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Abstract: The Stimulated Raman Adiabatic Passage (STIRAP) on a three-state system interacting
with a spin bath is considered, focusing on the efficiency of the population transfer. Our analysis is
based on the perturbation treatment of the interaction term evaluated beyond the Rotating Wave
Approximation, thus focusing on the limit of weak system–bath coupling. The analytical expression of
the correction to the efficiency and the consequent numerical analysis show that, in most of the cases,
the effects of the environment are negligible, confirming the robustness of the population transfer.
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1. Introduction

A quantum system ruled by a slowly varying Hamiltonian undergoes a dynamics
known as adiabatic following of the eigenstates, based on the adiabatic theorem, accord-
ing to which the populations of the instantaneous eigenstates of the Hamiltonian do not
change [1,2] (details are given in Appendix A). This physical behavior is the key ingredient
of many protocols aimed at controlling a quantum system [3–7]. Stimulated Raman Adia-
batic Passage (STIRAP) [8–12] represents an essential and known example of an adiabatic
process. The STIRAP technique was introduced to realize a complete population transfer
from one state to another one by exploiting a Raman scheme involving suitable pulses with
time-dependent amplitudes which couple each of the two previously mentioned states
with an auxiliary one. The pulses have to be set in such a way that they should ensure the
validity of the adiabatic approximation. Moreover, their specific time-dependence must
be such that an eigenstate of the Hamiltonian coincides with the initial state of the system
at the beginning of the process and with the target state at the end of the application of
the pulses. Therefore, differently to what one might think at first glance, the total popu-
lation transfer from the initial state to the target state is not due to radiative two-photon
processes but is plainly due to an adiabatic following of an Hamiltonian eigenstate. This is
particularly evident when the so called counter-intuitive sequence is considered, where
the pulse which couples the auxiliary state and the target one precedes the pulse which
couples the initial state to the auxiliary one. Indeed, in such a case it is not reasonable
to interpret the whole process as a (possibly virtual) photon absorption concomitant to
the initial auxiliary state transition followed by a (possibly virtual) photon emission con-
comitant to the auxiliary target state transition. Moreover, it is worth observing that, not
only does the counter-intuitive sequence work well, but it usually works better than the so
called intuitive sequence where the coupling between the auxiliary state and the initial one
precedes the other coupling. A detailed analysis of the counter-intuitive sequence is given
in Section 2.2.

The STIRAP technique is still extensively investigated [13–18] and has been exploited
in different physical contexts ranging from cold gases [19–21] to condensed matter [22–28],
plasmonic systems [29,30], superconducting devices [31–33], trapped ions [34,35] and
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optomechanical systems [36]. Recently, in order to improve the original technique by
shortening the population transfer process, modifications to the original scheme including
shortcuts to adiabaticity have been proposed [37–42]. However, in this case, a more compli-
cated apparatus is required, which constitutes a disadvantage with respect to the original
scheme. Indeed, the implementation of shortcuts requires the activation of additional
interactions which somehow compensate for any deviation from the adiabatic following of
the eigenstates of the Hamiltonian, even in cases where the Hamiltonian does not change
slowly. In this way, the original time-dependent Hamiltonian of the system, H(t), does
not rule the dynamics anymore, since new terms, δH(t), are also considered, and the total
Hamiltonian, H(t) + δH(t), induces a unitary evolution which coincides with an adiabatic
following of the eigenstates of H(t) only. The structure of δH(t) is generally complicated
and the relevant pulses need to be very precise.

As a general feature, a quantum system is subjected to the effects of noise either
rising from the interaction with external systems, such as, for example, the constituents
of the environment, or related to imperfections in the apparatus. Therefore, on the one
hand, the fidelity of the population transfer with respect to uncertainty or fluctuations
in the amplitudes and phases of the pulses has been analyzed [43,44]. On the other
hand, the interaction with the quantized electromagnetic field has also been considered,
for example, by exploiting effective non-Hermitian Hamiltonians, which is limited to cases
where the states involved in the STIRAP scheme decay towards states not involved in the
procedure [45]. Beyond such a specific scenario, a more general approach based on the
theory of open quantum systems is required [46,47]. Along this line, master equations have
been proposed to study STIRAP-manipulated systems [48–51]. Moreover, under suitable
assumptions fitting the Davies–Spohn theory for open quantum systems ruled by time-
dependent Hamiltonians [52], time-dependent master equations in the Lindblad form can
be obtained from a microscopic model of the interactions between the atomic system and
the quantized field [53,54].

Since in many cases the system to be manipulated is close to other atomic systems and
interacts with them, it might be the case that the interaction with the electromagnetic field is
not the main source of quantum noise or, at least, not the only significant source. Nitrogen
vacancies in diamonds [24,27,28] or rare-earth doped crystals [22,23] are two typical exam-
ples of such a scenario. The manipulation of spin defects in magnetic materials through
adiabatic following-based techniques has recently been studied in the presence of their
interaction with the surrounding spins [55]. Moreover, very recently, the effect of STIRAP
processes on a system interacting with a spin bath has been theoretically analyzed under
the assumptions that allow for the Rotating Wave Approximation (RWA) in the interaction
between the three-state system and the spins in the environment [56]. This study has been
developed through an evaluation of the unitary dynamics, despite the fact that master
equations can also be derived for the spin environments [57–59].

In this paper, we extend the previous study in ref. [56]; we still exploit the unitary
evolution of the universe but overcome the RWA in the system–environment interaction,
which makes the physical model more realistic. In fact, while the RWA implies the con-
servation of the total number of excitations (a feature which has been extensively used
in the previous analysis), it somehow excludes a variety of possible transitions. On the
contrary, in this study, we take into account all the terms of the system–bath interaction,
thus introducing processes which can be responsible for a reduction in the efficiency of
population transfer. The paper is structured as follows. In Section 2, we describe the
physical system and the relevant Hamiltonian model, and also provide a brief sketch of the
STIRAP technique in the ideal case and beyond, also introducing the theoretical analysis
based on the perturbation approach, specifically for the truncation of the Dyson series
after two changes to picture. In Section 3, we give the explicit form of the correction to the
efficiency of the population transfer according to our theory and then we show predictions
based on numerical calculations. Finally, in Section 4, we present an extensive discussion on
the results. Two Appendixes complete the presentation: in the Appendix A, the adiabatic
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approximation is recalled while in the Appendix B, we provide details about the matrix
elements involved in the perturbation treatment.

2. Physical Model and Methods
2.1. Hamiltonian Model

The physical system we are focusing on consists of a three-state system subjected
to two coherent fields and interacting with the surrounding environment, consisting of
a spin bath. The three-state system has two ground states, |g1⟩ and |g2⟩, and an excited
state , |e⟩, and its free dynamics are governed by the Hamiltonian HA as given just below.
The action of the STIRAP pulses coupling each of the two ground states with the excited
one (see Figure 1) is described by HS. In addition, the free spin-bath (an ensemble of
two-state systems) is described by HB while the system–bath interaction is described by
HAB, which associates spin flips with atomic transitions between the excited state and each
of the two ground states. Therefore, the total Hamiltonian is given by (h̄ = 1):

H = HA + HS + HB + HAB , (1)

with:
HA = ν|e⟩⟨e| (2)

HS =
2

∑
m=1

Ωm(t) cos(ν′t) (|gm⟩⟨e|+ |e⟩⟨gm|) , (3)

HB =
L

∑
k=1

ω

2
σ
(k)
z , (4)

HAB =
2

∑
m=1

(|gm⟩⟨e|+ |e⟩⟨gm|)⊗
L

∑
k=1

η
(m)
k σ

(k)
x , (5)

where ν is the energy gap between the free excited states and the two grounds and ν′ is
the frequency of the two pulses, whereas the Ωm’s describe the profiles of the pulses; the
natural frequency of the spins of the bath is ω, while the quantity η

(m)
k is the spin–atom

coupling constant related to the k-th spin and to the atomic transitions |e⟩ ↔ |gm⟩. Finally
σ
(k)
α are the Pauli operators associated to the k-th spin.

Figure 1. STIRAP scheme: two lower states |g1⟩ and |g2⟩ are coupled to an upper state |e⟩ through
suitable pulses. The dashed line represents a ‘virtual level’ of energy ν′. The inset shows the typical
shape of the pulses.

Introducing the Hermitian operator, G1 = ν′|e⟩⟨e| + HB, and the relevant unitary
operator U1, such that iU̇1 = G1U1, in the new picture given by |ψ̃(t)⟩ = U†

1 (t)|ψ(t)⟩ and
Ã(t) = U†

1 (t)A(t)U1(t) one finds that the generator of the time evolution is:

H̃(t)− G1 = H′
A + H̃(0)

S (t) + H̃(ω)
S (t) + H̃AB(t) , (6)

with
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H′
A = (ν − ν′)|e⟩⟨e| , (7)

H̃(0)
S (t) =

2

∑
m=1

Ωm(t)(|gm⟩⟨e|+ |e⟩⟨gm|) , (8)

H̃(ω)
S (t) =

2

∑
m=1

Ωm(t)|gm⟩⟨e|e−i2ν′t + h.c. , (9)

H̃AB(t) =
2

∑
m=1

(|gm⟩⟨e|e−iν′t + |e⟩⟨gm|eiν′t)⊗ ∑
k

η
(m)
k (σ

(k)
− e−iωt + σ

(k)
+ eiωt) , (10)

with ⊗ denoting the tensor product, “h.c.” standing for the “Hermitian conjugate” term,
∆ = ν − ν′ being the detuning between the atomic frequency and the field frequency. It is
worth mentioning that, in view of the further treatments, we have split the transformed
pulse Hamiltonian H̃S into two contributions, H̃S = H̃(0)

S + H̃(ω)
S , where the first corre-

sponds to the so called rotating terms (characterized by the absence of fast oscillations)
while the second is related to the counter-rotating terms (rapidly oscillating). For our
treatment of the system–bath interaction terms in H̃AB(t), this separation of rotating and
counter-rotating terms is not necessary.

2.2. Ideal STIRAP

Let us first sum up the basic form of the ideal STIRAP, which corresponds to the
absence of interaction with the environment (referring to our model, this condition is
accomplished assuming η

(m)
k = 0 , ∀m, k). Moreover, assuming high atomic and field

frequencies, one is legitimated to neglect the counter-rotating terms in the STIRAP Hamil-
tonian, so that the system can be assumed to be approximately ruled only by H′

A + H̃(0)
S

in this new picture usually, which is referred to as the rotating frame. The operator

H′
A + H̃(0)

S (t) = ∆|e⟩⟨e|+
2

∑
m=1

Ωm(t)(|gm⟩⟨e|+ |e⟩⟨gm|) , (11)

can be diagonalized at every instant of time, and its instantaneous eigenstates are:

|+(t)⟩ = sin φ(t) sin θ(t)|g1⟩+ cos φ(t)|e⟩+ sin φ(t) cos θ(t)|g2⟩ , (12)

|0(t)⟩ = cos θ(t)|g1⟩ − sin θ(t)|g2⟩ , (13)

|−(t)⟩ = cos φ(t) sin θ(t)|g1⟩ − sin φ(t)|e⟩+ cos φ(t) cos θ(t)|g2⟩ , (14)

where

tan θ(t) =
Ω1(t)
Ω2(t)

, (15)

tan 2φ(t) =
2ΩL(t)

∆
, (16)

ΩL(t) =
√

Ω2
1(t) + Ω2

2(t) . (17)

Such eigenstates correspond to the following eigenvalues:

E0 = 0 , E± =
1
2

[
∆ ±

√
∆2 + 4Ω2

L(t)
]

(18)

The standard STIRAP process aimed at transferring population from the state |g1⟩ to
|g2⟩ is realized through a so-called counterintuitive sequence, where the pulse Ω2 precedes
Ω1. Accordingly, at the initial time θ = 0 and φ = 0, so that |+⟩ = |e⟩, |0⟩ = |g1⟩ and
|−⟩ = |g2⟩, while in the final time θ = π/2 and φ = 0, so that |+⟩ = |e⟩, |0⟩ = −|g2⟩
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and |−⟩ = |g1⟩. When the pulse profiles are slowly varying functions, the hypotheses
of the adiabatic theorem are satisfied and the population of each eigenstate is preserved
during the evolution. Consequently, in particular, the population of the state |g1⟩, initially
coinciding with |0⟩, is totally transferred to the state |g2⟩, which equals |0⟩ in the final time.

2.3. Time Evolution and Efficiency

In order to better evaluate the effects of the remaining terms of the Hamiltonian, we
perform a new change of picture, applying the transformation

∣∣ψ〉 = U†
2 |ψ̃⟩ with U2 such

that iU̇2 = (H′
A + H̃(0)

S (t))U2.
The operator U2 is well approximated by the unitary evolution describing the adiabatic

following of the instantaneous eigenstates of the Hamiltonian H′
A + H̃(0)

S (t), given by
U2(t, t0) ≈ ∑m e−iαm(t,t0)|ϕm(t)⟩⟨ϕm(t0)|, with |ϕm(t)⟩ being the instantaneous eigenstates
of H′

A + H̃(0)
S (t), and αm(t, t0) =

∫ t
t0

Em(w)dw+ i
∫ t

t0
(∂w⟨ϕm(w)|)|ϕm(w)⟩dw being the

relevant phase factors. It is worth mentioning that all the geometric phases are zero, which
comes from the feature that (∂w⟨ϕm(w)|)|ϕm(w)⟩ , with ∂w ≡ ∂/∂w, is always an imaginary
number, while the coefficients of the eigenstates are all real, which implies that all such
terms are zero. Applying the transformation, one obtains:

H(t)− G2(t) = H(ω)
S (t) + HAB(t) , (19)

with

H(ω)
S (t) =

2

∑
m=1

Ωm(t)|g̊m(t)⟩⟨e̊(t)|e−i2ν′t + h.c. , (20)

HAB(t) =
2

∑
m=1

(|g̊m(t)⟩⟨e̊(t)|e−iν′t + |e̊(t)⟩⟨g̊m(t)|eiν′t)

⊗ ∑
k

η
(m)
k (σ

(k)
− e−iωt + σ

(k)
+ eiωt) , (21)

with |g̊m(t)⟩ = U†
2 (t, t0)|gm⟩ and |e̊(t)⟩ = U†

2 (t, t0)|e⟩.
In the new picture, the generator of the time evolution is the following:

HG = H(ω)
S (t) + HAB(t) , (22)

and the relevant approximated dynamics can be evaluated, to the second order, by trunca-
tion of the iterated formal solution:

T(t, t0) ≈ 11 − i
∫ t

t0

HG(w)dw −
∫ t

t0

dw
∫ w

t0

dw′ HG(w)HG(w′) ≡ T2(t, t0) , (23)

which is essentially the truncation of the Dyson series (expressed without the chronological
ordering operator) to the second order.

Moreover, since we have moved to this new picture by removing the adiabatic evo-
lution operator responsible for a perfect population transfer from |g1⟩ to |g2⟩, remaining
in the state |g1⟩ is equivalent to undergoing a perfect transition from |g1⟩ to |g2⟩ in the
Schrödinger picture. Therefore, in the new picture the efficiency of the population transfer
process through STIRAP pulses is given by the survival probability of the initial state of the
three-state system:

P(t) = tr[T(t, t0)|ψ(0)⟩⟨ψ(0)|ρB(0)T†(t)|ψ(0)⟩⟨ψ(0)| ⊗ 11B] , (24)

where ρB(0) is the density operator describing the initial configuration of the bath, 11B is the
identity operator of the bath and T(t, t0) is possibly replaced by T2(t, t0) and “tr” stands for
the trace operation. In the case considered here, |ψ(0)⟩ = |g1⟩. In order to better understand
Equation (24), consider that the complete time evolution of the initial state |g1⟩⟨g1| ⊗
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ρB(0) in the Schrödinger picture is given by: ρAB(t) = U1(t, t0)U2(t, t0) T(t, t0) |g1⟩⟨g1| ⊗
ρB(0) T†(t, t0)U †

2 (t, t0)U †
1 (t, t0). Now, since the target state is |g2⟩, irrespective of the state

of the bath, we need to evaluate P(t) = tr[ρAB(t) |g2⟩⟨g2| ⊗ 11B], which, after performing
two cyclic permutations inside the trace functional leads to the following expression:
tr[T(t, t0) |g1⟩⟨g1|ρB(0) T†(t, t0)U †

2 (t, t0)U †
1 (t, t0)|g2⟩⟨g2| ⊗ 11BU2(t, t0) U1(t, t0)], which is

equivalent to Equation (24) once it is considered that U2(t, t0)|g1⟩ = |g2⟩, and conversely,
U †

2 (t, t0)|g2⟩ = |g1⟩, so that U †
2 (t, t0)U †

1 (t, t0)|g2⟩⟨g2| ⊗ 11BU1(t, t0)U2(t, t0) = |g1⟩⟨g1| ⊗ 11B.

3. Results

We now focus on the zero-temperature bath, which means assuming that the spin
bath is initially in its ground state: |{↓}⟩ = ⊗k|↓⟩k. Therefore, the complete initial state
is |g1⟩|{↓}⟩. Since we are considering the approximation T(t, t0) ≈ T2(t, t0) according to
Equation (23), the only transitions considered in our calculations are those involving zero,
one or two spin flips in the bath. This implies the following form for the efficiency:

P(t) ≈ |⟨{↓}|⟨g1|T2(t, t0)|g1⟩|{↓}⟩|2

+ Σl |⟨{↓} ↑l {↓}|⟨g1|T2(t, t0)|g1⟩|{↓}⟩|2

+ Σj ̸=l |
〈
{↓} ↑j {↓} ↑l {↓}

∣∣⟨g1|T2(t, t0)|g1⟩|{↓}⟩|2 , (25)

where |{↓} ↑l {↓}⟩ is the bath state with all spins in the |↓⟩ state, except for the l-th spin,
which is the |↑⟩ state, while

∣∣{↓} ↑j {↓} ↑l {↓}
〉

has only the l-th and j-th spins in the |↑⟩
state, all the others being in the state |↓⟩. The overlaps involving only one spin flip turn out
to be zero (see Appendix B for details). The overlaps involving two spin flips involve only
second-order terms and, once their squared modulus is evaluated, such terms give rise to
fourth-order contributions. To make the calculation consistent with the truncation of the
Dyson series to the second order, only terms up to the second order are to be kept in the
probability, which gives the following expression:

P(t) ≈ 1 − 2 ℜ
[
J{

η
(m)
k

}(t)] , (26)

where ℜ denotes the real part, and its argument is the following integral:

J{
η
(m)
k

}(t) =
∫ t

t0

dw
∫ w

t0

dw′
[

e−i
∫ w′

w E+(s)ds cos φ(w) cos φ(w′)

+ e−i
∫ w′

w E−(s)ds sin φ(w) sin φ(w′)

]
ei(ν′+ω)(w′−w)

× ∑
k

[
η
(1)
k cos θ(w)− η

(2)
k sin θ(w)

][
η
(1)
k cos θ(w′)− η

(2)
k sin θ(w′)

]
. (27)

We now assume that the quantities η
(m)
k , first defined after Equation (5) without any

constraint, are related in such a way that the ratios η
(m)
k /η

(m)
1 do not depend on m, so that

one can introduce λk ≡ η
(m)
k /η

(m)
1 , define the following quantities:

η ≡ η
(1)
1 , rη ≡ η

(2)
1 /η

(1)
1 , Λ ≡ ∑

k
λ2

k , (28)

and recast the probability in the following form:

P(t) ≈ 1 − 2η2Λ ℜ[J (t)] , (29)

with
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J (t) =
∫ t

t0

dw
∫ w

t0

dw′
[

e−i
∫ w′

w E+(s)ds cos φ(w) cos φ(w) + e−i
∫ w′

w E−(s)ds sin φ(w) sin φ(w′)

]
× ei(ν′+ω)(w′−w)

[
cos θ(w)− rη sin θ(w)

][
cos θ(w′)− rη sin θ(w′)

]
. (30)

On the basis of Equation (29), the survival probability of the initial state in the in-
teraction picture, which corresponds to the efficiency of the population transfer in the
Schrödinger picture, turns out to differ from unity by a term proportional to the real part of
the the integral J (t) (having the dimensions of the square of time), on which we focus in
what follows. Every specific correction should take into account the specific value of the
square of the quantity η

√
Λ (having the dimension of a frequency), which somehow is a

cumulative measure of the coupling strength between the three-level system and the whole
environment. It is also interesting to observe that, in the RWA, the counterpart of J (t)
would be zero. This can be straightforwardly proven by recalculating the relevant matrix
elements. Moreover, it is already clearly visible from the expression of J (t), where all the
terms contain rapidly oscillating factors coming from the fact that all the contributions
come out as matrix elements of the counter-rotating terms.

It is worth mentioning that the assumption η
(m)
k /η

(m)
1 , independent from the index

m, is not as restrictive as one could think, since the coupling strengths are supposed to be
proportional to a function of the spin distance from the central three-state system, and this
proportionality function is supposed to be the same independently of the specific transitions
involved, whether |e⟩ ↔ |g1⟩ or |e⟩ ↔ |g2⟩. Concerning the shape of the pulses, they are
usually taken as Gaussian, with the peaks occurring at different times. In particular, we
assume two pulses centered at ±τ and with a width τ/

√
2:

Ω1 = Ω0e−(t/τ+1)2
, (31)

Ω1 = Ω0e−(t/τ−1)2
. (32)

The process is supposed to start at time t0 = −T (with T > τ) and finish at t = T.
In Figures 2 and 3 the numerically calculated quantity 2ℜ{J (T)} is reported as a function
of different parameters, which allows us to evaluate the efficiency of the population transfer
in several regimes: the smaller the quantity 2ℜ{J (T)}, the more efficient the population
transfer, according to Equation (29). In all the plots we have assumed that the parameters
of the pulses satisfy the following conditions, which guarantee an optimal transfer in the
ideal case: Ω0τ = 10, T/τ = 5, ντ = 10.

(a) (b)

Figure 2. The quantity 2ℜ{J (T)} (in units of τ2) as a function of ω (in units of ν and logarithmic
scale) and ∆ (in units of ν) in the case rη = 1 (a) and rη = −1 (b). The other parameters are: Ω0τ = 10,
T/τ = 5, ντ = 10. See text for details.
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In Figure 2, 2ℜ{J (T)} is shown as a function of ω and ∆ for two values of the ratio
rη , in particular, for rη = 1 (Figure 2a) and rη = −1 (Figure 2b). In both plots it is clearly
visible that the value of 2ℜ{J (T)} is always small, never exceeding the value 0.03, and that,
for high values of the frequency ω, the corrections become smaller and smaller. For any
fixed value of ∆, one can see that, when varying the value of ω, the quantity 2ℜ{J (T)}
exhibits an oscillatory behavior, which a posteriori can be related to the presence of the
phase factor exp[(ω + ν′)(w′ − w)] in the integrand. Actually, in spite of the presence of
other functions, the mentioned phase factor is indeed the main rapidly changing factor,
whereas trigonometric functions of ϕ and θ are smoothly changing and the phase factor
associated with the integral of E+ changes rapidly only in the region between the two peaks.
Thus, both the presence of oscillations and the vanishing of J (T) for higher values of ν
are traceable back to the oscillatory character of the counter-rotating terms. By comparing
Figure 2a and Figure 2b, it emerges that, whether the value of the ratio parameter rη is 1 or
−1, the behavior is quite similar, though significant differences are present, particularly in
the region corresponding to small values of ∆.

(a) (b)

Figure 3. The quantity 2ℜ{J (T)} (in units of τ2) as a function of ω (in units of ν and logarithmic
scale) and rη (in logarithmic scale) for ∆ = 0.01 ν (a) and ∆ = 0.05 ν (b). The other parameters are:
Ω0τ = 10, T/τ = 5, ντ = 10. See text for details.

In Figure 3, 2ℜ{J (T)} is shown as a function of ω and rη for two values of the
detuning ∆, in particular, for ∆/ν = 0.01 (Figure 3a) and ∆/ν = 0.05 (Figure 3b). One can
see that the values of the quantity in a particular parameter region are much higher than
in Figure 2, reaching the value of 0.8. These high values can be justified by the fact that
increasing the value of rη implies increasing the amplitude of the coupling term between
the three-state system and the environment. In particular, a high value of rη means dealing

with a high value of η
(2)
1 (and consequently all η

(2)
k ), which in turn implies a higher value

of J (T).
In order to fix the ideas about the meaning of our results, let us consider the case where

η
√

Λτ = 1 means η
√

Λ/Ω0 ≪ 1, thus the perturbation treatment is kept valid. In such a
case, in the greener region of Figure 3, the correction would be about 0.8, implying a quite
low efficiency, of about 0.2. On the contrary, in the most problematic region of Figure 2,
consisting of the yellow parts corresponding to values close to 0.03, the efficiency would be
about 0.97.

4. Discussion

In this paper, we have considered the effects of the interaction with a spin bath on the
efficiency of a population transfer realized through a STIRAP process. Our present study
is an evolution of the earlier studyreported in ref. [56], where the system–bath interaction
has been considered in the RWA. Here, in order to improve the analysis, we have also
considered the effects of the counter-rotating terms. Nevertheless, since the model analyzed
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is not exactly solvable and its numerical treatment would be challenging, we have faced
the problem through a perturbation approach. In particular, second order corrections have
been calculated by evaluating the Dyson series truncated to the second order contributions.
The complete deviation of the efficiency of the population transfer from unity, according
to Equation (29), turns out to be proportional to the square of η

√
Λ, which plays the

role of a perturbation parameter. It is important to note that η
√

Λ =

√
∑k

(
η
(1)
k

)2
and

rηη
√

Λ =

√
∑k

(
η
(2)
k

)2
, which correspond to the effective strengths of the couplings with

the environment involving |g1⟩ ↔ |e⟩ transitions and |g2⟩ ↔ |e⟩ transitions, respectively.
Beyond this fact, according to Equation (29), the correction to the efficiency of population
transfer is proportional to the real part of the integral J (T) defined in Equation (30).

Remarkably, in a second order perturbation treatment under the RWA, the correction to
the efficiency would be zero, thus predicting a perfect population transfer. On the contrary,
beyond such an approximation, deviations come up. As a matter of fact, our analysis shows
that, in the second perturbation treatment, the counter-rotating terms in the interaction are
the only ones really contributing to the corrections. Indeed, in the integrand of J (T) only
contributions proportional to the phase factor exp[(ω + ν′)(w′ − w)] appear to be traceable
back the rapidly oscillating terms in the interaction (namely, the counter-rotating terms),
while no term proportional to a phase factor associated with a lower frequency ω − ν′ (the
rotating terms) is present. This implies that, in a model involving RWA, the correction
is zero, which is perfectly in agreement with the results of ref. [56] where the efficiency
always exhibits a plateau in the weak coupling limit and up to the weak–intermediate
coupling regime.

The numerical evaluation of the integral J (T) reported in Figures 2 and 3 shows that,
in the range of the parameters analyzed the effects of the environment are mainly negligible,
except for specific regions where the ratio rη assumes high values, since this implies that

the coupling constants η
(2)
k are significant. Further numerical results (not reported in this

paper because they would essentially provide uniform functions corresponding to zero
values) show in a clear way that higher and higher values of ν imply smaller and smaller
corrections, due to the fact that counter-rotating terms become more and more rapidly
oscillating and thus ineffective. Summing up, negligibility of the effects of the environment
is obtained for high values of ω (according to the plates shown in the paper) or high values
of ν (according to other simulations), provided rη is not exceptionally large. Naturally, the
values of η

√
Λ are to be kept small enough to maintain the validity of our analysis based

on perturbation theory.
It is worth concluding with two more comments concerning a comparison with the

results reported in ref. [56]. First, since our second-order perturbation treatment is valid
only in the weak coupling regime, we cannot obtain corrections in the strong coupling
regime where a generalized quantum Zeno effect were predicted to occur. Second, the shape
of the pulses considered here is properly Gaussian, while in ref. [56], different expressions
have been considered. Nevertheless, in spite of the more complicated analytical expression,
the pulses in ref. [56] are essentially Gaussian too, in the sense that they only slightly differ
form the Gaussian counterparts, which makes the two situations comparable.
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Appendix A. Adiabatic Approximation

Here we recall the proof of the adiabatic theorem [1,2]. Consider a system subjected to
time-dependent Hamiltonian H(t) which can be diagonalized at every instant of time in
such a way that H(t)

∣∣ϕnj(t)
〉
= En(t)

∣∣ϕnj(t)
〉
, where each energy eigenspace has a possible

degeneracy taken into account through the index j. Expanding the state of the system in
terms of such instantaneous eigenstates,

|ψ(t)⟩ = ∑
nj

anj(t)e
−i

∫ t
t0

En(s)ds∣∣ϕnj(t)
〉

, (A1)

and inserting this expression in the Schrödinger equation leads to a set of equations
for the coefficients anj. Now, from ⟨ϕnj(t)|ϕn′ j′(t)⟩ = δnn′δjj′ (with δij the Kronecker
delta) and ⟨ϕnj(t)|H(t)|ϕn′ j′(t)⟩ = En(t)δnn′δjj′ one obtains: ∂t(⟨ϕnj(t)|ϕn′ j′(t)⟩) = 0 and
∂t(⟨ϕnj(t)|H(t)|ϕn′ j′(t)⟩) = 0 unless n = n′ and j = j′. After some algebra, one finds that
for n ̸= k the following relation occurs: ⟨ϕnj(t)|ϕ̇kl(t)⟩ = ⟨ϕnl(t)|Ḣ(t)|ϕkj(t)⟩/(Ek(t)− En(t)).
On this basis once can eventually write down the following set of equations:

ȧnj(t) = −⟨ϕnj(t)|ϕ̇nj(t)⟩ anj(t) − ∑
l ̸=j

⟨ϕnj(t)|ϕ̇nl(t)⟩ anl(t)

− ∑
k ̸=n

∑
l

e−i
∫ t

0 (Ek(s)−En(s))ds ⟨ϕnl(t)|Ḣ(t)|ϕkj(t)⟩
Ek(t)− En(t)

akl(t) , (A2)

with time derivative denoted by the dot. Under the assumption of very small matrix
elements of the operator Ḣ, one can neglect the terms in the second line, and for non degen-
erate eigenspaces one eventually obtains ȧnj ≈ −⟨ϕnj|ϕ̇nj⟩ anj or, equivalently, after using
⟨χ|χ̇⟩ = −⟨χ̇|χ⟩,

ȧnj(t) ≈ ⟨ϕ̇nj(t)|ϕnj(t)⟩ anj(t) . (A3)

The complete evolution is then given by:

|ψ(t)⟩ ≈ ∑
nj

anj(0) e
∫ t

t0
⟨ϕ̇nj(s)|ϕnj(s)⟩ds e−i

∫ t
t0

En(s)ds ∣∣ϕnj(t)
〉

, (A4)

where the quantity ⟨ϕ̇nj(s)|ϕnj(s)⟩, known as the geometric phase, is an imaginary number.
Therefore, if the coefficients of the expansion of

∣∣ϕnj(s)
〉

with respect to a given basis are all
real, the phase turns out to be the sum of real numbers, which is then supposed to be equal
to zero. This is the case for the eigenstates of the STIRAP Hamiltonian considered above.

Appendix B. Second Order Term for the Zero-Temperature Bath

In the calculation of the corrections up to the second order we need some quantities.
Since ⟨g1|ϕ̊(t)⟩ = ⟨g1|U†

2 (t, t0)|ϕ⟩ = ⟨ϕ|U2(t, t0)|g1⟩∗, considered the expressions of the
states of the adiabatic basis and the fact that at the initial time (t = t0) of the counter-
intuitive sequence |0⟩ = |g1⟩, |+⟩ = |e⟩ and |−⟩ = |g2⟩, one immediately finds:

⟨g1|e̊(t)⟩ = 0 , (A5)

⟨g1|g̊1(t)⟩ = cos θ(t) = Ω2(t)/ΩL(t) (A6)

⟨g1|g̊2(t)⟩ = − sin θ(t) = −Ω1(t)/ΩL(t) (A7)〈
e̊(t)|e̊(t′)

〉
= e−i

∫ t′
t E+(s)ds cos φ(t) cos φ(t′) + e−i

∫ t′
t E−(s)ds sin φ(t) sin φ(t′) , (A8)

where θ(t) and φ(t) given by Equations (15) and (16).
Since ⟨g1|e̊(t)⟩ = 0, all the first order terms turn out to be zero, when it is calculated any

probability to find the three-state system in the state |g1⟩. Indeed, whatever the bath states
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|ΨB⟩ and |Ψ′
B⟩, the matrix elements ⟨ΨB|⟨g1|H

(ω)
S (t)|g1⟩|ΨB⟩ and ⟨ΨB|⟨g1|HAB(t)|g1⟩|ΨB⟩

give rise to terms proportional to the overlap ⟨g1|e̊(t)⟩ (or its adjoint), which is zero.
Let us now then consider the second order contributions. First of all, observe that the

matrix element ⟨{↓}|⟨g1|HG(w)HG(w′)|g1⟩|{↓}⟩ admits potential contributions coming

only from the terms H(ω)
S (w)H(ω)

S (w′) and HAB(w)HAB(w′). Indeed, H(ω)
S (w)HAB(w′)

and HAB(w)H(ω)
S (w′) involve one spin flip coming from HAB while we are considering

the matrix element between |g1⟩|{↓}⟩ and itself. That said, let us then focus on the other
two terms:

⟨{↓}|⟨g1|H
(ω)
S (w)H(ω)

S (w′)|g1⟩|{↓}⟩ = e2iν′(w−w′)〈e(w)|e(w′)
〉

× ∑
mm′

Ωm(w)Ωm′(w′)⟨g1|g̊m(w)⟩
〈

g̊m′(w′)|g1
〉
= 0 , (A9)

whose being zero is based on Equations (A6) and (A7), and

⟨{↓}|⟨g1|HAB(w)HAB(w′)|g1⟩|{↓}⟩ = ei(ν′+ω)(w′−w)
〈
e(w)|e(w′)

〉
×⟨g1|g̊m(w)⟩

〈
g̊m′(w′)|g1

〉
∑
k

η
(m)
k η

(m′)
k , (A10)

which, after using Equations (A6)–(A8), gives the integrand in Equation (27).
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