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Abstract: Ant colony optimization (ACO) is a stochastic optimization algorithm inspired by the
foraging behavior of ants. We investigate a simplified computational model of ACO, wherein ants
sequentially engage in binary decision-making tasks, leaving pheromone trails contingent upon their
choices. The quantity of pheromone left is the number of correct answers. We scrutinize the impact of
a salient parameter in the ACO algorithm, specifically, the exponent α, which governs the pheromone
levels in the stochastic choice function. In the absence of pheromone evaporation, the system is
accurately modeled as a multivariate nonlinear Pólya urn, undergoing phase transition as α varies.
The probability of selecting the correct answer for each question asymptotically approaches the stable
fixed point of the nonlinear Pólya urn. The system exhibits dual stable fixed points for α ≥ αc and
a singular stable fixed point for α < αc where αc is the critical value. When pheromone evaporates
over a time scale τ, the phase transition does not occur and leads to a bimodal stationary distribution
of probabilities for α ≥ αc and a monomodal distribution for α < αc.

Keywords: ant colony optimization; Pólya urn process; phase transition

1. Introduction

Sociophysics emerged in the 1970s and has evolved into a captivating research field
within statistical physics [1,2]. In particular, herding behavior, or the inclination to follow
the majority, has captured the attention of many researchers due to its pivotal role in
understanding social phenomena [3–7]. Various probabilistic models have been proposed to
describe herding behavior, with one notable example being the ant recruitment model [8,9].
This model explains the intermittent oscillation observed in ants when they are presented
with two identical food sources [10,11]. When ants choose a food source from among two
food sources, the ant recruitment model incorporates a straightforward herding mechanism
in which a randomly selected ant chooses one of the two based on the number of ants that
have already made the same choice. Scouts play a crucial role by exploring the terrain to
locate food sources [12,13]. When a scout discovers food, it returns to the nest, leaving
a pheromone trail in its wake. Other ants are drawn to these pheromone marks and
consequently become recruited to forage at the food source.

Ant colony optimization (ACO) is a model-based meta-heuristic inspired by the
foraging behavior of ants in their search for the shortest path to food sources [14–18]. While
ants may not be highly intelligent individually, they collectively find the shortest path by
following pheromone trails left by their fellow ants. The optimal path is determined by the
route on which the maximum number of ants travel. Consider a classic problem known as
the traveling salesman problem (TSP), which involves finding the shortest possible route
that visits each city represented as vertices in a given graph exactly once and returning
to the origin city [19]. In ACO, ants make decisions about their next city to visit based
on a concept called “pheromone”. Pheromone represents the preference for a particular
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choice and is collaboratively learned by the ants during their search process [15]. In the
context of the TSP defined on a graph, pheromone values are typically associated with
edges between cities, reflecting the preference for traveling from one city to another along
the corresponding edges. These pheromone values are learned through a reinforcement
strategy, where each ant reinforces its chosen paths based on the quality of the solution
constructed. This quality is often determined using the inverse of the total length of the
route. ACO has found successful applications in various industrial and academic constraint
optimization problems and has become one of the most popular methods [20–23].

ACO has seen significant improvements, and modern ACO algorithms deviate sub-
stantially from the original ACO [24]. The fundamental modification lies in controlling the
diversity of solutions and achieving convergence [25,26]. In this context, “convergence”
refers to the tendency of ants to cluster around similar solutions in the neighborhood and
ultimately converge toward the same solution. Early convergence to a small region of
the search space leaves large enough sections of the search space unexplored and fails
to find suitable solutions. On the other hand, quite slow convergence means that the
computational cost required to reach acceptable solutions is high, rendering the search
inefficient. Diversity control aims to prevent complete convergence by slowing down the
search process.

Many algorithms have been proposed for controlling the diversity of the ACO al-
gorithm. One of the diversity control mechanisms involves modifying the probabilistic
decision function [24,27]. Bernd Meyer studied the influence of α, the exponent on the
pheromone level in the selection function, and suggested that α qualitatively determines
diversity and convergence behavior. Additionally, Meyer introduced a dynamic α that
changes throughout the search process to enhance search efficiency, a technique known as
α-“annealing”. Meyer also emphasized the significance of noise in ACO using stochastic
differential equations in both static and dynamic environments [24,28–30]. Ants respond
to a two-choice question, and the noisy communication among ants prevents them from
selecting suboptimal choice. In this paper, we study a simple model of ACO in which ants se-
quentially answer a series of two-choice quizzes. We investigate the phase transition and the
qualitative change of the convergence behavior by varying α. We start from the discrete time
formulation of the problem. Our approach can be straightforwardly generalized to ACO for
many-body problems, allowing us to derive the model parameters of the continuous time
approach concretely. Additionally, there are various possibilities for the continuous time
limit, apart from Wiener noise [31]. In Section 2, we introduce a model and derive stochastic
differential equations (SDEs) using diffusion approximation. In Section 3, we investigate the
time evolution and examine the effect of α on the convergence properties of the solutions.
Section 4 provides a summary of the results. Appendix A explains the estimation of the
initial conditions for the SDEs.

2. Method and Definitions

There are N two-choice questions, each of which is answered by quite a large number
of ants sequentially [32]. These questions are labeled by n = 1, . . . , N. The answer provided
by the tth ant is denoted as X(n, t) ∈ {0, 1}, where X(n, t) = 1 indicates a correct answer,
and X(n, t) = 0 indicates an incorrect answer. In ACO, multiple ants typically search for
the optimal solution simultaneously in each iteration. However, in our model, only one
ant conducts the search. Each ant receives 1 point for a correct answer. After ant t has
answered all N questions, the total points (TPs) earned by the ant can be calculated using
the following equation:

TP(t) =
N

∑
n=1

X(n, t).

Ant t deposits pheromones on their answer X(n, t) ∈ {0, 1}. The amount of the
pheromones is TP(t). We assume that the pheromones evaporate and decrease by e−1/τ

per unit time, where τ represents the time scale of the pheromone evaporation.
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Ant t + 1 observes the total values of the pheromones associated with question m for
each choice X(m, t + 1) = {0, 1}. We denote the total value of pheromones that remains on
all the questions after ant t has answered,

S(t) ≡
t

∑
s=1

TP(s)e−(t−s)/τ =
t

∑
s=1

N

∑
n=1

X(n, s)e−(t−s)/τ . (1)

Then, the remaining pheromone on X(m, s) = 1, 1 ≤ s ≤ t is

S(m, t) ≡
t

∑
s=1

TP(s)X(m, s)e−(t−s)/τ =
t

∑
s=1

N

∑
n=1

X(n, s)X(m, s)e−(t−s)/τ . (2)

The remaining pheromone on X(m, s) = 0, 1 ≤ s ≤ t is given by S(t)− S(m, t).
Ants are not highly intelligent, and the probability of them making the correct choice

in the two-choice questions by themselves is 1/2. The information provided by TPs gives
them an indirect clue about the correct choice. If TP(s) > N/2, the posterior probability
for X(m, s) = 1 is larger than 1/2. Similarly, if S(m, t) is greater than S(t)/2, the posterior
probability for X(m, t + 1) = 1 is greater than 1/2. In ACO, a decision function with a
positive parameters α and K is introduced that uses the values of the pheromones as follows:

P(X(m, t + 1) = 1) =
(S(m, t) + K)α

(S(m, t) + K)α + (S(t)− S(m, t) + K)α
.

Here, the exponent α determines the response of the choice to the values of the pheromones.
As K is positive, one can avoid S(m, t) = 0 and S(m, t) = S(t) becoming the absorbing
states of the process. However, instead of K, we adopt the following form for the choice
function:

P(X(m, t + 1) = 1) = (1 − ϵ)
Sα(m, t)

Sα(m, t) + (S(t)− S(m, t))α
+

1
2

ϵ. (3)

Here, ϵ > 0 is a small positive constant to avoid the absorbing states S(m, t) = 0 and
S(m, t) = S(t) of the stochastic process [8].

We denote the ratio of the remaining pheromones on the correct choices as Z(m, t),

Z(m, t) ≡ S(m, t)
S(t)

.

We divide both the denominator and numerator of Equation (3) by Sα(t), and the
probability of the correct choice X(m, t + 1) = 1 is expressed as

P(X(m, t + 1) = 1) = (1 − ϵ)

(
Zα(m, t)

Zα(m, t) + (1 − Z(m, t))α

)
+

1
2

ϵ = f (Z(m, t)).

Here, f (z) is defined as

f (z) ≡ (1 − ϵ)

(
zα

zα + (1 − z)α

)
+

1
2

ϵ. (4)

We note that f (1/2) = 1/2 and f (1 − x) = 1 − f (x). The slope of f (x) at x = 1/2 is
(1− ϵ)α. We also introduce the discount factor D(t) and the ratio of correct answers Z(t) as

D(t) =
N

∑
n=1

t

∑
s=1

e−(t−s)/τ = N

(
1 − e−t/τ

1 − e−1/τ

)
,

Z(t) =
S(t)
D(t)

.
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Stochastic Differential Equations

First, let us derive the recursive relation for S(t) and D(t). According to the definition,
D(t + 1) and S(t + 1) obey the next recursive relations

D(t + 1) = N + D(t)e−1/τ ,

S(t + 1) =
N

∑
i=1

X(i, t + 1) + S(t)e−1/τ .

If τ is finite, for t ≫ τ ≫ 1, we have D(t) ≃ Nτ. In the limit τ → ∞, the pheromone
does not evaporate, and one has D(t) = Nt.

For N ≫ 1, we can replace the sum of X(i, s), i = 1, . . . , N, by the sum of the expected
values using the law of large numbers; then:

S(t + 1) ≃
N

∑
i=1

f (Z(i, t)) + S(t)e−1/τ .

Let us denote the average of { f (Z(i, t))} as

f (Z(i, t)) ≡ 1
N

N

∑
i=1

f (Z(i, t)).

Then,
S(t + 1) ≃ S(t)e−1/τ + N f (Z(i, t)).

The recursive relation for Z(t) is

Z(t + 1) ≃ S(t + 1)
D(t + 1)

=
D(t + 1)− N

D(t + 1)
Z(t) +

N
D(t + 1)

f (Z(i, t).

∆Z(t) ≡ Z(t + 1)− Z(t) is given as

∆Z(t) ≃ N
D(t + 1)

( f (Z(i, t))− Z(t)).

In the continuous time limit dt = 1 → 0, one obtains:

d
dt

Z(t) =
N

D(t + 1)
( f (Z(i, t))− Z(t)). (5)

One sees that Z(t) converges to f (Z(i, t)). When the pheromones evaporate and
τ < ∞, D(t) ≃ Nτ, and the prefactor of the differential equation is 1/τ. If one assumes
that the dynamics of Z(i, t) are faster than those of Z(t) (adiabatic approximation), the time
scale of the convergence is given by τ as f (Z(i, t))− Z(t) ∝ e−t/τ . When the pheromone
does not evaporate and τ → ∞, D(t) ≃ Nt. The prefactor of the differential equation is 1/t,
and f (Z(i, t))− Z(t) ∝ t−1. The convergence becomes quite slow.

Next, let us study the dynamics of Z(m, t). The recursive relation for S(m, t) is

S(m, t + 1) = S(m, t)e−1/τ + X(m, t + 1)(
N

∑
i=1 ̸=m

X(i, t + 1) + 1).

Z(m, t + 1) is then estimated as
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Z(m, t + 1) =
S(m, t + 1)

S(t + 1)
=

S(t)e−1/τ

S(t + 1)
Z(m, t) +

∑i ̸=m X(i, t + 1) + 1
S(t + 1)

X(m, t + 1)

≃ S(t + 1)− N f (Z(i, t))
S(t + 1)

Z(m, t) +
N f (Z(i, t)) + (1 − f (Z(m, t))

S(t + 1)
X(m, t + 1).

Using S(t + 1) = D(t + 1)Z(t + 1), one obtains:

∆Z(m, t) =
N f (Z(i, t))

D(t + 1)Z(t + 1)

[(
1 +

1 − f (Z(m, t))
N f (Z(i, t))

)
X(m, t + 1)− Z(m, t)

]
.

We denote the history of Z(s), {Z(i, s)}, s = 1, . . . , t, as Ht, and the conditional
expected value of ∆Z(m, t) is estimated as

E(∆Z(m, t)|Ht) =
N f (Z(i, t))

D(t + 1)Z(t + 1)

[(
1 +

1 − f (Z(m, t))
N f (Z(i, t))

)
f (Z(m, t))− Z(m, t)

]
. (6)

Likewise, the conditional variance of ∆Z(m, t) can be approximated as

V(∆Z(m, t)|Ht) ≃
(

N f (Z(i, t)
D(t + 1)Z(t + 1)

)2

f (Z(m, t))[1 − f (Z(m, t))].

Here, we neglect the subleading terms in
(

1 + 1− f (Z(m,t))
N f (Z(i,t))

)2
. We read the drift and diffu-

sion term from the results and the SDEs are

dZ(m, t) = E(∆Z(m, t)|Ht)dt +
√

V(∆Z(m, t)|Ht)dW(t), m = 1, · · · , N. (7)

Here, W(t) is the Wiener process. Equations (5) and (7) describe the dynamics of the system.
The system can be described as a multivariate Pólya urn process.

We note that 1− f (Z(m,t))
N f (Z(i,t))

in Equation (6) breaks the Z2 symmetry of the system. If one

neglects the term, E(∆Z(m, t)|Ht) is proportional to f (Z(m, t))− Z(m, t). As f (1 − x) =
1 − f (x), f (1 − x)− (1 − x) = −( f (x)− x) holds. Z(m, t) and 1 − Z(m, t) obey the same
dynamics, and we call the symmetry Z2 symmetry. The term is always positive and drives
Z(m, t) in the positive direction. As the term is proportional to 1/N, the strength of the
Z2-symmetry-breaking field becomes smaller as N becomes larger.

3. Results

We analyze the SDEs given in Equation (7) and investigate the convergence properties
of Z(m, t). As the convergence behavior relies on the initial value of Z(m, t = t0) in
the context of the nonlinear Pólya urn model, we commence by examining the initial
distribution of Z(m, t).
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3.1. Initial Distribution of {Z(m, t)}
We assume that ants adopt α = 0 and do not respond to the values of the pheromones

for t = 1, · · · , t0. The ants answer the questions independently, and P(X(i, t) = 1) = 1/2.
We estimate Z(t) and Z(m, t) for τ < t ≤ t0 as follows:

Z(t) ∼ N
(

1
2

,
Dh(t)

4D2(t)

)
,

Z(m, t) ∼ N
(

1
2
+

1
2N

,
NDh(t)
4D2(t)

)
, (8)

Dh(t) ≡ N
t

∑
s=1

e−2(t−s)/τ = N · 1 − e−2t/τ

1 − e−2/τ
,

where N(a, b) denotes the normal distribution with the mean a and the variance b. The
details of the calculations are given in Appendix A. If τ is finite, one has Dh(t) ≃ Nτ/2 for
t ≫ τ ≫ 1. In the limit τ → ∞, the pheromone does not evaporate and then Dh(t) = Nt.

The essential differences between Z(t) and Z(m, t) include a shift in the expected
value by 1/2N and the presence of a factor of N in the numerator of the variance of Z(m, t).
The shift of 1/2N arises from the finding that X(m, s) in S(m, t) is 1, which is larger than
E[X(i, s)] = 1/2 for i ̸= m. The value of the pheromone contains information about the
correct choice, leading to E[S(m, t)] > 1

2 E[S(t)]. However, in the “cheating” process, the
variables X(i, s), are combined by X(m, s), as in Equation (2), resulting in a larger variance
for S(m, t). The factor of N in the numerator of the variance of Z(m, t) is a consequence of
this combination process.

From the distribution of Z(m, t0), one can determine the values of τ or t0 that guarantee
that Z(m, t0) is greater than 0.5 for the limits t ≫ τ ≫ 1 and τ → ∞, respectively. With a
confidence level of 1%, τ and t0 should satisfy the following conditions:

t ≫ τ ≫ 1 :
1

2N
≥ 2.58

2
√

2τ
→ τ ≥ 3.33N2,

τ → ∞ :
1

2N
≥ 2.58

2
√

t0
→ t0 ≥ 6.66N2.

3.2. Case with τ → ∞

We take the limit τ → ∞ in Equations (5) and (7). We replace D(t + 1) and Dh(t + 1)
with N(t + 1) and N(t + 1), respectively. This results in the following equations:

dZ(m, t) =
f (Z(i, t))

(t + 1)Z(t + 1)

[(
1 +

1 − f (Z(m, t))
N f (Z(i, t))

)
f (Z(m, t))− Z(m, t)

]
dt

+

(
f (Z(i, t))

(t + 1)Z(t + 1)

)√
f (Z(m, t)[1 − f (Z(m, t))]dW(t), m = 1, · · · , N,

d
dt

Z(t) =
1

(t + 1)
( f (Z(i, t))− Z(t)).

The initial conditions of Z(t) and Z(m, t) at t = t0 are as follows:

Z(t0) ∼ N
(

1
2

,
1

4Nt0

)
,

Z(m, t0) ∼ N
(

1
2
+

1
2N

,
1

4t0

)
.

In the adiabatic approximation, where the time development of Z(m, t) is much faster
than that of Z(t), the structure of the SDE for each Z(m, t), where m = 1, · · · , N, is the
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same as that of a nonlinear P’olya urn [33,34]. The probability for Z(m, t) to converge to a
stable solution of the following equation is positive [35],(

1 +
1 − f (z)

N f (Z(i, t))

)
f (z) = z. (9)

Here, a stable (unstable) solution of Equation (9) means that the curve of the left-hand-side
of the equation crosses the diagonal curve y = z in in the downward (upward) direction [35].
We denote the stable and unstable solutions as zs and zu, respectively.

In the limit N → ∞, the positive driving force 1− f (z)
N f (Z(i,t))

in Equation (9) disappears.

The system becomes Z2-symmetric, and z = 1/2 is a the solution of f (1/2) = 1/2. If N
is finite, the positive driving force breaks the Z2 symmetry. We plot (1 + b(1 − f (z)) f (z)
in Figure 1. b > 0 corresponds to 1/N f (Z(i, t)) and b ∈ [0.01, 0.02] for N = 100 and
f (Z(i, t) ∈ [1/2, 1] ; b = 0 and b = 0.2 are used in Figure 1, left and right, respectively,
along with ϵ = 0.1.

Figure 1. f (z) (4) (left) and (1 + b(1 − f (z)) f (z) (right) versus z for b, α, and ϵ, as indicated. To
visualize the fixed point of f (z), the z-function is also shown.

In the Z2-symmetric case (b = 0), the stability of the solution z = 1/2 depends on the
slope of f (z) at z = 1/2. As f ′(1/2) = (1 − ϵ)α, where the prime denotes z-derivative,
the critical value of α is αc = 1/(1 − ϵ). If α < (>)αc, z = 1/2 is (un)stable. If α = αc, the
curve of f (z) is tangential to the diagonal. Z(m, t) converges to 1/2 for α ≤ αc, as z = 1/2
is the unique stable solution zs. For α > αc, there appears two stable solutions zs1, zs2: zs1 is
within (0, 0.5), and zs2 is within (0.5, 1.0). z = 0.5 becomes the unstable solution zu.

The dotted lines in Figure 2 show the solutions versus α for the Z2-symmetric case. For
α < αc, z = 1/2 (black dotted line) is the stable solution. For α > αc, z = 1/2 (gray dotted
line) becomes unstable (zu = 1/2) and two stable solutions zs1, zs2 depart from z = 1/2
continuously with α > αc. The stable solution to which Z(m, t) converges depends on the
initial value of Z(m, t0). In general, if Z(m, t0) is greater (smaller) than 1/2, the probability
of the convergence to 1 is greater (smaller) than 1/2. zu determines the “attractive domains”
for the stable solutions zs1, zs2. The susceptibility of the expected value of Z(m, t) to the
initial value Z(m, t0) is the order parameter of the nonlinear Pólya urn [33,34]. As the
order parameter is proportional to the difference in the two stable states zs1, zs2, the order
parameter is a continuous function of α, and the phase transition is continuous.
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Figure 2. The stable, zs, and unstable, zu, solutions for b and ϵ parameters, as indicated. See text
for details.

In the Z2-asymmetric case (b ̸= 0), for α < αc, there is a stable solution, zs, in the
z-range (0.5, 1). zs increases with α; at some critical value, αc, of α, the curve f (z)(1 + b(1 −
f (z)) becomes tangential to the diagonal at some zt. zt is known as a touchpoint and to
be stable [36]. As α continues to increase beyond αc, two significant changes occur: a new
stable solution, zs1, emerges from the touchpoint zt, while an unstable solution, zu, also
becomes apparent.

When α < αc, only one stable solution, zs, exists within the range 1/2 < zs < 1.
Conversely, for α > αc, the specific stable solution to which Z(m, t) converges depends on
the initial values of Z(m, t0). At α = αc, both the stable fixed point zs and the touchpoint zt
remain stable. The solution to which Z(m, t) converges is determined by the initial values
of Z(m, t0) in this case as well. For α > αc, the situation mirrors that of α = αc. Once α ≥ αc,
the order parameter becomes positive, and the phase transition becomes discontinuous.

Figure 3 shows the results of the numerical studies in the limit τ → ∞. We sampled
a trajectory of Z(m, t) and Z(t) for 1 ≤ t ≤ 109 with N = 102 and ϵ = 0.01. Figure 3
presents the distribution of Z(m, t0) for two different values of t0, namely, t0 ∈ 103, 106.
The mean value of Z(m, t0) is approximately 1/2 + 1/2N, which aligns with the theoretical
predictions. The variance of Z(m, t0) is given by 1/4t0, so the variance for t0 = 103 is about
103 times larger than that for t0 = 106. Consequently, if t0 = 103 is chosen, a significant
proportion of m ∈ 1, · · · , N has Z(m, t0) < zu ≃ 0.5, resulting in a high probability that
Z(m, t) converges to z′s < 1/2 for α = 2.0. In such cases, Z(t) cannot reach 1 due to the
convergence of Z(m, t) to z′s. On the other hand, if t0 = 105 is set, the ratio of m ∈ 1, · · · , N
with Z(m, t0) < zu ≃ 0.5 is zero, ensuring that Z(m, t) always converges to zs > 1/2. As
a result, Z(t) monotonically increases toward 1 for α = 2.0. For α = 1.0 < αc, where only
one stable state, zs ≃ 1, exists, Z(m, t) consistently converges to zs.

One can see that Z(t) monotonically approaches zs with time for both t0 = 103 and
t0 = 105 cases within the range t ≤ 109. In the case of α = 0.5, where zs ≃ 0.5, Z(t)
experiences relatively little change.
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Figure 3. Left: the initial distribution of Z(m, t0) for the limit τ → ∞. α = 0, ϵ = 0.01 and N = 102 are
used. Right: Z(t) versus t for different α and t0 as indicated. Gray areas show the standard deviation
of Z(t) which is quite large for α = 2.0, t0 = 103 and smaller or compatible with the line widths for
other cases. See text for details.

3.3. Case with τ < ∞

In the case where τ is finite, let us make the assumption that t ≫ τ ≫ 1 and replace
D(t + 1) with Nτ in Equations (5) and (7). This leads to the following equations:

dZ(m, t) =
f (Z(i, t))
τZ(t + 1)

[(
1 +

1 − f (Z(m, t))
N f (Z(i, t))

)
f (Z(m, t))− Z(m, t)

]
dt

+
f (Z(i, t))
τZ(t + 1)

√
f (Z(m, t))(1 − f (Z(m, t))dW(t), m = 1, . . . , N, (10)

d
dt

Z(t) =
1
τ
( f (Z(i, t))− Z(t)).

The initial conditions for Z(t0) and Z(m, t0) at t0 ≫ τ are as follows:

Z(t0) ∼ N
(

1
2

,
1

8Nτ

)
,

Z(m, t0) ∼ N
(

1
2
+

1
2N

,
1

8τ

)
. (11)

The dynamics of Z(m, t), m = 1, . . . , N, are coupled through Z(t) and f (Z(i, t)). To
simplify and analyze this coupled system, we focus on the stationary state of Z(m, t) in the
limit t → ∞.

Z(m, t) are expected to fluctuate around the stable fixed points of f (z) in the stationary
state. As was observed in Section 3.2 for the case of τ → ∞, for α < αc, there is only one
stable fixed point, and for α ≥ αc, two stable fixed points exist, one of which is near one.
The stationary distribution is unimodal for α < αc and bimodal for α ≥ αc. Let us denote
the stationary distribution and the mean value of Z(m, t) as Pst(z) and µst, respectively. As
f (Z(m, t)) is the probability for X(m, t + 1) = 1, one can assume f (Z(i, t) = Z(t) = µst in
the stationary state. The SDEs in Equation (10) can be simplified as follows when replacing
f (Z(i, t)) and Z(t) with µst:
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dZ(m, t) =
1
τ

[(
1 +

1 − f (Z(m, t))
Nµst

)
f (Z(m, 1))− Z(m, t)

]
dt

+
1
τ

√
f (Z(m, t))(1 − f (Z(m, t))dW(t)

= A(Z(m, t))dt + B(Z(m, t))dW(t),

A(z) =
1
τ

[(
1 +

1 − f (z)
Nµst

)
f (z)− z

]
,

B(z) =
1
τ

√
f (z)(1 − f (z) . (12)

The stationary state with reflecting boundary conditions is determined by a potential
solution [37], which can be expressed as:

Pst(z) ∝
1

B2(z)
exp

(∫ z

1/2

2A(y)
B2(y)

dy
)

,

2A(y)
B2(y)

= 2τ
f (y)− y

f (y)(1 − f (y))
+

2τ

Nµst
. (13)

The second term, 2τ/Nµst, arises from the Z2 symmetry-breaking field and causes a shift
in the stationary distribution in the positive direction.

Figure 4 shows Pst(z) (13) for ϵ = 0.01 and N = 102; µst is chosen so that the mean
value of Pst(z) coincides with

µst =
∫ 1

0
Pst(z)zdz.

The pair of the parameters (α, µst) are (0.0, 0.50), (0.5, 0.51), (0.9, 0.54), (0.99, 0.67),
(1/0.99, 0.74), and (2.0, 0.54). As α increases, the peak position shifts in the positive z-
direction, which can be expected by the dependence of the stable solution zs on α in
Figure 2. If α = 1/(1 − ϵ), the peak appears at z = 1, since there is only one stable fixed
point near z = 1 in Figure 1. When α = 2, there are two stable fixed point, and the stationary
distribution is bimodal.
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Figure 4. The stationary distribution, Pst (13), for N = 102 and ϵ and α parameters as indicated. See
text for details.
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In order to derive the dependence of µst and the variance of Pst(z) on α, let us assume
that Z(m, t) fluctuates around µst ≃ 1

2 for α < αc. We linearize f (z) in the vicinity of
z = 1/2 as

f (z) =
1
2
+ (1 − ϵ)α

(
z − 1

2

)
.

Let us also approximate B2(z) as µst(1 − µst) = 1/4, then Pst(z) becomes

Pst(z) ∝ exp

−

[
z −

(
1
2 + 1

2N(1−(1−ϵ)α)

)]2

2
8τ(1−(1−ϵ)α)

.

In the case with α = 0, the ants do not observe the information of the pheromones
and decide by themselves. The expected value and the variance are consistent with the
results (11) for the initial state. The expected value and the variance increase with α for
0 ≤ α < 1/(1 − ϵ).

The shape of the stationary distribution changes from the monomodal shape for
α < αc to the bimodal shape for α ≥ αc. Figure 5 shows the stationary distribution Pst(z) of
Z(m, t) = z for α ∈ {0, 0.5, 0.9, 0.99, 1/0.99, 2.0}, ϵ = 0.01, τ = 100 and N = 102. We also
plot Pst(z) in Equation (13) with solid-line curves. Except the α = 2.0 case, the numerical
results agree with the theoretical ones. As α increases from 0 to 1/0.99, the mean value and
the variance of Z(m, t) increases. For α = 1/0.99, the distribution of Z(m, t) has a peak at
z = 1. The distribution becomes bimodal and has two peaks near z = 0 and z = 1 for α = 2.
For α = 2.0, Pst(z) becomes bimodal and the equilibration time to reach the stationary state
becomes quite long. We beleive the latter is the reason for the discrepancy between the
numerical and theoretical results.
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Figure 5. Cont.
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Figure 5. The distributions Pst(z) of Z(m, t = 105) = z for τ = 102, t0 = 105 and ϵ = 0.01 and initial
state α values as indicated.

4. Discussion

In the presented paper, we studied a simple model for ACO and the convergence
properties of the solutions. Ants answer many two-choice questions in sequence and
deposit pheromone as they choose. As the amount of the pheromones is the number
of correct answers, the following ants can receive information or hints about the correct
choices. We showed that the model reduces to a multivariate nonlinear Pólya urn process
and the pheromones break the Z2 symmetry of the process. By varying the exponent α of
the decision function of the ants, there occurs a phase transition about the convergence of
the probability of choosing the correct answer for each question in the limit τ → ∞. For
τ < ∞, the change in the stationary distribution between the monomodal and the bimodal
shape occurs as we vary α.

Previous studies adopted values of α = 1 or smaller in solving actual optimization
problems, like the TSP [24]. In α-annealing, α increases gradually, as shown in Ref. [24].
In our study, we showed that the duration of the period α = 0 should be long enough
to ensure that the initial value of Z(m, t) is in the attractive domain of the suitable stable
state (Z(m, t) > zu) in the case when τ = ∞. Subsequently, with α ≥ 1 in effect, Z(t)
converges to a value close to 1. In the case of τ < ∞, the timescale for pheromone
evaporation, represented by τ, shown to be sufficiently long to maintain the same initial
conditions. However, Z(m, t) does not converge to a specific value; instead, it follows a
stationary distribution that exhibits both bimodal and monomodal shapes depending on
the value of α. To achieve a distribution of Z(t) with a prominent peak near z = 1, the
α-annealing process is an effective strategy. Both the stable solution zs and the distribution
of Z(m, t) suggest that after a lengthy enough period with α = 0, it is advantageous to
gradually increase α from 1. However, the efficiency of the annealing process depends
on the specific problem being addressed. Future studies are considered to clarify on an
efficient α-annealing schedule.
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Appendix A. Initial Conditions of Z(t) and Z(m, t)

Let us assume X(i, s) are independent and identically distributed Bernoulli random
variable with P(X(i, s) = 1) = 1/2 for i = 1, · · · , N and s ≤ t0. As soon as E(X(i, s)) = 1/2
and V(X(i, s)) = 1/4, one finds:

E[S(t)] =
N

∑
i=1

t

∑
s=1

E[X(i, s)]e−(t−s)τ =
1
2

D(t),

V(S(t)) =
N

∑
i=1

t

∑
s=1

V(X(i, s)e−(t−s)/τ) =
1
4

N
t

∑
s=1

e−2(t−s)/τ =
1
4

Dh(t).

Here, we define Dh(t) as

Dh(t) = N
t

∑
s=1

e−2(t−s)/τ .

Applying the central limit theorem, we conclude that Z(t) = S(t)/D(t) behaves like a
normal distribution, with its probability density function given by

Z(t) ∼ N
(

1
2

,
Dh(t)

4D2(t)

)
. (A1)

S(m, t) in Equation (2) is rewritten as

S(m, t) =
t

∑
s=1

X(m, s)(1 + ∑
i ̸=m

X(i, s))e−(t−s)/τ .

Then, the conditional and unconditional expected values of S(m, t) read

E[S(m, t)|{X(m, s)}s=1,··· ,t] =
t

∑
s=1

X(m, s)(
1
2
(N + 1))e−(t−s)/τ

E[S(m, t)] = E[E[S(m, t)|{X(m, s)}s=1,··· ,t]] =

(
1
4
+

1
4N

)
D(t).

The conditional variance of S(m, t) reads

V(S(m, t)|{X(m, s)}s=1,··· ,t) =
t

∑
s=1

X(m, s)
1
4
(N − 1)e−2(t−s)/τ .

The unconditional variance reads

V(S(m, t)) = E[V(S(m, t)|{X(m, s)}s=1,··· ,t)] + V(E[S(m, t)|{X(m, s)}s=1,··· ,t])

=

(
1
16

N +
1
4
− 1

16N

)
Dh(t) ≃

1
16

N · Dh(t).

We estimate the variance of Z(m, t) = S(m, t)/S(t) by neglecting the fluctuation of S(t) as

V(Z(m, t)) ≃ V(S(m, t))
(E[S(t)])2 =

NDh(t)
4D2(t)

.

From the central limit theorem, Z(m, t) = S(m, t)/S(t) behaves as

Z(m, t) ∼ N
(

1
2
+

1
2N

,
NDh(t)
4D2(t)

)
. (A2)
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