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Abstract: The nonlinear dependence of the mean-squared displacement (MSD) on time is a common
characteristic of particle transport in complex environments. Frequently, this anomalous behavior
only occurs transiently before the particle reaches a terminal Fickian diffusion. This study shows that
a system of hierarchically coupled Ornstein–Uhlenbeck equations is able to describe both transient
subdiffusion and transient superdiffusion dynamics, as well as their sequential combinations. To
validate the model, five distinct experimental, molecular dynamics simulation, and theoretical studies
are successfully described by the model. The comparison includes the transport of particles in random
optical fields, supercooled liquids, bedrock, soft colloidal suspensions, and phonons in solids. The
model’s broad applicability makes it a convenient tool for interpreting the MSD profiles of particles
exhibiting transient anomalous diffusion.

Keywords: transport in complex environments; transient anomalous diffusion; Ornstein–Uhlenbeck
equation

1. Introduction

Standard Brownian motion (BM) theory, as established by Albert Einstein, Marian
Smoluchowski, and Paul Langevin in the early last century, cannot adequately describe the
transport properties of active or passive particles in complex environments [1–6]. One of the
primary discrepancies arises from the anomalous diffusion patterns frequently observed in
these systems. In these instances, the mean-squared displacement (MSD) of the particles
(tracers) does not increase linearly with time, t, as predicted by standard BM (Fickian
diffusion). Instead, it is observed that

MSD ∝ tν, (1)

where the exponent ν deviates from unity. In cases where 0 < ν < 1, the particle diffuses
slower than BM (subdiffusion), whereas, for cases with ν > 1, the diffusion is faster
(superdiffusion). Quite often, the anomalous behavior is only transient, meaning the MSD
is diffusive or ballistic at relatively short times, then it transitions to anomalous diffusion
(subdiffusion or superdiffusion) and entails entirely Fickian diffusion at longer time scales.
Anomalous diffusion in passive BM has been observed in soft biological systems [7–12],
supercooled and ionic liquids [13–18], granular and glassy materials [19–27], colloidal
suspensions [28,29], as well as diffusion under random external fields [30,31]. In active
motion, anomalous diffusion has been reported in cell motion [32], chemically powered
nanomotors [33], and even mammal movement [34].

Theoretical frameworks often employ continuous-time random walks (CTRWs) as a
general method for modeling anomalous diffusion [17,35–40]. This stochastic process is
based on a random walk (RW) that moves in independent directions with steps and waiting
times drawn from specific distributions. Transient anomalous diffusion becomes feasible
when employing truncated power law distributions [41]. The continuous counterparts of
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CTRW, represented by fractional diffusion and fractional Fokker–Planck equations, are also
regularly implemented to describe transport properties in complex environments [42,43].
Fractional BM is another established stochastic process that effectively characterizes anoma-
lous diffusion [44,45]. Notably, fractional BM captures Equation (1) while being a Gaussian
process. Studies based on the Langevin equation and its generalization, whether involving
scaled Brownian motion, fractional derivatives, or with or without tempered memory kernels,
form a major category for modeling anomalous diffusion [46–56].

This study demonstrates that a mathematical model based on a hierarchical implemen-
tation of the kinetic theory [57] effectively captures various aspects of transient anomalous
diffusion. This model can be mathematically formulated either as an RW coupled to n
independent noise sources or by a system of hierarchically coupled Ornstein–Uhlenbeck
(OU) processes. Following the results in [57,58], it is shown here that, for n = 2, the model
can capture a wide range of transient super- and subdiffusive dynamics, regardless of
whether the initial behavior is ballistic or diffusive. The analytical and numerical results
are in exceptional qualitative agreement with a broad range of experimental, molecular
dynamics (MD) simulation, and other numerical and theoretical studies. Interestingly, by in-
corporating more than two noise sources, the model describes a series of alternating super-
and subdiffusion dynamics, a result that has been observed in soft colloids and cell motion
in embryonic tissue [28,59]. The model predictions were validated by comparing them
to five experimental and theoretical studies [28,30,60–62]. Similar to the aforementioned
theoretical studies, the present model is also characterized by its simplicity since it admits
analytical solutions. Besides, its potential to also describe both transient superdiffusion and
subdiffusion, as well as multiple layers of different diffusion phases, offers a convenient
description of transient anomalous diffusion. It should be noted that active OU models
are capable of modeling transient superdiffusion [63–66]. As we show below, such models
qualitatively agree with our approach when n = 2 and D2 > D1.

The paper is organised as follows. The model recently proposed in Ref. [57] is briefly
discussed in Section 2. Section 3 describes four different cases of transient anomalous
diffusion that can be captured by the system of hierarchically coupled OU equations.
Section 4 directly compares the model predictions with experimental, MD simulation, and
theoretical studies. Lastly, Section 5 briefly summarizes the study.

2. Hierarchically Coupled OU Equations

Consider a particle moving through a complex one-dimensional environment charac-
terized by the presence of n independent white noise sources, dB(i)

t =
√

2DidW(i)
t , where

i = 1, 2, ..., n, B(i)
t denote the BM paths, Di denote the diffusivities, and dW(i)

t are indepen-

dent Wiener increments. In a recent study [57], it was suggested that the position, X(n)
t , of

the particle can be described by the following equation:

dX(n)
t

dt
=

n

∑
i=1

γi

(
B(i)

t − X(i)
t

)
, (2)

where each γi is a positive constant and represents the relaxation rates at each noise level.
Any state X(i)

t with i < n is described by the same equation as if only the first i noise sources
were considered. Since the jth state affects the ith state only if j < i, Equation (2) describes
a series of hierarchically coupled processes. By introducing the change of variables:

u(i)
t = B(i)

t − X(i)
t , (3)

Equation (2) reduces to a system of hierarchically coupled OU processes:

du(n)
t = −γnu(n)

t dt + σndW(n)
t −

n−1

∑
i=1

γiu
(i)
t dt, (4)
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where σi =
√

2Di. A similar change of variables has also been used in Ref. [63]. Equa-
tion (4) admits an analytical solution that describes a non-equilibrium stationary state
distribution [57]. Therefore, the particle’s velocity, as expressed by Equation (2):

V(i)
t =

i

∑
j=1

γju
(j)
t , (5)

is well-defined and also exhibits a stationary distribution.
In the special case of n = 1, both the Langevin equation and Equation (4) have the

same solution after suitable parameter rescaling, as shown in Ref. [57]. However, the key
difference lies in the way they address random fluctuations in the equations of motion.
The Langevin equation introduces random fluctuations as stochastic forces, while this
model assumes that the particle is trapped around a BM path (B(1)

t ) by a linear force of
constant γ1. Thus, in the long enough term, the particle follows the BM with diffusivity D1.
In line with the kinetic theory, Equation (2) describes a ballistic motion at quite short times,
and after a characteristic timescale of γ−1

1 , the motion becomes diffusive [57]. The resulting
motion matches the BM of the Langevin equation. Thus, for n = 1, one can add external
force fields to perform standard Langevin dynamics simulations for the model. However,
here, we argue that the introduction of extra noise sources (n ≥ 2) in Equation (2) can
mimic both sub- and superdiffusion. Specifically, if the particle is subsequently influenced
by a second noise source, one can similarly assume that the Brownian particle is trapped
around an additional BM path (B(2)

t ) with its own distinct elastic constant, γ2. In this case,
the tracer is still influenced by the first noise source, but eventually, follows the trajectory of
B(2)

t . If D2 < D1, then the particle significantly slows down, thus mimicking the structural
or dynamics heterogeneity traps that are observed in nature. The generalization for any
number of noise sources, n, leads to Equation (2). A more detailed interpretation of the
proposed model and its connection to the kinetic theory can be found in Ref. [57].

In what follows, the vector Π(n) = {D1, ..., Dn; γ1, ..., γn} is used to define the diffusiv-
ities and relaxation parameters when necessary.

3. Transient Anomalous Diffusion

Equation (2) was initially developed to study transient subdiffusion dynamics [57].
However, it can also effectively model transient superdiffusion, as well as more complex
dynamics involving multiple anomalous diffusion regimes. The standard way to char-
acterize diffusion is through the MSD of the tracer’s position from the initial condition,
i.e., Rn(t) = X(n)

t − X(n)
0 . Here, the MSD is defined as

〈
R2

n(t)
〉
, where ⟨·⟩ denotes the en-

semble average. The computation can be achieved by solving Equation (4) and, then, using
Equation (3) to compute Rn(t). The

〈
R2

n(t)
〉

can be computed using Ito’s integral properties.
This Section presents four different MSD profiles that the model can describe. The

profiles have been reported in either experimental, MD simulation, numerical or theoretical
studies. A comparison of our model with the studies listed is given in Sections 3.1–3.4
just below.

3.1. Case A: Ballistic to Diffusive Crossover

By utilizing the analytical solution of Equation (4) [57], it is straightforward to show
that, when n = 1, the MSD is expressed as〈

R2
1(t)

〉
= 2D1t − 2D1

γ1

(
1 − e−γ1t). (6)

The asymptotic analysis of this equation demonstrates the transition from ballistic to
diffusive behavior:

〈
R2

1(t)
〉
≈


t2, t → 0,

2D1t, t → ∞.

(7)
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It is noteworthy that, when n = 1, Equation (2) produces results consistent with
Langevin dynamics by setting γ1 = κ/m and σ1 =

√
2kBT/κ, where m is the mass of

the tracer, κ represents the fluid friction, while kB and T are Boltzmann’s constant and
the temperature of the system, respectively. This ballistic to diffusive crossover can also be
described by active OU models.

3.2. Case B: Ballistic to Anomalous to Fickian Diffusion

For n = 2, the MSD of the particle is given by [57]〈
R2

2(t)
〉
= 2D2t − 2D2

γ2

(
1 − e−γ2t)+ ϕ0

D1

γ2

(
1 − e−γ2t)2

+ ϕ1
2D1

γ1

(
1 − e−γ2t)(e−γ1t − e−γ2t)+ γ̄2 D2

γ1

[
h(t) +

(
e−γ1t − e−γ2t)2

]
,

(8)

where γ̄ = γ1/(γ1 − γ2), ϕ0 = γ1/(γ1 + γ2), ϕ1 = γ2
1/(γ2

1 − γ2
2), ϕ2 = 1 − ϕ1(σ1/σ2)

2,
and

h(t) = 2γ1

(
1 − e−2γ1t

2γ1
+

1 − e−2γ2t

2γ2
− 2

1 − e−(γ1+γ2)t

γ1 + γ2

)
.

Two interesting cases are worth noting. First, Equation (8) exhibits the following
asymptotic behavior:

〈
R2

2(t)
〉
≈


t2, t → 0,
2D1t, t ≈ γ−1

1 and γ1 ≫ γ2 ,
2D2t, t → ∞.

(9)

Second, when D1 = D2, the MSDs for n = 1 and n = 2 are approximately the same, i.e.,〈
R2

2(t)
〉
≈
〈

R2
1(t)

〉
. (10)

With these assumptions, Equations (9) and (10) suggest that the particle always moves
ballistically for a quite short time, and its subsequent diffusive behavior is controlled by
the ratio d = D2/D1. Specifically, the particle motion undergoes a transition from transient
sub-diffusion when d < 1 to normal diffusion when d = 1 and transient superdiffusion
when d > 1.

This behavior is illustrated in Figure 1a. In all three cases, the system begins with
ballistic motion and ends with normal diffusion with diffusivity D2. The transient subdiffu-
sive dynamics for d = 0.01 is shown in Figure 1a with blue triangles. For this parameter
set, the exponent of the transient subdiffusion is ν ≈ 0.12. The transient superdiffusion is
shown with red circles, corresponding to d = 100. Here, the superdiffusion occurs with
an exponent ν ≈ 1.9. Additionally, for d = 1, one has

〈
R2

2(t)
〉
≈
〈

R2
1(t)

〉
, demonstrating a

direct transition from ballistic to diffusive dynamics.
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Figure 1. MSD versus time. Symbols correspond to analytical results; solid lines show the indicated
power laws, and dashed lines are exact diffusion profiles (2Dit). (a) Ballistic to transient anomalous
diffusion for three different values of the ratio d = D2/D1. In all three cases, D1 = 2, γ1 = 1,
and γ2 = 0.1. (b) Fickian to transient anomalous diffusion, also for three different values of the ratio
d = D2/D1, where D1 = 2, γ1 = 1, and γ2 = 0.1. (c) Ballistic to multilevel transient anomalous
diffusion. For t ≤ τ, the MSD profile resembles that in (a), while for t > τ, the MSD profile is similar
to that in (b). Here, Π(3) = {2, 0.2, 4; 10, 0.8, 0.0008}. See text for details.

3.3. Case C: Fickian to Anomalous Back to Fickian Diffusion

In the limit of γ1 → ∞, Equation (8) reduces to [57]〈
R2

2(t)
〉
= 2D2t +

2(D1 − D2)

γ2

(
1 − e−γ2t). (11)
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One can show that the MSD has the following asymptotic behavior for any value of γ2:

〈
R2

2(t)
〉
≈
{

2D1t, t → 0,
2D2t, t → ∞.

(12)

Furthermore, when D1 = D2 = D, the diffusion becomes Fickian, i.e.,〈
R2

2(t)
〉
= 2Dt. (13)

Similar to case B, Equations (12) and (13) provide two essential insights into the
particle’s dynamics. First, the motion is always diffusive for relatively short and long
enough times. Second, the nature of the motion between the two diffusive regimes is
also controlled by the ratio d = D2/D1. Specifically, the particle experiences transient
subdiffusion when d < 1, normal diffusion when d = 1, and transient superdiffusion when
d > 1. This transition is demonstrated in Figure 1b.

3.4. Case D: Multilayered Transient Anomalous Diffusion

For n = 3, the MSD is〈
R2

3(t)
〉
= σ2

3 t − 2
σ2

3
γ3

F3 + σ2
3 E33 +

{
σ2

2 γ̄2
23(E33 − 2E23 + E22)

}
+

{
K∞

33(F3)
2 + 2K∞

23γ̄23F3G32 + 2K∞
13F3(γ̄12γ̄13G31 − γ̄12γ̄23G32)

}
+

{
K∞

22(γ̄23)
2(G32)

2 + 2K∞
12γ̄23G32(γ̄12γ̄13G31 − γ̄12γ̄23G32)

}
+

{
K∞

11(γ̄12γ̄13G31 − γ̄12γ̄23G32)
2
}
+

{
σ2

1

(
γ̄2

12γ̄2
13(E33 − 2E13 + E11)

− 2γ̄2
12γ̄13γ̄23(E33 − E23 − E13 + E12) + γ̄2

12γ̄2
23(E33 − 2E23 + E22)

)}
,

(14)

where

Eij =
1 − e−(γi+γj)t

γi + γj
, Fi = 1 − e−γit, Gij = e−γit − e−γjt,

and for i ̸= j, γ̄ij = γi/(γi − γj). Here, K∞
ij represent the entries of the equilibrium

covariance matrix that is given in Appendix A.2. It must be underlined that the analysis is
restricted to the cases with γ1 > γ2 > γ3. This condition enables the particle to interact
with each noise source in a sequential manner. Thus, the relative order of D1, D2, and D3
ultimately determines the nature of the transient anomalous diffusion.

Let us discuss a typical case of n = 3 with D2 < D1 < D3, as shown in Figure 1c.
It is apparent that the MSD profile reveals a pattern of alternating diffusive behaviors.
The motion exhibits ballistic behavior at relatively short times, followed by a brief period
of normal diffusion (2D1t). Subsequently, it undergoes subdiffusion with ν ≈ 0.5 before
entering another brief diffusive phase (2D2t). Afterwards, the MSD becomes superdiffusive
with ν ≈ 1.6 and returns to a final diffusive regime (2D3t) after a longer period of time.

The entire MSD profile can be viewed as a combination of cases B and C discussed
above. Notably, there is a characteristic time τ ≈ 50 that separates two distinct transient
anomalous dynamics. For t < τ, given D1 > D2, the system exhibits standard ballistic to
subdiffusive (ν ≈ 0.5) to diffusive behavior as discussed in case B. For t > τ, since D2 < D3,
the system transitions to superdiffusive (ν ≈ 1.6) back to diffusive dynamics associated
with case C. As a different example, if a quite large γ1 (overdamped limit) is used and
D1 < D3 < D2 is set, the particle would undergo sequential diffusive → superdiffusive →
diffusive dynamics for t < τ and diffusion → subdiffusion → diffusion for t > τ. For any
value of n > 3, our model can describe several different types of anomalous diffusive
behavior. This scenario will be detailed in a forthcoming paper.
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4. Comparison with Experimental and MD Results

The results from Section 3 can help to understand the possible picture behind the
various noise levels and the physical interpretation of their parameters Di and γi. First of
all, the first noise level, B(1)

t , represents the collisions with the surrounding fluid molecules,
similar to the white noise present in the Langevin equation. All other noise levels (n ≥ 2)
represent random forces that may be attributed to interparticle interactions or external
fields. Let us discuss the case where n = 2. As shown in Section 3, in the relatively
long run, the tracer follows the dynamics of B(2)

t . This happens because it is restricted

around the stochastic path of B(2)
t by a harmonic potential with an elastic constant of

γ2 (refer to Equation (2)). If the diffusivity of the second noise source is D2 < D1, then
the tracer slows down (see the blue triangles in Figure 1a,b). In this case, the second
noise source represents trapping events due to dynamic or spatial heterogeneity that have
been observed, for instance, in supercooled liquids or colloidal suspensions in optical
fields [30,31,61]. If D2 > D1, the tracer experiences faster superdiffusive dynamics,
as depicted in Figure 1a,b (red circles). In this case, the tracer undergoes quite long
runs until it intersects the stochastic path of B(2)

t . These long runs are typical in active
motion, powered by internal or external force fields, such as temperature gradients, electric
potentials, or water flows. In more complicated systems, such as soft colloidal suspensions,
the tracer may experience both subdiffusion due to dynamic and structural heterogeneity
and superdiffusion due to stress propagation (see, for example, [28]). In some cases,
such as polymers diffusing close to chemically heterogeneous surfaces, the MSD exhibits
a prolonged subdiffusive behavior [67]. The duration of anomalous diffusion and the
transition to Fickian dynamics is determined by the corresponding relaxation parameter γi.

The different cases described in Section 3 have been reported in experiments and
numerical simulations [28,30,60–62]. This Section compares the predictions of Equation (2)
with the outcomes from five such studies. The purpose of this comparison is only to
demonstrate the model’s ability to describe MSD profiles in different settings. Thus, other
interesting aspects of these studies are not discussed in the current paper.

To provide more accurate fitting, the MSD is defined as〈
R2

n(t)
〉
=

M

∑
m=1

pm

〈
R2

n(t)
〉

m
, (15)

where
〈

R2
n(t)

〉
m are the MSD profiles for parameters Π

(n)
m and p = {p1, ..., pM} are the

corresponding statistical weights. To keep the fitting procedure as simple as possible, this
paper only considered cases where M = 1 or 2. Often, there is a relatively high number
of fitting parameters to be considered. However, the initial estimate for the parameter
values is straightforward. All diffusivities can be obtained by independently fitting the one-
parameter function 2Dit to the corresponding linear MSD regimes. Additionally, the times
γ−1

i correspond to the beginning of the transition from one ballistic or diffusive regime to
the next diffusive regime. These initial estimates are often close to the values obtained by
standard linear optimization techniques.

The comparison of our model with other approaches is demonstrated in Figure 2 and
is described in Sections 4.1–4.5. The optimally fit parameters are given in Appendix A.1.
Note that γ1 = ∞ indicates that Equation (11) was used to fit the data. All data were
extracted using the WebPlotDigitizer software [68].
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Figure 2. Comparison of the MSD analytical Formulas (6), (8), (11) and (14) (solid lines) with other ap-
proaches (symbols) such as: (a) transient subdiffusion of colloidal particles in the optical Speckle field
of the strength, Ψ (see Section 4.1; inset: zoom on large t values), (b) transient anomalous diffusion
of bedload tracers with the Peclet number, Pe (Section 4.2), transient subdiffusion in (c) supercooled
liquids of the temperature, T (Section 4.3), and in (d) semiconductor alloys (Section 4.4), and (e) mul-
tilayer transient anomalous diffusion in highly packed soft colloids (Section 4.5). Dashed lines show
the indicated power laws. The arrows point in a direction of increasing values of the corersponding
parameters as listed and then displayed by different symbols. The length and time units can be found
in the corresponding references. The optimally fit values are given in Appendix A.1.

4.1. Transient Subdiffusion of Colloidal Suspensions in Optical Speckle Fields

In a recent study, the motion of quasi-two-dimensional suspensions of colloidal parti-
cles under the influence of spatially random optical force fields were investigated [30,31]. It
was found that the strength of the optical field (Ψ) significantly influences the tracers’ diffu-
sive behavior. Specifically, without an external field, the motion exhibited Fickian dynamics.
However, the presence of an optical field led to transient subdiffusive motion, similar to the
blue backward triangles in Figure 1b. Interestingly, the motion became increasingly more
subdiffusive (i.e., lower ν) as the optical field strengthened. This transition from a diffusive
to a transient subdiffusive process resembles case C from Section 3.3. Equation (11) can
successfully reproduce the experimental MSD profiles by decreasing the ratio d starting
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from 1. The direct comparison of the model with the results of Refs. [30,31] is presented in
Figure 2a. The optimal parameters can be found in Table A1 in Appendix A.1.

4.2. Transient Anomalous Diffusion in Bedload Tracers

The movement of bedload tracers exhibits both super- and subdiffusion characteristics,
which are typically modeled using the CTRW. In a recent study, in Ref. [60], the Exner-
based master equation was implemented to show, for the first time, that the anomalous
diffusion of bedload tracers is transient, and over time, the system returns to a Fickian
phase. Additionally, by adjusting the Peclet number, Pe, from high to low values, it was
predicted that the motion shifts from transient subdiffusion to Fickian diffusion and, then,
to transient superdiffusion. This transition is detailed in case C (Figure 1b) of Section 3.3
and can also be successfully modeled by adjusting the ratio d in Equation (11) from d < 1
to d = 1 to d > 1. The exceptionally good fitting of Equations (11) and (15) with the MSD
profiles reported in Ref. [60] is illustrated in Figure 2b. The optimally fit parameters are
given in Table A2 in Appendix A.1.

4.3. Transient Subdiffusion in Supercooled Liquids

The Stokes–Einstein relation breaks down in supercooled liquids. This phenomenon is
commonly attributed to the emergence of dynamic heterogeneity at low temperatures [69].
Typically, in dynamic heterogeneity, particles continuously jump between traps temporarily
formed by neighboring molecules [70]. This entrapment leads to a subdiffusive behavior at
intermediate time scales. Overall, the MSD in supercooled liquids is ballistic at relatively
short times, changes to subdiffusive at intermediate scales, and eventually resembles
standard Fickian dynamics. The subdiffusive phase becomes more pronounced with
decreasing temperature. This transition resembles case B from Section 3.2 and can be
captured by decreasing the ratio d departing from unity.

Figure 2c demonstrates a direct comparison of Equation (8) with the MD results
of a supercooled binary Lennard–Jones mixture [61]. The fitting is good enough at the
moderate temperatures (T = 5, 2, and 1), but it becomes less precise for considerably low
temperatures (not shown in Figure 2c). This deviation may be due to the existence of
numerous relaxation time scales in the limit of strong dynamic heterogeneity. If this is true,
Equation (2) must consider a larger number of noise sources. It would also be helpful to
consider a more appropriate superstatistical approach of the MSD as compared to quite
a simple equation (15). This hypothesis is planned to be tested in future. The best-fit
parameters for the temperatures T = 5, 2, and 1 are given in Table A3 in Appendix A.1.

4.4. Transient Superdiffusion in Semiconductor Alloys

In solids, the transfer of heat typically occurs through the harmonic vibrations of
the atoms. Such vibrations are described by quasiparticles known as phonons. Despite
significant differences in the underlying physical mechanisms, phonon transport is gener-
ally modeled by the stochastic trajectories of Brownian particles. This picture is certainly
sufficient at the macroscale, where Fourier’s equation of heat transport coincides with
the diffusion equation of Brownian particles. However, on the microscopic scale, phonon
transport substantially deviates from Fickian diffusion and exhibits superdiffusive (quasi-
ballistic) behavior. Instead of standard BM, CTRWs are typically employed to capture
this phenomenon. In Ref. [62], the authors used the Boltzmann transport equation (PTE)
with ab initio phonon dispersions and scattering rates to study thermal conductivity in
semiconductor alloys. Through a combination of numerical and analytical results, it was
revealed that heat transport exhibits an intermediate superdiffusive regime. In SiGe, specif-
ically, the authors showed that the MSD of thermal energy is ballistic at short time scales,
superdiffusive at intermediate scales, and diffusive at longer time scales. This transient
anomalous diffusion can be described by Equation (8) with d > 1, as shown in Figure 1a
(red circles). The exceptionally good agreement of our model predictions the PTE solution
is presented in Figure 2d. The optimal parameters are given in Table A4 in Appendix A.1.
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4.5. Multilayer Transient Anomalous Diffusion in Highly Packed Soft Colloids

The recent study [28] used MD simulations to investigate the impact of deformation
on the transport properties of soft colloids. It was found that, when the packing fraction is
high enough, the interplay between deformation and dynamic heterogeneity results in in-
termediate superdiffusive behaviors. The reported MSD for a packing fraction of ζ = 1.264
also indicated a preceding phase of ballistic to subdiffusive behavior. Overall, the motion
of highly packed soft colloids exhibits multiple diffusive phases that are similar to case
D from Section 3.4. The successful reproduction of Equation (2) in the MD simulations of
highly packed soft colloids (ζ = 1.264) [28] is presented in Figure 2e. It is quite evident that
the MSD profile is ballistic at relatively short times, gradually progresses to subdiffusive
with ν ≈ 0.71, then switches to superdiffusive with ν ≈ 1.4 before it reaches the terminal
diffusive phase with diffusivity D3. The optimally fit parameters are presented in Table A5
of Appendix A.1.

5. Conclusions

This study briefly demonstrated that quite a simple system of hierarchically coupled OU
processes effectively models a diverse range of transient anomalous diffusion MSD profiles.
Although initially developed for transient subdiffusion, its applicability extends to transient su-
perdiffusion dynamics and, equally significant, mixtures of transient anomalous diffusion. This
note may be useful in an effort to unify the diffusion of active and passive Brownian particles in
complex environments. To demonstrate the capability of the proposed stochastic process, this
paper directly compared the predictions of Equation (2) with other experimental and numerical
studies. Equation (4) can be straightforwardly extended to any spatial dimension to model
more realistic settings. It can also be generalized by incorporating different types of noise
sources with or without fluctuating diffusivities. The latter is crucial in describing non-Gaussian
features that are often observed in transport phenomena in complex environments [57].
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Appendix A

Appendix A.1. Fitting Parameters

This Appendix provides the optimal values of the fit parameters used in the five
different cases of Section 4 and Figure 2. As a reminder, the vector p = (p1, ..., pM)

gives the statistical weights for the corresponding Π
(n)
1 , ..., Π

(n)
M set of parameters used

in Equation (15). Each vector Π
(n)
m = {D1, ..., Dn; γ1, ..., γn} provides the diffusivities and

relaxation parameters used in Equation (2).

Table A1. Fit parameters for Section 4.1 and Figure 2a.

Ψ (n, M) p Π
(2)
1 Π

(2)
2

43W (2, 2) {0.68, 0.32} {0.133, 0.065; ∞, 0.3} {0.133, 0.065; ∞, 0.01}

61W (2, 2) {0.8, 0.2} {0.133, 0.057; ∞, 0.3} {0.133, 0.057; ∞, 0.01}

67W (2, 2) {0.8, 0.2} {0.133, 0.0315; ∞, 0.38} {0.133, 0.0315; ∞, 0.05}
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Table A2. Fit parameters for Section 4.2 and Figure 2b.

Pe (n, M) p Π
(2)
1 Π

(2)
2

10 (2, 2) {0.22, 0.78} {0.155, 0.0103; ∞, 14.38} {0.155, 0.0103; ∞, 199}

200 (2, 2) {0.15243, 0.8151} {0.155, 0.04; ∞, 8.12} {0.155, 0.04; ∞, 163.1}

500 (2, 2) {0.72, 0.28} {0.155, 0.08; ∞, 333.5} {0.155, 0.08; ∞, 6.9}

1000 (2, 2) {1} {0.155, 0.35; ∞, 100} -

Table A3. Fit parameters for Section 4.3 and Figure 2c.

T (n, M) p Π
(2)
1 Π

(2)
2

1 (2, 1) {1} {0.133, 0.00423; 1.59, 1.6} -

2 (2, 1) {1} {0.068, 0.0185; 2.4, 1.6} -

5 (1, 2) {0.5, 0.5} {0.068; 5} {0.072; 4}

Table A4. Fit parameters for Section 4.4 and Figure 2d.

(n, M) p Π
(2)
1 Π

(2)
2

(2, 2) {0.5, 0.5} {0.000000825, 0.0000027; 134, 2} {0.015, 0.0000542; 2, 3.89}

Table A5. Fit parameters for Section 4.5 and Figure 2e.

(n, M) p Π
(2)
1 Π

(2)
2

(3, 1) {1} {0.0012, 0.00035, 0.0018; 1550, 90, 0.2} -

Appendix A.2. Equilibrium Covariance Matrix

The covariance matrix is defined as

K(t) =


⟨u(1)

t u(1)
t ⟩ ⟨u(1)

t u(2)
t ⟩ ⟨u(1)

t u(3)
t ⟩

⟨u(2)
t u(1)

t ⟩ ⟨u(2)
t u(2)

t ⟩ ⟨u(2)
t u(3)

t ⟩

⟨u(3)
t u(1)

t ⟩ ⟨u(3)
t u(2)

t ⟩ ⟨u(3)
t u(3)

t ⟩


where each entry is found as follows:

⟨u(1)
t u(1)

t ⟩ = σ2
1 E∞

11,

⟨u(1)
t u(2)

t ⟩ = ⟨u(2)
t u(1)

t ⟩ = σ2
1 γ̄12(E∞

11 − E∞
12),

⟨u(2)
t u(2)

t ⟩ = σ2
1 γ̄2

12(E∞
11 − 2E∞

12 + E∞
22) + σ2

2 (E∞
22),
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⟨u(1)
t u(3)

t ⟩ = ⟨u(3)
t u(1)

t ⟩ = σ2
1 γ̄12

(
γ̄13(E∞

11 − E∞
13)

− γ̄23(E∞
12 − E∞

13)

)
,

⟨u(2)
t u(3)

t ⟩ = ⟨u(3)
t u(2)

t ⟩ = σ2
1 γ̄2

12

(
γ̄13(E∞

11 + E∞
23−

E∞
13 − E∞

12)

− γ̄23(E∞
12 + E∞

23 − E∞
13 − E∞

22)

)
+ σ2

2 γ̄23(E∞
22 − E∞

23),

⟨u(3)
t u(3)

t ⟩ = σ2
1

(
γ̄2

12γ̄2
13(E∞

11 + E∞
33 − 2E∞

13)

− 2γ̄2
12γ̄13γ̄23(E∞

12 + E∞
33 − E∞

13 − E∞
23)

+ γ̄2
12γ̄2

23(E∞
22 + E∞

33 − 2E∞
23)

)
+ σ2

2 γ̄2
23(E∞

22 + E∞
33 − 2E∞

23) + σ2
3 E∞

33.

Taking the limit of t → ∞ gives the entries of the equilibrium covariance matrix K∞
ij .
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