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Abstract: The thioether-functionalized 2-azabutadiene (iPrS)2C=C(H)-N=CPh2 L ligates to CdI2 and
HgI2 to form the chelate compounds [CdI2{(iPrS)2C=C(H)-N=CPh2] (1) and [HgI2(iPrS)2C=C(H)-
N=CPh2] (2). Their crystal structures were solved via X-ray diffraction. Both crystallize in the
non-centrosymmetric space groups: monoclinic P21 (1) and orthorhombic P212121 (2), respectively.
The closed-shell d10 metal centers are four-coordinated (two iodides and S and N coordinating atoms
from the ligand L) in both complexes. The geometrical indexes τ indicate that a highly distorted
trigonal pyramidal is adopted for 1 and a seesaw geometry for 2. The comparative nature of metal–
ligand bonds is discussed on the basis of metric parameters and of QT-AIM (quantum theory of
atoms in molecules) calculations. L was also treated with CuI to obtain the dinuclear species [LCu(µ2-
I2)CuL] (3), in which the two Cu(I) centers are linked by a short metal–metal bond. The geometric
and electronic properties of 3 are compared with those of 1 and 2.

Keywords: crystal structure; cadmium iodide; mercury iodide; copper iodide; 2-azabutadiene;
QT-AIM

1. Introduction

In contrast to the plethora of 1,4-diazabutadien (α-diimine) complexes [1–3],
2-azabutadienes R2C=C(H)-N=CR′

2 (R, R′ = Hal, alkyl, aryl) featuring a π-conjugated
C=C(H)-N=C array are far less common as ligands in coordination chemistry [4]. We have
developed an access to π-conjugated Cl2C=C(H)-N=CAr2 via 1,3-dipolar cycloaddition and
demonstrated that the chlorine atoms therein can be readily substituted with alcoholates,
amides and thiolates [5–9]. The latter ditopic thioether-functionalized 2-azabutadienes
(RS)2C=C(H)-N=CAr2 in turn represent versatile ligands in coordination chemistry, since
they dispose of both a harder imine-type N-donor site and a soft S-thioether site, allowing
a chelating coordination on various transition metal centers. For example, coordination of
crystallographically characterized derivative (iPrS)2C=C(H)-N=CPh2 (L) on Mo(CO)5THF
yields cis-(OC)4Mo{(iPrS)2C=C(H)-N=CPh2}] [10], and using [Re(µ-Br)(CO)3(THF)]2 as
a starting material allowed the synthesis of octahedral fac-[(OC)3ReBr{(iPrS)2C=C(H)-
N=CPh2}] [11]. We have even demonstrated that the ortho-H atoms of the aryl groups
can be activated for cyclometallation reactions producing the luminescent C,N,S-pincer
complexes [(iPrS)2C=C(H)-N=C(Ph)C6H4)MCl] with M = Pd or Pt [10]. The 16-membered
bimetallic macrocyclic complex [{Cu2Br2{p-iPrSC6H4)2C=N-C(H)=C(SiPr)2}2] has also been
synthesized and characterized [9].
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We have now extended our investigation on the coordination chemistry of (iPrS)2C=C(H)-
N=CPh2 to the closed-shell metal salts CdI2, HgI2 and CuI and present the synthesis of the
resulting chelate complexes, which were structurally characterized using X-ray diffraction
studies. AIM (atoms in molecules) topological analyses of the electron densities were per-
formed, bringing clarifications about the nature of bonding around the d10 metallic centers.

After having analyzed in detail the structural properties of the group 12 CdI2 and
HgI2 complexes 1 and 2 featuring a closed-shell d10 configuration, we turned our attention
to CuI. The diamagnetic Cu(I) ion, which has in the ground state a 3d104s0 rather than a
3d94s1 electronic configuration (Aufbau principle inversion), also belongs to the d10 avenue
and is considered according to the HSAB principle as a soft metal cation. Although MI2
salts may form after complexation of soft sulfur and phosphorus donor ligands dinuclear
halide-bridged compound, CuI forms after coordination with soft sulfur and phosphorus
donor and harder N-donor ligands quasi-invariably in both rhomboid-shaped dinuclear
[LnCu(µ2-I2)CuLn] (n = 1,2) and polynuclear CunIn clusters. Examples are the wide-
spread closed-cubane clusters Cu4I4L4 (L = S, N, P, As) [12–16]. But with SMe2 and PPh3,
other tetranuclear partially opened isomeric forms are also known, such as the flower-
basket-shaped 2D polymer [(Me2S)3{Cu4(µ-I)4}]n or the open chair (open cubane tetramer)
Cu4I4(PPh3)4 cluster [17–19]. With N,S coordinating site ligands, dinuclear complexes
featuring [Cu2I2] rhomboids are formed in most cases [20–24].

2. Experimental Section

The ligand L was prepared according to the procedure described in the literature [9].
General procedure for the preparation of the complexes 1 and 2: A solution of 4,4-bis

(isopropylthio)-1,1-diphenyl-2-azabuta-1,3-diene (L) (113 mg, 0.318 mmol) in 4 mL of
ethanol/dichloromethane (1/1) was added to a solution of MI2 (0.318 mmol) (M = Cd or
Hg) in 4 mL of ethanol. The resulting yellow solution was refluxed for 3 h and then stirred
for 1 day, after which the solvent was evaporated until a yellow solid appeared. Crystals
suitable for X-ray diffraction were obtained via slow evaporation of methanol/chloroform
solution of the dry yellow solid.

[CdI2{(iPrS)2C=C(H)-N=CPh2}] 1: Yellow crystal. Yield: 48%; IR-ATR: 1594 (C=C),
1511 (C=N) cm−1; UV–vis (CH2Cl2) [λmax nm (ε)]: 269 (47,800 M−1 cm−1), 311 sh
(31,000 M−1 cm−1), 375 (33,800 M−1 cm−1), C21H25CdI2NS2 (721.78): Anal. calcd. C
34.94, H 3.49, N 1.94, S 8.88; found: C 34.86, H 3.37, N 1.89, S 8.81.

[HgI2{(iPrS)2C=C(H)-N=CPh2}] 2: Yellow crystal. Yield: 44%; IR-ATR: 1595 (C=C), 1489
(C=N) cm−1; UV–vis (CH2Cl2) [λmax nm (ε)]: 252 (59,500 M−1 cm−1), 378 (38,800 M−1 cm−1);
C21H25HgI2NS2 (809.96): Anal. calcd. C 31.14, H 3.11, N 1.73, S 7.92; found: C 31.06, H 3.05,
N 1.69, S 7.88.

Synthesis of [{Cu(µ-I)}2{Ph2C=N-CH=C(S-iPr)2}] 3: A solution of CuI (190 mg,
1 mmol) in 5 mL of acetone was added to a solution of the ligand L (711 mg, 2 mmol)
in 5 mL of dichloromethane. The mixture was stirred at room temperature for 2 h and the
layering with diethyl ether afforded red-coloured crystals, suitable for X-ray diffraction.
Red crystal. Yield: 75%. Anal. calcd. for C42H50Cu2I2N2S4 C, 46.19; H, 4.62; N, 2.57; S,
11.75. Found: C, 46.08; H, 4.57; N, 2.49; S, 11.64. IR-ATR: ν(C=C) 1596, ν(C=N) 1514 cm−1;
1H NMR: δ/ppm 1.17 (d, 3J = 6.7 Hz, 12H, 4CH3), 1.34 (d, 3J = 6.7 Hz, 12H, 4CH3), 3.25
(sept, 3J = 6.7 Hz, 2H, SCH), 3.73 (sept, 3J = 6.7 Hz, 2H, SCH), 7.14–7.42 (m, 16Har + 2HC=C),
7.69 (d, 3J = 7.5 Hz, 4Har); 13C{1H} NMR: δ/ppm 22.8 (s, CH3), 23.0 (s, CH3), 37.9 (s, SCH),
38.6 (s, SCH), 128.2-132.4 (9s, Car + C=CH), 136.6 (s, C=CH), 139.2 (s, C=N). UV–vis: 231
(62,000), 259 (60,300), 373 (43,800), 498 sh (4500).

2.1. Apparatus

Infrared spectra were obtained with a Shimadzu IR affinity-1 spectrometer using the
ATR technique (germanium crystal). UV–vis spectra were measured with a VARIAN-Cary
100 spectrophotometer in CH2Cl2 at room temperature. The 1H, 13C{1H} NMR spectra
were recorded with a Bruke Avance 400 HD spectrometer operating at 400 and 100 MHz,
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respectively. The Supplemental Materials contain samples of 1H, 13C-NMR and IR spectra
of the products (Figures S8–S12).

2.2. X-ray Diffraction

X-ray diffraction intensities were measured on Oxford Xcalibur (1), Nonius KappaCCD
(2) and Stoe IPDS (3) diffractometers. The unit cell refinements, data reductions and scale
corrections were performed using CrysAlis CCD (Oxford Diffraction, 2012, Rigaku, Tokyo,
Japan), CrysAlis RED (Oxford Diffraction, 2012) and “Integrate” in IDPS (Stoe & Cie, 1999,
Darmstadt, Germany) for 1 and 3 and DENZO and SCALEPACK [25] for 2. The structures
were solved either with SHELXS [26] (for 1 and 3) or with SIR92 [27] (for 2). Multi-scan
absorption correction (CrysAlis PRO; Oxford Diffraction, 2012) was applied for 1 and the
empirical RefDelF [28], FACEIT in IPDS (Stoe & Cie, 1999) and DIFABS [29] for 3 and 2.
The models were refined via least squares with SHELXL [30]. Olex2 (Durham, England)
was used as a graphical interface [31].

In all three structures, the nonhydrogen atoms, except those of CH2Cl2 solvent
molecule in 2, were refined with anisotropic thermal parameters. Solvent molecules were
refined in the isotropic model. All H atoms were placed in calculated positions and treated
in a riding model. C-H distances were set to 0.95 Å (aromatic) and 0.98 Å (methyl) with
Uiso(H) = xUeq(C), where x = 1.5 for idealized methyls refined as rotating groups and 1.2
for all C-H groups.

Highly disordered CH2Cl2 solvent molecules are present in the structure of 2. They
are placed close to the screw axes 21 (x, 0.25, 0.5) and 21 (x, 0.75, 0) running along the X
direction of the crystal (see Figure S5 in SI), which renders their modeling difficult. This
structure was refined as a 2-component inversion twin with site occupancies refined to
0.65(1) and 0.35(1). There is also a slight disorder of the iodine atom in the structure of
3. The site occupancies were refined to 0.93 and 0.07. Crystal data, data collection and
structure refinement details are summarized in Table 1.

Table 1. Crystal data, data collection and structure refinement for 1, 2 and 3.

Compound 1 2 3

Formula C21H25CdI2NS2 C22H27Cl2HgI2NS2 C22H25CuI2NS2

Formula weight 721.74 894.85 545.98

Temperature/K 173 115 193.15

Wavelength/Å 0.71073 0.71073 0.71073

Crystal system monoclinic orthorhombic triclinic

Space group P21 P212121 P1

a/Å 9.006(3) 9.7582(2) 9.3935(19)

b/Å 9.454(3) 15.7719(3) 9.6540(19)

c/Å 15.081(4) 17.9490(4) 13.689(3)

a/◦ 90.0 90 101.92(3)

β/◦ 101.587(6) 90 96.52(3)

γ/◦ 90.0 90 90.30(3)

Volume/Å3 1257.9(6) 2762.45(10) 1206.3(4)

Z 2 4 2

ρ(calc.) g/cm3 1.906 2.152 1.503

µ/mm−1 3.495 8.162 2.363

F(000) 688 1672 544

Crystal size/mm 0.16 × 0.15 × 0.12 0.10 × 0.10 × 0.08 0.20 × 0.20 × 0.10
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Table 1. Cont.

Compound 1 2 3

θ range for data collection/◦ 2.308 to 26.997 2.611 to 27.476 4.366 to 49.998

Index ranges
−11 ≤ h ≤ 11,
−11 ≤ k ≤ 12,
−19 ≤ l ≤ 19

−12 ≤ h ≤ 12,
−20 ≤ k ≤ 20,
−23 ≤ l ≤ 23

−11 ≤ h ≤ 11,
−00 ≤ k ≤ 10,
−0 ≤ l ≤ 16

Reflections collected 20,409 6299 3965

Independent reflections 5388 [R(int) = 0.0273] 6299 3965 [R(int) = 0.0651]

Refl. greater [I > 2σ(I)] 5325 5445 2805

Absorption correction
Transmission max
Transmission min

Refinement method

CrysAlis PRO
0.999
0.704

Full-matrix least squares on F2

DIFABS
0.4419
0.3386

Full-matrix least squares on F2

FACEIT in IPDS
0.7980
0.6494

Full-matrix least squares on F2

Data/restraints/parameters 5388/1/248 6299/0/277 3695/6/249

Goodness-of-fit on F2

Flack parameter
1.124

0.02(2)
1.044

0.014(7)
1.012

-

Final R indexes [I > 2σ(I)] R1 = 0.0292,
wR2 = 0.0774

R1 = 0.0368,
wR2 = 0.0601

R1 = 0.0894,
wR2 = 0.1456

R indexes (all data) R1 = 0.0297,
wR2 = 0.0787

R1 = 0.0484,
wR2 = 0.0633

R1 = 0.0805,
wR2 = 0.1549

Largest diff. peak
and hole/e.Å−3 0.95 and −0.37 1.08 and −0.80 0.67 and −0.75

Crystallographic data were deposited with the Cambridge Crystallographic Data
Centre: deposition numbers CCDC 941423 (1), 941424 (2) and 941425 (3) contain detailed
crystallographic data for this publication. These data may be obtained free of charge from
the Cambridge Crystallographic Data Centre through www.ccdc.cam.ac.uk/data_request/
cif (accessed on 21 December 2023).

2.3. Computational Studies

The wave functions for AIM topological analyses were calculated with the Gaussian
09 package [32] with the hybrid B3LYP functional [33,34]. The 6-31G(d,p) standard basis
set was applied for all but the iodine and metallic atoms. Since the AIM theory should
preferentially use the whole electron and not the ECP (effective core potential) basis sets,
the high-quality 6-311G(d,p) basis set was applied for iodine [35], and the double zeta
polarized DZP-DKH basis sets of Jörge for Cd and Hg atoms [36,37]. Because we were
interested in comparative interpretation of metric parameters found in the structures, these
calculations were performed on the molecular geometries really present in the crystal
structures of 1 and 2. It is notable, however, that attempts to optimize the geometries even
with an ECP basis set like LANL2DZ failed, probably because of the flatness of potential
energy surfaces. Topological parameters were calculated using the AIM2000 and AIMALL
packages [38,39]. GausSum [40] was used for analysis of the TD-DFT files. The calculations
were performed either at the Centre of Calculations of the University of Burgundy or on
the local PC with GW09-W [32].

3. Results and Discussion
3.1. Synthesis of the CdI2, HgI2 and CuI Adduct Complexes

The synthesis of cadmium and mercury complexes of the types [MI2{(iPrS)2C=C(H)-
N=CPh2}] (1) and (2) was carried out via reacting solutions of the CdI2 or HgI2 salts in
ethanol in the presence of ligand L under reflux (Scheme 1).

www.ccdc.cam.ac.uk/data_request/cif
www.ccdc.cam.ac.uk/data_request/cif
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Scheme 1. Synthesis of the mononuclear complexes 1 and 2.

Pure air-stable complexes 1 and 2 were obtained in the form of yellow crystals after
evaporation of the solvent and recrystallization from a methanol/chloroform mixture with
yields of 48 and 55%, respectively. According to elemental analysis, one L molecule is
attached per MI2 motif (M = Cd or Hg). The IR spectra confirmed the complexation of L on
Cd(II) or Hg(II) (Figures S8 and S9); the UV–vis spectra are discussed in more detail below.
The 1H and 13C NMR spectra are similar to that recorded for ligand L [9]. Furthermore, two
X-ray diffraction studies corroborate the S,N-chelating coordination of L. Upon addition of
an equimolar amount of L to a solution of CuI in a mixture of dichloromethane/acetone, the
dinuclear compound [LCu(µ2-I2)CuL] (3) was formed straightforwardly and was isolated
in the form of deep-red crystals (Scheme 2).
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3.2. X-ray Structural Studies
3.2.1. Molecular Structures

The molecular architectures of mononuclear complexes 1 and 2 are depicted in
Figures 1 and 2, respectively. They show the presence of two iodides and of S and N coor-
dination sites from the azabutadiene ligand. The metal centers are thus four-coordinated
with coordination polyhedra severely distorted from regular tetrahedral geometries. The
Cambridge Crystallographic Database (version CSD 5.43, November 2021) contains three
entries for four-coordinate HgI2 adducts with N and S coordinating atoms [41,42]. On the
other hand, there is no example of a purely four-coordinate CdI2 N,S adduct. Instead, two
entries for pentacoordinate complexes are present [43,44]. The CdI2 compound 1 described
here thus represents the first four-coordinate complex of CdI2 bearing a N,S donor set.

The five-membered metallacycles M-S-C-C-N are almost planar with the highest
deviations from mean planes observed for N atoms, which are equal to 0.14 Å (Cd) and
0.06 Å (Hg). These planes are roughly perpendicular to I-M-I planes with dihedral angles
equal to 81.3(1)◦ (Cd) and 83.4(1)◦ (Hg).

The values of the four-coordinate geometry index τ4 [45] are 0.83 and 0.71, and those
of τ4

′ [46] are equal to 0.81 and 0.66 for 1 and 2, respectively. For the Cd complex 1, these
values are very close to the theoretical value of 0.83 for a trigonal pyramidal geometry, far
from the value of 1 for an ideal tetrahedral coordination sphere. The case of Hg adduct 2 is
more complicated. It is common in the crystal chemistry of mercury cations that they easily
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form covalently bonded linear rods, like, e.g., in the structure of the yellow polymorph of
HgI2 [47,48], or in that of cinnabar HgS [49]. We thus turned our attention to the seesaw
(disphenoidal) geometry (https://en.wikipedia.org/wiki/Seesaw_molecular_geometry
accessed on 21 December 2023). The expected values of the τ4 and τ4

′ indexes for bidentate
ligands depend on the opening of the bite angle. The τ4 varies from 0.42 (bite angle equal
to 120◦) to 0.64 (bite angle of 90◦) whereas the values of τ4

′ vary from 0.24 to 0.36 for the
same bite angles. One may conclude that with a bite angle for S-Hg-N equal to 74.5(2)◦,
the value of (especially) the τ4 index for 2 (0.71) favors the seesaw geometry. The most
significant bond lengths and angles are gathered in Table 2. Data for complex 3 are also
included therein.
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Table 2. Selected bond lengths (Å) and angles (◦) found in the structures of 1, 2 and 3.

1 Cd 2 Hg 3 Cu 1 Cd 2 Hg 3 Cu

M–I1 (a) 2.6787(8) 2.6412(7) 2.576(2) I1-M-I2 124.80(2) 138.56(2) 119.09(5)

M–I2 (a) 2.7140(9) 2.6941(7) 2.692(2) I1-M-S 118.25(4) 117.93(5) 112.4(1)

M–S 2.662(2) 2.689(2) 2.342(2) I1-M-N 114.5(1) 121.1(2) 127.4(2)

M–N 2.321(5) 2.496(7) 2.143(5) I2-M-S 97.93(4) 96.04(5) 108.6(1)

I2-M-N 112.7(1) 88.9(2) 98.0(2)

Cu–Cu 2.672(2) S-M-N 78.1(1) 74.5(2) 86.0(2)
(a) Iodine atom on the major site of occupancy equal to 0.93(1) (see experimental section).

The bond lengths observed for the mercury complex 2 (Hg–Imean = 2.667 Å,
Hg–S = 2.689(2) Å, Hg–N = 2.496(7) Å) roughly match the corresponding values found in
1,8-di-2-pyridyl-3,6-dithiaoctane-N,N′,S,S′)-tetraiodo-dimercury(II) of 2.666(1), 2.714(4) and
2.417(9) Å, respectively [41]; in 2,5-dioxa-13,19-dithia-16-azatricyclo[19.4.0.06,11]pentacosa-
1(21),6,8,10,22,24-hexaene)-diiodomercury(II) of 2.668(1), 2.710(2) and 2.454(5)Å [42] and
in µ2-1,4-bis(2,5-dioxa-13,19-dithia-16-azatricyclo[19.4.0.06,11]pentacosa-1(21),6,8,10,22,24-
hexaene)benzene)-tetraiodo-dimercury(II) of 2.695 (mean), 2.625(2) and 2.435(6) Å [42].
The Hg–I distances are longer than in the yellow metastable polymorph of HgI2 built of
linear HgI2 rods (mean 2.617(6) Å) and in its yellow high-temperature (414 K) structure
containing the bent molecular HgI2 units (mean 2.491 Å). They are, however, shorter than in
the most stable red polymorph of HgI2 where the mercury atom has a tetrahedral geometry
(2.783(3) Å) [10]. The Cd–I (mean 2.696 Å), Cd–S (2.662(2) Å) and Cd–N (2.321(5) Å) bond
lengths observed in 1 apparently show some noncoherent differences when compared with
the parameters calculated for 2. The mean length of the Cd I bonds (2.70 Å) is slightly
longer than that of the Hg–I ones (2.67 Å), but the Cd–S is slightly shorter (0.04 Å) and
the Cd–N is greatly shorter (0.18 Å) than the corresponding distances in 2. In order to
understand these features, we appeal to the hard/soft acid/base theory of interatomic
interactions (HSAB) [50–52]. The Cd atom is harder than the Hg one and the softness of
donor atoms decreases from iodide to sulfur, and nitrogen is considered as a hard site.
Moreover, one easily assumes that in a hard–hard couple the bond has an ionic nature
while in a soft–soft combination the bond is covalent. Consequently, the Hg–I bond should
have the highest covalency, whereas Cd–N is expected to be an ionic bond. We look now
on the covalent and ionic radii of the metals. In four-coordinated environments, the ionic
radius of Cd2+ (0.78 Å) is smaller by 0.18 Å than that of Hg2+ (0.96 Å) [53]. On the other
hand, a recent compilation of covalent radii derived from those of C, N and O atoms gives,
because of lanthanide contraction, the opposite values: 1.44 Å for Cd against 1.32 Å for
Hg [54]. Thus, in light of these values of ionic and covalent radii and the expected nature
of bonding discussed above, the observed bond lengths are not surprising.

The dinuclear framework of 3 was ascertained via an X-ray diffraction study. The
molecular structure is shown in Figure 3 and consists of a centrosymmetric Cu(µ2-I2)Cu
core, in which the Cu centers are in a close contact of only 2.672(2) Å, considerably below
the sum of the van der Waals radii of two Cu atoms (2.8 Å). There is a slight disorder
of the bridging iodine atom that splits in two sites with occupancies equal to 0.93 and
0.07. Rhomboid dimers of the type [L2Cu(µ2-I2)CuL2] (L = N, S), SNCu2I2SN, have been
extensively investigated in the past by us and other research groups. A literature survey
indicates that the Cu· · ·Cu separations vary significantly in the molecular Cu2I2 compound
and SBUs in coordination polymers, underpinning the structural flexibility of this motif.
In the majority of cases of this type of dimers, the Cu· · ·Cu distance comprises between
2.55 Å and 2.70 Å (CSD version 5.44, April 2023). The shortest value of 2.4641(16) Å, which
is even shorter than the Cu· · ·Cu distance of 2.56 Å in metallic copper, has been reported
for tetrakis(µ2-iodo)-bis(µ2-4,6-bis((pyrid-2-ylmethyl)sulfanylmethyl)dibenzo(b,d)furan)-
tetracopper(I) [55,56]. Other examples of short Cu· · ·Cu distances close to that of 3 are
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observed in [Cu2I2(THT)4] (THT = tetrahydrothiophene) and the dithioether-functionalized
tetrathiafulvalene complex [(ttf)Cu(l-I)2 Cu(ttf)] with metal–metal separations of 2.675(2)
and 2.6469(15) Å [57,58].
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Figure 3. ORTEP (30% probability level) of the molecular structure of Cu adduct in the structure
of 3. Only the major site of occupancy equal to 0.93 is shown for the µ2-iodide bridge. Symmetry
transformations used to generate equivalent atoms: i1-x, 2-y, 2-z.

Conversely, a much longer Cu· · ·Cu separation of 3.18 Å has been reported for
[Cu2I2(dtpcp)2] • THF (dtpcp = 2,11-dithia[3.3]paracyclophane) [59], but it may reach
up to 3.243 Å in [CuI(mbix)]n (mbix = 1,3-bis(imidazole-1-yl-methyl)benzene) [60,61]. This
wide range of experimentally observed Cu· · ·Cu separations in dinuclear Cu2I2 units
indicates a certain degree of structural flexibility.

Considering only the iodide atoms (I and Ii) of the major site of occupancy 0.93
and neglecting the Cu· · ·Cu interaction, the value of the four-coordinate geometry index
τ4 [45] is equal to 0.81 and consequently the coordination polyhedron around the Cu atom
may be considered, like for the Cd atom in 1, as a trigonal pyramid. The five-membered
metallacycle Cu-S1-C14-C15-N is almost planar, with the highest deviation from the mean
plane (0.06 Å) observed for the C15 atom. This plane is roughly perpendicular to the
I–Cu–Ii plane, with a dihedral angle of 99.9◦.

All Cu–ligand distances in 3 are shorter than the metal–ligand bonds in 1 and 2
(Table 2). This is an expected feature because even if the covalent radius of Cu is equal,
like that of Hg, to 1.32 Å [54], the ionic one of 0.60 Å is much smaller [55]. The Cu–N bond
length of 2.143(5) Å is shorter by 0.18 Å than the Cd–N one and by 0.36 Å than the Hg–N
bond. These differences exactly match the differences in ionic radii of the central cations,
and it may be concluded from that the ionic nature is dominant for M–N bonds. In the
case of M–S bonds, a difference of 0.36 Å is also observed between Cu–S and Hg–S bonds,
but the Cd–S bond does not follow the trend. The differences in M–I bond lengths are still
smaller, confirming the more covalent nature of these bonds.

3.2.2. Crystal Structures and Supramolecular Features

Compounds 1 and 2 crystallize in the non-centrosymmetric monoclinic polar P21 (1)
and orthorhombic P212121 (2) space groups, respectively, whereas the copper adduct 3
crystallizes in the centrosymmetric triclinic P1 space group. Their structures are built of
coordination molecular MI2L adducts for 1 and 2 and of (CuIL)2 dimers for 3. Highly
disordered solvent CH2Cl2 molecules are present in the crystals of 2.
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The complexes in the crystal lattices are connected by very week noncovalent interac-
tions responsible for the stability of the structures. In the structure of 1, these interactions
are of the type CH· · ·π between the phenyl groups of neighboring molecules (Figure S1 in
the Supporting Material) and of the π· · ·π type, which concerns a kind of stacking between
phenyl rings through the C9· · ·C12 contacts at the limit of the van der Waals radii (3.39 Å,
contraction by 0.01 Å). They are shown in Figure S2. The noncovalent interactions in the
structure of 2 are also very weak. The sole contact shorter than the sum of the van der
Waals radii between complex molecules concerns the CH· · ·π interactions of hydrogen
(H21B) atoms of iPr substituent with carbon (C1) atoms of azabutadiene linkage (2.86 Å,
shortening by 0.04 Å) (Figure S5). They form the 1D chains connected through the CH
(iPr)· · ·Cl (solvent) interactions.

The system of weak noncovalent interactions in 3 is also poor and limited to the
C-H· · · I kind of hydrogen bonds with I· · ·H distances at the limit of the sum of the van
der Waals radii. They consist of I· · ·H7 (3.221 Å), which form the chains parallel to the 0a
[1 0 0] direction of the unit cell (Figure S6) and I· · ·H17C (3.271 Å) parallel to the 0b [0 1 0]
direction (Figure S7).

3.3. Electronic Features and AIM Approach

The UV–vis absorption spectra of 1 and 2 exhibit two intense bands in the UV region
close to 380 nm and 255 nm, respectively, and in the case of Cd complex 2 a weak additional
shoulder near 300–325 nm (Figure 4 (top)).
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Figure 4. Experimental (top) and calculated UV–vis spectra (bottom) of 1 (blue), 2 (red) and 3 (green);
ε, molar absorptivity; λ, wavelength; f, oscillator strength.

The theoretical UV–vis spectra (Figure 4 (bottom)) were generated using time-dependent
DFT calculations. The spectrum calculated for Cd complex 1 matches well with the exper-
imental one, whereas in the case of Hg complex 2, the calculated shoulder of 1 becomes
a band which is not detectable in the experimental spectrum. The TD-DFT results allow
recognition of the nature of experimental transitions in 1 and 2. They are summarized in
Table 3.
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Table 3. Contribution of molecular orbitals to electronic transitions; λ (nm) wavelength, oscillation
strength (f) and major contributions (%) of molecular orbitals (MO) involved therein. For 1 and 2, all
transitions occur in the LUMO.

Complex 1 Complex 2 Complex 3

λ (nm) Osc.
Strength MO λ (nm) Osc.

Strength MO λ (nm) Osc.
Strength MO

393 0.23 H-4 (95) 388 0.29 H-4 (80)
H-3 (19) 567 0.07

H-3/L+1 (10)
H-2/L (73)

H-1/L+1 (12)

323 0.08 H-7 (87) 328 0.08 H-6 (95) 550 0.03 H-1/L+1 (84)

311 0.03 H-8 (82) 318 0.08 H-7 (92) 457 0.02 H-7/L+1 (14)
H-5/L (63)

304 0.04 H-9 (80) 309 0.03 H-8 (93) 419 0.04 H-9/L (14)
H-6/L (76)

290 0.05 H-11 (21)
H-10 (66) 299 0.05 H-9 (87) 380 0.50

H-9/L (33)
H-8/L+1 (21)
H-7/L+1 (24)

283 0.15 H-11 (61)
H-10 (19) 287 0.11 H-10 (91)

The target molecular orbital (MO) in all calculated transitions for 1 and 2 is the LUMO
one. The low-energy band in both spectra (close to 390 nm) is generated by HOMO-4 with
the contribution of HOMO-3 in 2. The shoulder in complex 1 is composed of four weak
transitions from HOMO-7 to HOMO-11 and the corresponding band in 2 contains the
transitions from H-6 to H-9, which have similar shapes. The high-energy band calculated
near 280 nm originates from the mixing of H-11 and H-10 for 1 and from H-10 for 2. The
molecular orbitals involved in these transitions are depicted in Figures 5 and 6. The LUMO
corresponds principally to the LUMO π molecular orbital of 2-azabutadiene molecule
delocalized over lateral C atoms and the central C-N bond (Figure 7) [7], whereas the
HOMO-4 exhibits alternating π lobes from one phenyl ring through the azabutadiene array
to sulfur atoms. The azabutadiene molecule introduces into this H-4 MO its HOMO π

MO covering the C=N and C=C bonds. It is worth noting that the four highest occupied
MOs (HOMO to HOMO-3) in both complexes 1 and 2 are formed in more than 90% by
contributions of the p atomic orbitals of iodine atoms.
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Figure 5. Selected molecular orbitals for complex 1. The energies (eV) are given in brackets. 

   

H-10 (−7.745) H-9 (−7.546) H-8 (−7.425) 

   

H-7 (−7.284) H-6 (−7.127) H-4 (−6.407) 

  

 

H-3 (−6.365) L (−2.767)  

Figure 6. Selected molecular orbitals for complex 2. The energies in eV are given in brackets. 
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As a reference, the frontier MOs of 4-dichloro-2-aza-butadiene are presented as
Figure S13 in the Supporting Material [7].

According to the shapes of these MOs, the low-energy band in 1 and 2 is assigned
mainly to the π–π intra-ligand transition localized on the C=N-C=C linkage. The high-
energy band contains, besides small contributions stemming from the azabutadiene chain,
also those from the phenyl rings. For the shoulder in 1 or the intermediate energy band
in 2, the main contributions stem from the phenyl rings and MI2 unit. Selected MOs for
complex 3 are presented in Figure 7.

The calculations show that in complex 3, the low-energy large band near 560 nm,
responsible for its red color, is due to the transitions from the H-1, H-2 and H-3 molecular
orbitals that have contributions from the Cu2I2 ring towards the LUMO and LUMO+1
corresponding to the π system of the ligand L. The metallic orbitals (H-9) also contribute to
the strong high-energy transition at 380 nm together with the π orbitals of L (H-7 and H-8),
giving rise to the mixing of the M-L charge transfer and π–π transitions.

In order to confirm our conclusions concerning the nature of bonding, we calculated
the wave functions on complex molecules present in the structures of 1, 2 and 3. They were
further used in the QT-AIM analysis (quantum theory of atoms in molecules) developed by
Bader [60,62]. We recall briefly the main features of this theory. A topological analysis of
electron density is a powerful tool for the study of different weak interatomic interactions
(hydrogen bonding [63], van der Waals, σ–π and π–π [64–66]) as well as for studying the
nature of metal–metal [67–69] and metal–ligand [69,70] interactions in addition to the classic
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case of covalent bonds. Various topological properties at bond critical points (BCPs defined
with (rank, signature) code (3,−1)) are used for these purposes [44,46]. These topological
parameters include principally the electron charge density (ρ, e−/a0

3), the Laplacian of
electron density (∇2ρ, e−/a0

5), the local kinetic, potential and total energy densities (G,
V and H, Ha/a0

3) and the derived quantities like the bond degree (H/ρ, Ha/e−) and a
dimensionless ratio |V|/G at the BCP [60–63]. The potential energy density V (always
negative) is related to the covalent contribution to the bond, whereas the kinetic G (always
positive) one is related to its ionic part. Thus, the total energy density H (sum of potential
and kinetic contributions) is negative for predominantly covalent bonds, while the positive
value of H indicates the ionic or weak noncovalent nature of the bond. The integrations
of electron density over atomic basins allow, among other properties, the calculations of
delocalization indexes (DIA-B) that indicate the number of electron pairs localized between
atoms A and B and are thus roughly related to the bond orders. Similar information may
be obtained from Wiberg bond indexes calculated in the frame of natural bond orbitals
(NBOs) [71].

QT-AIM classifies the chemical interacting systems into three main types depending
on the values of the parameters mentioned above. These are the following:

1—shared–shared (SS), covalent, (∇2ρ < 0, H < 0 and |V|/G > 2;
2—shared–closed (SC), transit or intermediate, (∇2ρ > 0, H < 0 and 1< |V|/G < 2;
3—closed–closed (CC), ionic, van der Waals. . ., (∇2ρ> 0, H > 0 and |V|/G < 1.

The molecular graphs built on bond paths for 1 and 2 are shown in Figures 8 and 9
and the topological parameters calculated on geometries found in the crystal structures of
1 and 2 are gathered in Table 4. The Wiberg bond indexes are also included in this table.

The molecular graph of complex 1 (Figure 8) shows the presence of four expected
bond paths of Cd with I, S and N atoms, the intramolecular C–H· · · I hydrogen bonds
and an additional bonding interaction of the central Cd atom with the π system of one
phenyl ring via the Cd–C13 bond path. The presence of this BCP indicates a favorable
distribution of electron density for attractive interaction in this region of the molecule. It is
worth noting that the H-9 molecular orbital of complex 1 depicted in Figure 5 also exhibits a
favorable overlap of electron density for this interaction. This observation may also suggest
a tendency of the Cd atom to extend its coordination sphere, thus explaining the lack of
purely four-coordinated CdI2 adducts with S,N ligands in CCDC.
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Figure 9. Molecular graph of the complex molecule in the crystal structure of 2. Colors of critical
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Table 4. Topological properties of bond critical points (3,-1 BCP) in complex molecules of 1(Cd) and
2(Hg): d, bond distance; ρ, electron density; (∇2ρ, Laplacian of ρ; V, G and H, potential, kinetic and
total energy densities; H/ρ, pressure of total energy per electron (a kind of “bond degree”); DIcalc,
calculated delocalization index; DInorm, delocalization index normalized to 2; Wbxcalc, calculated
Wiberg bond indexes; Wbxnorm, Wiberg bond indexes normalized to 2. All but d (interatomic
distances) data are given in atomic units.

Bond
Property

M—I1
Cd Hg Cu

M—I2
Cd Hg Cu

M—S
Cd Hg Cu

M—N
Cd Hg Cu Cd–C13 Cu–Cu

d, Å 2.679 2.641 2.576 2.714 2.694 2.692 2.662 2.689 2.342 2.321 2.496 2.143 3.157(5) 2.672

ρ, e−/a0
3 0.060 0.064 0.054 0.056 0.059 0.046 0.044 0.045 0.064 0.057 0.043 0.061 0.010 0.031

∇2ρ, e−/a0
5 0.127 0.180 0.109 0.119 0.165 0.085 0.149 0.150 0.214 0.301 0.184 0.295 0.031 0.021

−V, Ha/a0
3 0.048 0.079 0.051 0.044 0.070 0.041 0.037 0.051 0.073 0.059 0.052 0.0733 −0.0054 0.0288

G, Ha/a0
3 0.040 0.062 0.039 0.037 0.055 0.031 0.037 0.044 0.061 0.067 0.049 0.0736 0.0066 0.0177

−H, Ha/a0
3 0.008 0.017 0.012 0.007 0.014 0.010 −0.0003 0.006 0.010 −0.008 0.003 −0.0003 −0.0012 0.0105

−H/ρ, Ha/e− 0.136 0.266 0.219 0.126 0.244 0.218 −0.048 0.144 0.149 −0.143 0.065 −0.0043 −0.039 0.341

|V|/G 1.203 1.276 1.303 1.192 1.258 1.319 0.992 1.150 1.189 0.879 1.058 0.996 0.818 1.605

DIcalc 0.778 0.589 0.587 0.728 0.523 0.479 0.367 0.287 0.483 0.372 0.221 0.379 0.038 0.149

DInorm 0.682 0.727 0.565 0.638 0.646 0.461 0.322 0.354 0.465 0.326 0.273 0.365 0.018 0.143

Wbxcalc 0.785 0.563 0.230 0.756 0.471 0.192 0.306 0.168 0.141 0.216 0.101 0.100 0.026 0.097

Wbxnorm 0.752 0.809 0.724 0.758 0.293 0.270 0.207 0.163 0.025 -

The molecular graph of complex 2 (Figure 9) exhibits the expected four Hg–ligand
bond paths as well as the intramolecular C–H· · · I hydrogen bonds.

Inspection of the data in Table 4 provides a significant amount of information about
the nature of the metal–ligand bonds. The parameters calculated for complexes 1 and 2
are discussed first. All values of the Laplacian of electron density ∇2ρ are positive, which
means that no bond around the metals is shared–shared (purely covalent). The values
of total energy densities H confirm the suggestions derived from HSAB considerations.
They increase in the order I < S < N (order of increasing hardness) and are more negative
for Hg than for Cd (higher covalency/softness of Hg). All M–I bonds have negative total
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energy densities and are thus typical coordination bonds. This is also true for the Hg–S
bond, but there is an ambiguity concerning the Cd–S one since the total energy density
H for this bond is slightly positive (see Table 4). One may consider this bond as being at
the limit of covalent contribution. The Hg–N bond remains a coordination bond; however,
the Cd–N bond lost its covalency and falls within the closed–closed region. It may thus be
considered as an ionic bond. The derived values of |V|/G confirm in a similar manner
the conclusions of the above discussion. The bonding between Cd–I, Hg–I, Hg–S and
Hg–N can be considered as coordination bonds, but the Cd–S and Cd–N bonds have an
ionic character.

One may argue that the higher values of ρ at BCP are not a sufficient criterion, allowing
us to conclude that (i) higher ρ means a stronger bond in interactions involving atoms with
a different number of electron shells, as is the case here (Cu vs. Cd vs. Hg and I vs. S vs. N),
and that (ii) a more adequate quantity for making comparisons in that case is the pressure
of total energy density per electron or bond degree H/ρ. Data gathered in Table 3 indicate
that the H/ρ values are more negative (higher covalency and probably higher strengths)
for Hg–ligand than for Cd–ligand bonds.

All calculated delocalization indexes DIcalc of bonds involving metal and ligands are
surprisingly higher for Cd than for Hg bonds. Moreover, the sum of these indexes is equal
to 2.283 for Cd but only to 1.620 for Hg, which is significantly different from the expected
values, which are close to 2. An attempted explanation of these unexpected features may
reside in some weaknesses or imperfections of all electron basis sets DKH-DZP applied
in calculations for the heavy metals. After corrections introduced via normalization of
the calculated indexes to 2 (sum of expected bond orders), the normalized ones, DInorm,
agree with the precedent discussions, showing that all but the M–N bonds are stronger
with mercury than with Cd. A similar situation is observed for the Wiberg bond indexes,
which were calculated with the same basis sets.

The weak noncovalent Cd· · ·phenyl bond path detected in the molecular graph of
complex 1 (Figure 8) has all the properties of the closed–closed system and may be classified
by analogy with C-H· · ·π interactions as a metal· · ·π path.

It is interesting now to compare the topological parameters calculated for dinuclear
complex 3, in which the iodine atoms are bridging, with those of the mononuclear com-
plexes 1 and 2, in which the iodides are terminal. It is generally accepted in crystal chemistry
that the bridging bonds are weaker than the terminal ones, but the Cu–S and Cu–N bonds
and above all the influence of the relative hardness of Cu(I) with respect to Cd(II) and
Hg(II) on the AIM parameters reported in Table 4 warrant discussion. Parr and Pearson
reported the following values of hardness for the cations employed in this study: 10.3 eV
(Cd2+), 7.7 eV (Hg2+) and 6.3 eV (Cu+) [72,73]. Following their classification, Cu+ is slightly
softer than Hg2+ and Cd2+ is the hardest one among these three soft cations. The molecular
graph of complex 3 is presented in Figure 10.

Like in 1 and 2, all Laplacians (∇2ρ) at the BCP of the Cu–ligand bonds in 3 are positive.
The total energy densities H are negative, except in the case of Cu–N which belongs, like
Cd–S and Cd–N bonds, to a closed–closed ionic system. The values of H also indicate that
the covalency of Cu–I bonds (H2 < H3 < H1) is intermediate between those of Hg–I and
Cd–I, and the covalency of the Cu–S bond (H3 < H2 < H1) is slightly higher than that of the
Hg–S bond, both being significantly higher than the total energy of the Cd–S bond. This
last observation may be related to the known affinity of Hg(II) and Cu(I) towards the sulfur
coordination sites. The values of |V|/G agree with the trends deduced from the values of
H. The delocalization indexes DI confirm the weaker Cu–I bridging bonds compared with
the terminal Hg–I and Cd–I ones. These DI indexes also indicate that the Cu–S and Hg–S
bonds are stronger than the Cd–S one. The topological properties of the Cu–Cu BCP fall
well into the shared/closed system and are typical of metal–metal bonds [51,52].
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Figure 10. Molecular graph of dimeric molecule in the crystal structure of 3. Colors of critical points:
bond (BCP 3,−1) is red, ring (RCP 3,+1) is yellow and cage (CCP 3,+3) is green.

4. Conclusions

The two apparently similar MI2-azabutadiene (M = Cd, Hg) and CuI-azabutadiene
adducts described in this article are four-coordinated around the metallic centers. Their
coordination polyhedra are severely distorted from tetrahedral geometry. The geometry
indexes τ indicate that a trigonal pyramid better describes the coordination sphere of the
Cd atom in complex 1 and of Cu in complex 3, but a seesaw geometry seems to be the
most adequate for the Hg atom in complex 2. The observed bond lengths around the
Cd and Hg centers were discussed first on the basis of the HSAB theory considering the
hardness/softness of each atom involved therein and of the covalent and ionic radii of
the metals. The most covalent nature is expected for Hg–I and Cu–I bonds, whereas the
most ionic should be the Cd–N bond. These hypotheses were further confirmed via AIM
topological analyses of electron densities.
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1; Figure S4: Two chains running along the screw axes 21 at (1, y, 0) and at (0, y, 1) related through the
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screw axes 21(x, ¼, 0; x, 3/4, ½; x, ¼, 1) formed by intermolecular interactions in the structure of 2;
Figures S6 and S7: I· · ·H interactions occurring in the structure of 3; Figures S8–S10: IR-ATR spectrum
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