at Ischia, Capri, and
Sorrento Peninsula [20]. Selva et al. [21] analyzed the natural hazards of Ischia, developing
their interpretative framework. The obtained results have shown the important role of
volcanic hazards (eruptions, tephra), as well as non-volcanic ones (earthquakes, landslides,
and tsunamis). Quantitative hazards have still not been evaluated, and the block resurgence
of Ischia has a fundamental role in their calculation. Grezio et al. [22] have suggested that
the first-order tsunami hazard results have the highest probabilities, exceeding levels of
about 1–1.5 m in 50 years, and occur at Naples town, Campi Flegrei, and Ischia.

In this paper, we discuss the marine geohazards of the Bay of Naples, based on both
the literature review of the data existing on the area and the morpho-bathymetric and
seismic interpretation of marine geohazards, previously identified [23,24] in the northern
slope of Ischia, Naples canyons, and southern slope of the Sorrento Peninsula–Capri
Island structural elongment. Based on seismic interpretation, we provide further data
and constraints on the occurrence of important fossil submarine landslides in Naples Bay,
highlighting that different types of submarine landslides can be detected in this complex
volcanic area. Figure 1 shows the geologic sketch map of the Bay of Naples and the
surrounding emerged areas, while Figure 2 displays a digital elevation model of Naples
Bay, with the location of the three study areas, indicated as the sectors having a high marine
hazard in Naples Bay [23,24].
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Figure 1. Geologic sketch map of the Bay of Naples and the surrounding emerged areas. 
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tatura slope basin and the northern branch of the Dohrn canyon; 2: northern Ischia debris ava-
lanche deposits; 3: southern slope of the Sorrento Peninsula). 
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deposits; 3: southern slope of the Sorrento Peninsula).
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2. Geological Setting

The Bay of Naples represents a half-graben on the continental margin, produced by
broad extension alongside the Apenninic chain [25] (Figure 1). The geological framework
of this basin is characterized by alternating structural highs and lows in a transtensional
tectonic setting [26–28]. In the Campania country, Quaternary basin deposits overlie the
westerly Apenninic tectono-stratigraphic sequences, arising from the continuation toward
the offshore of the matching units outcropping in the marginal zone of the southern
Apennines [29,30]. These tectonic assemblages compose the basement of the littoral basins
and consist of flysch deposits or of Meso–Cenozoic carbonates (Figure 1).

A structural high with a WSW–ENE trend is found on the Sorrento Peninsula, sand-
wiched between two half-grabens, the Bay of Naples, and the Bay of Salerno (Figure 1) [31].
Its structural framework is characterized by NW dipping blocks, resulting from tectonic
phases ranging in age from the late Miocene to the Quaternary [31].

Mesozoic carbonates appear in the peninsula and are overlain by a transgressive
Miocene sequence and then by breccias and pyroclastic rocks that are Pleistocene to
Holocene in age (Figure 1). The 79 A.D. pyroclastic unit overlies the Mesozoic rocks
or eruptive units of the middle-late Pleistocene. Between 18 ky ago and 79 A.D., the head-
land did not display appreciable pyroclastic deposits because, during this time frame, the
Plinian eruptions were propagated toward the east and northeast [31,32].

Ischia Island has been deeply studied regarding the debris avalanche deposits, both off-
shore [33–37] and onshore (Figure 3a [37]). Seven debris avalanches surround the Epomeo
Mt., showing a close relationship with the corresponding deposits on the continental
shelf [38] (Figure 3b).
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3. Materials and Methods

A literature review has been carried out for the identification of the marine hazards of
Naples Bay, regarding the earthquakes, submarine landslides, tephra deposits, pyroclastic
density currents (PDC), and tsunamis. The geophysical dataset consists of multibeam and
seismic data of Naples Bay and the Salerno Valley. Curiosity-driven research has been
carried out for the Salerno Valley and the southern slope of the Sorrento Peninsula (Sister II
oceanographic cruise, CNR ISMAR, Naples, Italy).

Detailed DEMs and bathymetric profiles have been constructed by using the Global
Mapper software, TRIAL version (https://globalmapper.it/download.php accessed on
1 May 2024). Multichannel seismic profiles (GRNA35; oceanographic cruise GMS00_05;
CNR ISMAR, Naples, Italy) and Sparker seismic profiles recorded for the marine geological
survey of the Ischia Island at the 1:10.000 scale have been interpreted. Multichannel seismic
acquisition was carried out at a constant distance interval of 6.25 m, with a receiver interval
of 6.25 m, a minimum offset of 130 m, and a fold of 1200%. The data recorded by the
hydrophones have been acquired using the Stratavisor NX (Geometrics Inc., San Jose,
CA, USA), recording 24 channels. Sparker seismic acquisition was performed using a
multi-tip sparker system (SAM96 model), whose technical characteristics include short
pulse lengths and increasing peak pressure. This sparker system generated 200 J in the
200–2000 frequency range. Seismic profiles have been interpreted by using the CorelDraw
graphic suite, version 17.0 (https://www.coreldraw.com/it/ accessed on 1 May 2024).

4. Results
4.1. Literature Review
4.1.1. Earthquakes

Vesuvius, Campi Flegrei, Ischia, and Procida are hazardous volcanoes, where seismic-
ity occurred in recent times. In recent years, the earthquakes have been mainly controlled by
the Campi Flegrei bradyseism. The eruption of the caldera has been happening for at least
10 million years. The Campi Flegrei caldera reactivation is believed to be associated with
volcanism, ground deformations, and seismicity. In the uplifted section of the caldera, the
volcanic edifices prevail, achieving both long-term deformation, that is to say, resurgence,
and short-term deformation, that is to say bradyseism. Two main bradyseismic crises are
known between 1969–1972 and 1982–1984.

Table 1 shows that significant earthquakes occurred in Campi Flegrei and Naples Bay
in recent years (https://terremoti.ingv.it/events accessed on 1 May 2024). The earthquakes
are listed by decreasing magnitude and represent a main geohazard in the Naples area.
During the last year (2023), 572 earthquakes occurred at Campi Flegrei and Vesuvius based
on the INGV catalog. The most significant ones (magnitude between 3 and 4) have been
reported in Table 1. The earthquake of Casamicciola (Ischia) on 21 August 2017 has also
been reported, due to the intense destructive effects.

Campi Flegrei earthquakes are genetically related to bradyseism. A 4.3-magnitude
earthquake hit Campi Flegrei on 27 September 2023 (Table 1). It was the region’s longest-
lasting quake in 40 years, and it was a component of a seismic sequence that has been
reverberating Campi Flegrei for a couple of weeks. To better understand these trends,
Kilburn et al. [39] constructed a model to keep track of the evolution from an elastic state to
an inelastic one, in which rocks begin to fracture more and more and breaking originates
beneath the faults. In this scenario, the frequency of local earthquakes is directly related to
the rate of ground deformation. In the first instances, the ground deformation brings about
a few earthquakes, but as the stress increases in the crust, the same quantity of ground
deformation, with time, quickens the frequency of earthquakes [39]. To the extent that the
unrest has affected the geometry of Campi Flegrei’s crust, the reported findings introduced
data for forecasting the volcano’s likelihood to erupt or subside prior to eruption [39].

The destructive faults located on Ischia Island controlled the Casamicciola earthquake
that occurred in 2017. De Novellis et al. [40] provided an explanation of the earthquake
based on an integrated geophysical study aimed at reconstructing the focal mechanisms of
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the Casamicciola earthquake [40]. The obtained results revealed an E–W striking, south-
dipping normal fault, which is compatible with the rheological stratification of the crust
at Ischia.

Table 1. Earthquakes in the Bay of Naples (https://terremoti.ingv.it/events accessed on 1 May 2024).

Time Magnitude (Mw) Location Depth Latitude Longitude

27 September 2023 4.2 Campi Flegrei 3 km 40◦82′ 14◦16′

2 October 2023 4.0 Campi Flegrei 3 km 40◦83′ 14◦15′

21 August 2017 3.9 Casamicciola
(Ischia) 2 km 40◦74′ 13◦90′

7 September 2023 3.8 Campi Flegrei 3 km 40◦83′ 14◦15′

16 October 2023 3.6 Campi Flegrei 2 km 40◦8′ 14◦14′

11 June 2023 3.6 Campi Flegrei 3 km 40◦83′ 14◦11′

18 August 2023 3.6 Campi Flegrei 2 km 40◦83′ 14◦14′

8 May 2023 3.4 Campi Flegrei 3 km 40◦83′ 14◦14′

22 September 2023 3.0 Campi Flegrei 1 km 40◦83′ 14◦14′

23 November 2023 3.1 Campi Flegrei 3 km 40◦83′ 14◦14′

17 February 2024 3.0 Campi Flegrei 3 km 40◦84′ 14◦12′

4.1.2. Submarine Landslides

In Naples Bay, submarine landslides are an important marine geohazard. Significant
slides have been detected both at Ischia and in central Naples Bay, in the Dohrn and
Magnaghi canyons, while creeping of the sea bottom occurs offshore at the Sarno river
mouth toward the Vesuvius coastline. The N and W onshore sectors of Ischia are affected
by debris avalanches [38], as well as the offshore, where hummocky deposits have been
identified [33–37]. Onshore, they include a debris avalanche detached from the western
flank of the Epomeo Mt. and a deep-seated gravitational deformation involving the Monte
Nuovo [38]. Among the debris avalanches of Ischia, the largest one is the Ischia debris
avalanche (IDA) [15].

Significant submarine slides occur in the Dohrn canyon system, where slide scars
do not correspond with adjacent slide deposits, which have probably been reworked and
removed by sea bottom currents [18,24,41]. During the late Quaternary, submarine slides
mainly involved both the canyon’s heads, being double regressive (Dohrn) and triple
regressive (Magnaghi). In this area, the geological evolution of submarine slides has been
explained according to the three-stage model of Pratson and Coakley [42] for submarine
canyon evolution [43]. This approach is centered on the modification of the slope failures
in a canyon with a retreating head, receding upward on the slope along the pre-canyon
channels, as dictated by the retrogressive slides modulated by strong volcaniclastic input.
The first phase, corresponding to the carving of the pre-canyon channels, happened in
a time interval ranging between 37 ky B.P. (eruption of the Campanian Ignimbrite) and
15 ky B.P. (eruption of the Neapolitan Yellow Tuff). The second phase, corresponding to
the canyon development through slope failures, happened later than 15 ky B.P. (eruption
of the Neapolitan Yellow Tuff) [43]. The third stage, corresponding to the individuation
of the canyon retrogressive heads, is older than the growth of the Nisida volcanic bank
(Naples offshore), physically interrupting the Dohrn western branch (4.8–3.8 ky B.P.) [43].
Figure 4 shows the high-slope map of Naples Bay, which was previously constructed [24],
identifying the areas prone to slide, which are those having gradients greater than 10◦.

https://terremoti.ingv.it/events
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4.1.3. Marine Tephra

Marine sediment cores enclosing tephra provide reliable datasets for volcanic and
marine hazards [44]. Satow et al. [44] highlighted that the marine sediment cores give
detailed information on long-term hazard assessment, being archives of volcanic activity.
They include ash (tephra) deposits, cryptotephra deposits, pyroclastic density current (PDC)
deposits, and reworked volcaniclastic deposits, giving detailed geologic and volcanologic
information on marine hazards.

Many studies have been carried out in the Bay of Naples regarding the marine tephra
layers, providing information on the marine and volcanic hazards, both at Ischia [45–50]
and on the Naples continental shelf [12,51–53]. The reconstructed stratigraphic model
provides improved estimates of future eruption hazards, such as plume height and the
total volume of eruptive material.

Brown et al. [45] established the general stratigraphic setting of the southeastern Ischia
tephra. De Alteriis et al. [46] recognized two collapse events of the IDA, including the
Ischia submarine debris avalanche/debris flow (DA/DF), dated between ~3 ka B.P. and
2.4 ka B.P., and a former, pre-Holocene, DA/DF older than 23 cal ka B.P. De Vita et al. [47]
examined the impact of the Ischia Porto tephra, consisting of a poorly dispersed pyroclastic
deposit, on the Greek settlements of Ischia, based on recent excavations on S. Pietro Hill,
eastward of Ischia harbor.

Tomlinson et al. [48] analyzed the distal tephra layers of Ischia, spanning a time interval
between 104 and 39 ky B.P., which yielded proximal–distal trends for a broad spectrum of
eruptions. Primerano et al. [50] reconstructed the Cretaio tephra fallout dispersal, which is
larger than previously known and extends from Naples Bay to the middle of the Tyrrhenian
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Sea at the latitudes of the Cilento Promontory, as shown by the map of the ground deposit
isomass lines (Figure 5A).
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Figure 5. (A) Ground deposit isomass lines (kg/m2) on domain covered by Cretaio tephra (Tyrrhe-
nian Sea; modified after Primerano et al. [50]. (B) S. Angelo tephra of Ischia (modified after
Brown et al. [45]) (a) Sketch stratigraphic column of the tephra. (b) Significant outcrop of the S.
Angelo tephra. (C) Location of the Cretaio and S. Angelo tephra superimposed on the geological
map of Ischia. Key. I scree and mud flows; II volcanic units younger than 10,000 years; III older
volcanic rocks (between 20,000 and 33,000 years ago); IV GreenTuff of Mount Epomeo; V first volcanic
complex, now dismantled (including the firstand the second phase of Ischia activity).

In the Bay of Naples, marine tephra deposits have constrained the eruption magnitude
and frequency in the area, as well as the distribution of pyroclastic deposits associated
with the most recent activity of Vesuvius [51–53], thereby improving the knowledge on
marine hazards.

Core data have shown that the 79 AD Vesuvius tephra, interstratified in the Quaternary
marine succession (Figure 6) [51–53], has a thickness ranging between 90 and 40 cm next
to the Sarno Plain (C81, C82, C4) and 10 cm next to the shelf margin of Naples Bay (C69).
Figure 6 shows that the tephra is located below younger marine deposits.

In the proximal areas, the tephra deposits consist of coarse-to-medium-grained sands
and gravels. In the distal areas, it consists of sandy silts with fine-grained lithic and
bioclastic components [43,51–53] (Figure 6).



GeoHazards 2024, 5 401GeoHazards 2024, 5, x FOR PEER REVIEW  9 of 23 
 

 

 

 
Figure 6. (A) Location map of the cores showing marine tephra in Naples Bay (modified after Ai-
ello and Caccavale [43]. (B) Sketch stratigraphic section of the C69, C71, C73, C70, C4, C82, and C81 Figure 6. (A) Location map of the cores showing marine tephra in Naples Bay (modified after Aiello

and Caccavale [43]. (B) Sketch stratigraphic section of the C69, C71, C73, C70, C4, C82, and C81
cores [51–53], in which the top of the tephra layer has been reported, and detailed core photographs
showing the passage from distal (fine-grained) to proximal (coarse-grained) areas.



GeoHazards 2024, 5 402

4.1.4. Pyroclastic Density Currents

Pyroclastic density currents (PDCs) are the most damaging phenomena that arise
during explosive eruptions. These flows of ash and debris are spreading at travel speeds
of hundreds of meters per second, reaching many tens to hundreds of kilometers from
the starting point. These currents tend to be erratic, and as they move forward, they
transform in type between dense, clastic flows and dilute ash- and gas-rich surges, capable
of dispersing from the main body of the flow and overthrowing topography.

PDC deposits are widespread in the Bay of Naples during the late Quaternary. At
Ischia, forty-seven eruptions have occurred during the last 10 ky, generating PDC deposits,
mainly composed of ash surges [54]. The PDC deposits of Ischia were mainly deposited in
the eastern portion of the island, and the corresponding hazards have been discussed by
Alberico et al. [55], who constructed maps of the frequency of the PDC invasion.

All the Plinian eruptions of Vesuvius have emplaced important pyroclastic density
current (PDC) deposits. The correlation of the seismic unit with the fallout deposits
representing the base of the AD 79 eruption has been made by checking the dispersions
of these PDCs, corresponding with the seismic unit, on isopach maps of the “Pomici di
Mercato” and “Pomici di Avellino” deposits, which are available in the volcanological
literature of the area [56–61].

In addition, the PDC deposits of the “Pomici di Mercato” are roughly concentrated
along the northern flanks of Mt. Somma, suggesting that the caldera was established in a
geographic location that is comparable to today’s Vesuvius edifice. However, the location
of the outcrops of the “Pomici di Mercato”, in correspondence with the Sebeto Plain and
along the Tyrrhenian coastline, fits well with the location of a seismic unit located offshore
and has been identified on seismic profiles [62]. Instead, the PCD deposits of the “Pomici
di Avellino” have a maximum thickness in the western area of the volcano. An important
new seismic unit recognized offshore of the Somma-Vesuvius [62] has been correlated with
the fallout deposits representing the base of the AD 79 eruption of the Vesuvius volcanic
sequence [56–61].

Pyroclastic flows can flow into the seawater, propagate, and reach elevated tempera-
ture levels for vast regions underwater because of the discovery of ignimbrites in marine
sedimentary formations [63–68]. Sparks et al. [64] reported that the underwater habitats
are more ideally suited to the welding process than many terrestrial locations. At relatively
small water depths, when water and hot ash come into contact at the boundary of a flow,
they can spark an explosion and cause some strong flows to be destroyed. The prerequisites
for the escape of a pyroclastic flow into deep water usually involve steep slopes and a huge
rate of flow. Trofimovs et al. [65] observed the behavior of pyroclastic flows entering the
sea, when 90% of the total material was deposited into the submarine settings. When the
main flow enters into the sea, phreatic explosions occur, and a surge cloud originates. The
coarse-grained components of the flow are deposited in proximal environments, while
the fine-grained components are elutriated in the upper part of the flow, forming a tur-
bidity current. Di Capua and Groppelli [66] showed that the PDCs that interact with the
water usually experience physical alteration, producing flow dispersal and reorganiza-
tion in cold, water-supported turbidites. In any case, the reliability of primary volcanic
structures has been fully attested in shallow waters. A geological survey and laboratory
analysis concluded that the granular flow-dominated scenarios describe the most suitable
flow mechanism conditions of the pyroclastic flows in the Val d’Aveto Formation [66].
Clare et al. [67] showed that the immediate release of huge quantities of erupted solids
onto steep undersea slopes created fast seafloor flows. These density currents were more
rapid than those brought on by earthquakes, floods, or storms. Maeno and Imamura [68]
highlighted that for the pyroclastic flow hypothesis, two sorts of two-layer shallow water
simulations, dense- and light-type models, were employed owing to divergent launch
scenarios in the Krakatau eruption of Indonesia. It is worth noting that this kind of two-
dimensional model has still not been applied to the PDCs of the Bay of Naples, and further
work is required for the volcanologists.
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Milia et al. [63] explained the effects of the pyroclastic fluxes in Naples Bay. In
particular, these authors constructed a map showing the main pyroclastic fluxes entering
the sea in Naples Bay (Figure 7). These fluxes have been represented by the isopachs
of the AD 79 pumice fall deposits and pyroclastic flow deposits (Figure 7). An undersea
volcaniclastic fan that has its roots in the AD 79 eruption of Vesuvius stands for the resiliency
of the PDCs that fossilized the Roman village of Herculaneum (Pompei). This fan represents
a well-documented stratigraphic record of PDCs that erupted on the continental platform in
a shallow water setting, as controlled by syn-depositional reworking through wave action.
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4.1.5. Tsunamis

In Naples Bay, tsunamis constitute a severe geohazard due to their close relationships
with the volcanic eruptions, earthquakes, and submarine landslides [19–22,69–73]. Histori-
cal tsunamis have also been documented, including the 1343 tsunami affecting Tyrrhenian
Sea, including the Bay of Naples [71,73]. This tsunami destroyed many harbors, including
Amalfi, and has been documented by historical sources [73]. This event could be genetically
related to the flank collapse of the Stromboli volcano [71]. Analyzing the proportions
of tsunamis caused for different reasons in Naples Bay is still a complicated matter and
requires further study. For the models known in the previous literature, only numerical
simulations have been carried out, and the explanation of different proportions of tsunamis
is not certain. Tinti et al. [19] studied the triggering of a tsunami and its propagation in
Naples Bay, which was controlled by Vesuvius pyroclastic flows. A finite-element model
has been used for the simulation, showing that the oscillations are larger in the gulf and
more negligible proceeding basin-ward (Figure 8a) [19]. Di Fiore et al. [41] evaluated the
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tsunami and wave run-up in the Dohrn canyon, showing a detachment area of about 415 m
across at water depths ranging between −250 m and −370 m (Figure 8b) [41]. The obtained
results have shown that the amplitude wave run-up, expressed in terms of depth of seafloor
percentage, varies from 0 to 2.5%, and the wave height amplitude corresponds to 5–6 m
(Figure 8b) [41]. Tinti et al. [20] simulated the tsunami triggered by the IDA [13], showing
that on Ischia, the wave amplitudes exceed 40 m, while Capri is reached by the wave after
about 8 min by relevant waves (Figure 8c) [20]. Alberico et al. [69] analyzed the tsunami
vulnerability of the city of Naples, which is composed of the water vulnerability and struc-
tural vulnerability. A high structural vulnerability characterizes the Chiaia area close to the
shoreline and the eastern sector of the Sebeto-Volla plain, whereas in the western sector,
this area is controlled by the presence of a 70 m structural height, preventing the onshore
propagation of tsunami waves.
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Figure 8. Mareograms related to tsunami in Naples Bay ((a), modified after Tinti et al. [19]),
((b), modified after Di Fiore et al. [41]), and Ischia ((c), modified after Tinti et al. [20]). In sub-figure
(b), h0 is the characteristic water depth, h is the water depth, and ζ is the free surface displacement.
In sub-figure. AB is the bathymetric profile. (c), the modeled tsunami refers to Ischia as controlled by
the Ischia debris avalanche (IDA) [15].

4.2. Morpho-Bathymetric and Seismo-Stratigraphic Analysis
4.2.1. Ammontatura Slope Basin

The detailed digital terrain model (DTM) and bathymetric profiles are herein revised
(Figure 9). The center of the Bay of Naples is outlined by the Ammontatura channel, which
is the seabed physiographic expression of the Ammontatura slope basin. The channel
is 2.5 km wide and 20–40 m deep. The DTM and bathymetric profiles have displayed
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that this channel shows a curved form, a smooth thalweg, and unbalanced scarps. This
channel splits the “Banco della Montagna” feature from the volcanic brinks of Campi
Flegrei. Bathymetric profiles demonstrate that the western slope of the Ammontatura
channel is broadly more precipitous than the eastern one. In its northernmost part, the
pivot of the channel flexes toward the northwest and shortly aborts N of the Nisida Bank
(Figure 9).
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The seismic profile GRNA35 has shown the stratigraphic architecture of the Naples
Bay continental shelf (Ammontatura Channel; Figure 10); un-interpreted and interpreted
seismic sections have been provided (Figures 10 and 11). The geological interpretation
of the GRNA35 seismic profile showed that the Ammontatura slope basin contains two
important volcanic seismic units, i.e., the Campanian Ignimbrite (CI) and the Neapolitan
Yellow Tuff (NYT; Figure 11). In the two coastal and marine seismic units, which are
late Pleistocene and Holocene in age, volcaniclastic sedimentation is significant. The CI
deposited during isotopic stage 3, while the NYT deposited during the upper part of
isotopic stage 2, corresponding to the transgressive system tract (TST) in Naples Bay. The
late Pleistocene coastal and marine deposits correspond with the TST, while the overlying
Holocene coastal and marine deposits represent the highstand system tract (HST). The
NYT seismic unit is deformed in the Banco della Montagna structure, a volcaniclastic field
located in the Naples Bay continental shelf (Figures 10 and 11).

4.2.2. Northern Ischia Debris Avalanche Deposits

The northern Ischia debris avalanche deposits are discovered in a submarine region
from 20 to 180 m and include large blocks, cropping out at the seabed or fossilized by
Holocene deposits. A detailed shaded relief map of the northern Ischia debris avalanche
deposits is reported in Figure 12. The physiographic expression at the seabed of the north-
ern Ischia debris avalanche deposit is represented by blocks having variable dimensions
immersed in a pelitic matrix (Figure 12). The western and eastern boundaries of the de-
posits have been identified. While the western boundary of the deposits is located next to
the M.te Vico structure, the eastern one extends up the Punta La Scrofa promontory.

The structure of the northern Ischia debris avalanche deposit has been studied through
four bathymetric profiles (Figure 13). The first profile crossed the distal part of the deposit
with an NE–SW trend. The main accumulation of the deposit rises to the seabed to 60 m of
water depth. Its sides are characterized by two channelized areas located at water depths
of 110 m. The first one rises to water depths of 100 m; the second one, about 4 km wide,
reaches water depths of 90 m (Figure 13).
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The second bathymetric profile crosses the northern Ischia debris avalanche deposit
longitudinally with an NNW–SSE trend at water depths ranging between 25 m and 130 m.
The profile shows the irregularly articulated structure of the deposit, 1.8 km wide, with a
channel bounded by levees at water depths of 55 m. Proceeding seaward, after a break in
slope at 70 m, the deposit is carved by two deep channelized areas, located at water depths
of 100 m. Further out, another accumulation exists, 500 m wide, whose top reaches 70 m of
water depth (Figure 13).

The third profile runs in the deposit longitudinally, with an SSW–NNE trend. For
a distance of 3 km, the topography of the deposit rises to 70 m of water depth. In this
area, several channels occur, having variable entity and amplitude, carving the deposit.
Starting from 70 m, the deposit develops up to 25 m, showing two main channels along its
topographic profile (Figure 13).

The fourth section has shown that the main deposit occurs at the center of the section
at water depths of 60 m and is bounded by two channels, respectively located at water
depths of 80 m (on the left of the deposit) and 95 m (on the right of the deposit). Two other
culminations of the deposit, respectively located at 70 m and 85 m of water depth, occur
(Figure 13).

The northern Ischia debris avalanche deposit is crossed by seismic profile L27. The
deposit is organized into two distinct superimposed bodies (H1 and H2; Figure 14). The
basin filling is composed of three seismo-stratigraphic units (C, D, E), partly in facies
hetheropy with the upper part of buried volcanic structures, acoustically transparent, and
characterized by a dome-shaped external geometry (Figure 14).
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5. Discussion and Conclusions

We made use of high-resolution bathymetry maps to assess the morphological pattern
of the sea and establish the related marine hazard. Naples Bay is continually exposed to
high-intensity human impacts that contribute to coastal zone stress and a broad range of
natural hazards, such as seismicity, volcanic activity, gravity slides, pyroclastic density
currents, and tsunamis. It is an area of about 900 km2 that is part of the Campania region,
which is one of the geographical regions of the world that is most vulnerable to a significant
volcanic hazard because it is a densely human-populated area. The volcanic hazard is
strictly associated with the reactivation of the magmatic systems of the Phlegrean Fields,
Somma-Vesuvius, and Ischia Island. Ground deformation is particularly severe at the
Phlegrean Fields and Ischia Island, where divergent tectonic uplift is modulated by the
growth of volcano-tectonic faults and hydrothermal systems. Seismic and bradyseismic
crises dominate the Phlegrean Fields, where an uplift of 1.8 m from 1982 to 1984 caused the
evacuation of about 30,000 people from the town of Pozzuoli, and an actual bradyseismic
crisis is still in course. Ischia has undergone, in historical times, natural seismic activity
and lateral collapses. The most recent one is the Casamicciola earthquake of 2017.

Detailed marine geohazard maps of the Bay of Naples have been constructed, tak-
ing into account geomorphological data and maps that were previously obtained [24]
(Figure 15). The obtained results have shown the suitability of the morpho-bathymetric
and seismo-stratigraphic studies when applied in studying both volcanic and sedimentary
depositional environments in the Bay of Naples, as well as that the marine hazard is higher
in three districts, including the Ischia slope, the Naples canyons, and the Sorrento slope
(Figure 15).

In the Ammontatura slope basin, the morpho-bathymetric and seismic data have
shown a close relationship with the Dohrn canyon and the important seismic units of
Naples Bay (CI and NYT; Figure 11). A significant contribution of volcaniclastic sedi-
mentation in the Holocene marine sedimentation is suggested by sedimentological and
tephrostratigraphic data on the Bay of Naples. The Ammontatura channel is a fossil branch
of the Dohrn canyon, genetically related to the western branch, draining the volcaniclastic
input of Campi Flegrei and Procida eruptions. The occurrence of tephra having a Phle-
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graean provenance in the core data [51–53] supports this working hypothesis, which is still
in the course of study. The growth of the volcanic edifice of the Nisida Bank post-dates
the activity of the Ammontatura channel, abruptly ending on the volcanic edifice. The
Ammontatura slope basin and related channel were active during a time interval spanning
between the NYT eruption (15 ky B.P.) and the growth of the Nisida Island and Nisida
Bank (4.8–3.7 ky B.P.).
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and Sacchi [24].

The southern slope of the Sorrento Peninsula is a tectonically controlled slope governed
by the Capri–Sorrento normal fault. Our data have shown a dense network of drainage
channels. The platform margin is incised by a dense network of drainage lines (Figure 15),
which in some way, could reflect the drainage network occurring onshore, also if a physical
continuity does not exist, because the channels start from the shelf break and do not
continue in the narrow shelf off southern Sorrento Peninsula. These channels are the present-
day and recent preferential transport routes of sediments entering the Salerno Valley.

Offshore of the Sorrento Peninsula, the debris flow and stream deposits, which are late
Holocene in age, are composed of middle-to-fine-grained pelitic sands, with abundant plant
remnants and anthropic debris. Moreover, they consist of pelitic middle-to-fine-grained
sands, elongated according to maximum slope lines at the seabed or as channel fillings.
The depositional areas are the portions of seabed surrounding the stream mouths along the
southern slope of Sorrento Peninsula (Amalfi), oriented perpendicularly to the depositional
elements of the continental shelf. This lithofacies is similar to the stream deposits located at
the mouth of the Bonea stream (Salerno) and has been deposited by hyper-concentrated
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fluxes following exceptional alluvial events, such as those of Vietri sul Mare and Maiori
in 1954.

The northern Ischia debris avalanche deposits can be put in the frame of the eruptive
activity of Ischia. A chronostratigraphic diagram of Ischia has been constructed to improve
the discussion on the obtained data, also showing the stratigraphic relationships with the
corresponding units of Procida (Figure 16).
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ilar to the stream deposits located at the mouth of the Bonea stream (Salerno) and has 

been deposited by hyper-concentrated fluxes following exceptional alluvial events, such 

as those of Vietri sul Mare and Maiori in 1954. 

The northern Ischia debris avalanche deposits can be put in the frame of the eruptive 

activity of Ischia. A chronostratigraphic diagram of Ischia has been constructed to im-

prove the discussion on the obtained data, also showing the stratigraphic relationships 

with the corresponding units of Procida (Figure 16). 

The northern Ischia debris avalanche can be put in the stratigraphic framework of 

the fifth prehistorical cycle (0–10 ky B.P.; Figure 16). Chiocci and de Alteriis [15] explained 

that the Southern Ischia debris avalanche was due to a large-scale prehistorical collapse. 

Della Seta et al. [38] suggested that the subaerial debris avalanches of Ischia have mostly 

occurred since 3 ky B.P. (Figure 3b). They are associated with other gravitational mass 

movements, including debris flows (lahars), rock falls, slumps, debris and rockslides, 

small debris flows, and deep-seated gravitational slope deformation [38]. The recognition 

of submarine deposits genetically related to subaerial deposits highlights that the debris 

avalanches impacted the sea. Based on our data, we can suggest that the Northern Ischia 

debris avalanche deposits were deposited during two phases (H1 and H2 in Figure 14) 

and are not associated with an evident slide scar on land, which is in contrast with the 

IDA [15], which is associated with a large scar of the southern flank of the island. 

 

Figure 16. Qualitative chronostratigraphic diagram of Ischia. The decrease in triangles is due to the 

decrease in the thickness of the volcanic deposits. 
Figure 16. Qualitative chronostratigraphic diagram of Ischia. The decrease in triangles is due to the
decrease in the thickness of the volcanic deposits.

The northern Ischia debris avalanche can be put in the stratigraphic framework of
the fifth prehistorical cycle (0–10 ky B.P.; Figure 16). Chiocci and de Alteriis [15] explained
that the Southern Ischia debris avalanche was due to a large-scale prehistorical collapse.
Della Seta et al. [38] suggested that the subaerial debris avalanches of Ischia have mostly
occurred since 3 ky B.P. (Figure 3b). They are associated with other gravitational mass
movements, including debris flows (lahars), rock falls, slumps, debris and rockslides, small
debris flows, and deep-seated gravitational slope deformation [38]. The recognition of
submarine deposits genetically related to subaerial deposits highlights that the debris
avalanches impacted the sea. Based on our data, we can suggest that the Northern Ischia
debris avalanche deposits were deposited during two phases (H1 and H2 in Figure 14) and
are not associated with an evident slide scar on land, which is in contrast with the IDA [15],
which is associated with a large scar of the southern flank of the island.
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